Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 493
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 175(7): 1780-1795.e19, 2018 12 13.
Article in English | MEDLINE | ID: mdl-30392958

ABSTRACT

Activated T cells differentiate into functional subsets with distinct metabolic programs. Glutaminase (GLS) converts glutamine to glutamate to support the tricarboxylic acid cycle and redox and epigenetic reactions. Here, we identify a key role for GLS in T cell activation and specification. Though GLS deficiency diminished initial T cell activation and proliferation and impaired differentiation of Th17 cells, loss of GLS also increased Tbet to promote differentiation and effector function of CD4 Th1 and CD8 CTL cells. This was associated with altered chromatin accessibility and gene expression, including decreased PIK3IP1 in Th1 cells that sensitized to IL-2-mediated mTORC1 signaling. In vivo, GLS null T cells failed to drive Th17-inflammatory diseases, and Th1 cells had initially elevated function but exhausted over time. Transient GLS inhibition, however, led to increased Th1 and CTL T cell numbers. Glutamine metabolism thus has distinct roles to promote Th17 but constrain Th1 and CTL effector cell differentiation.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cell Differentiation/immunology , Glutaminase/immunology , Lymphocyte Activation , Th1 Cells/immunology , Th17 Cells/immunology , Animals , CD8-Positive T-Lymphocytes/cytology , Cell Differentiation/genetics , Glutaminase/genetics , Male , Mice , Mice, Transgenic , Th1 Cells/cytology , Th17 Cells/cytology
2.
Cell ; 175(1): 101-116.e25, 2018 09 20.
Article in English | MEDLINE | ID: mdl-30220459

ABSTRACT

IDH1 mutations are common in low-grade gliomas and secondary glioblastomas and cause overproduction of (R)-2HG. (R)-2HG modulates the activity of many enzymes, including some that are linked to transformation and some that are probably bystanders. Although prior work on (R)-2HG targets focused on 2OG-dependent dioxygenases, we found that (R)-2HG potently inhibits the 2OG-dependent transaminases BCAT1 and BCAT2, likely as a bystander effect, thereby decreasing glutamate levels and increasing dependence on glutaminase for the biosynthesis of glutamate and one of its products, glutathione. Inhibiting glutaminase specifically sensitized IDH mutant glioma cells to oxidative stress in vitro and to radiation in vitro and in vivo. These findings highlight the complementary roles for BCATs and glutaminase in glutamate biosynthesis, explain the sensitivity of IDH mutant cells to glutaminase inhibitors, and suggest a strategy for maximizing the effectiveness of such inhibitors against IDH mutant gliomas.


Subject(s)
Glioma/metabolism , Glutamic Acid/biosynthesis , Transaminases/physiology , Cell Line, Tumor , Glioma/physiopathology , Glutamic Acid/drug effects , Glutarates/metabolism , Glutarates/pharmacology , Homeostasis/drug effects , Humans , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/physiology , Minor Histocompatibility Antigens/genetics , Minor Histocompatibility Antigens/physiology , Mutation , Oxidation-Reduction/drug effects , Pregnancy Proteins/genetics , Pregnancy Proteins/physiology , Transaminases/antagonists & inhibitors , Transaminases/genetics
3.
Mol Cell ; 82(10): 1821-1835.e6, 2022 05 19.
Article in English | MEDLINE | ID: mdl-35381197

ABSTRACT

GLS1 orchestrates glutaminolysis and promotes cell proliferation when glutamine is abundant by regenerating TCA cycle intermediates and supporting redox homeostasis. CB-839, an inhibitor of GLS1, is currently under clinical investigation for a variety of cancer types. Here, we show that GLS1 facilitates apoptosis when glutamine is deprived. Mechanistically, the absence of exogenous glutamine sufficiently reduces glutamate levels to convert dimeric GLS1 to a self-assembled, extremely low-Km filamentous polymer. GLS1 filaments possess an enhanced catalytic activity, which further depletes intracellular glutamine. Functionally, filamentous GLS1-dependent glutamine scarcity leads to inadequate synthesis of asparagine and mitogenome-encoded proteins, resulting in ROS-induced apoptosis that can be rescued by asparagine supplementation. Physiologically, we observed GLS1 filaments in solid tumors and validated the tumor-suppressive role of constitutively active, filamentous GLS1 mutants K320A and S482C in xenograft models. Our results change our understanding of GLS1 in cancer metabolism and suggest the therapeutic potential of promoting GLS1 filament formation.


Subject(s)
Glutaminase , Glutamine , Apoptosis , Asparagine/genetics , Glutaminase/genetics , Glutaminase/metabolism , Glutamine/metabolism , Humans , Reactive Oxygen Species
4.
Proc Natl Acad Sci U S A ; 120(21): e2217826120, 2023 05 23.
Article in English | MEDLINE | ID: mdl-37192160

ABSTRACT

Molecular classification of gastric cancer (GC) identified a subgroup of patients showing chemoresistance and poor prognosis, termed SEM (Stem-like/Epithelial-to-mesenchymal transition/Mesenchymal) type in this study. Here, we show that SEM-type GC exhibits a distinct metabolic profile characterized by high glutaminase (GLS) levels. Unexpectedly, SEM-type GC cells are resistant to glutaminolysis inhibition. We show that under glutamine starvation, SEM-type GC cells up-regulate the 3 phosphoglycerate dehydrogenase (PHGDH)-mediated mitochondrial folate cycle pathway to produce NADPH as a reactive oxygen species scavenger for survival. This metabolic plasticity is associated with globally open chromatin structure in SEM-type GC cells, with ATF4/CEBPB identified as transcriptional drivers of the PHGDH-driven salvage pathway. Single-nucleus transcriptome analysis of patient-derived SEM-type GC organoids revealed intratumoral heterogeneity, with stemness-high subpopulations displaying high GLS expression, a resistance to GLS inhibition, and ATF4/CEBPB activation. Notably, coinhibition of GLS and PHGDH successfully eliminated stemness-high cancer cells. Together, these results provide insight into the metabolic plasticity of aggressive GC cells and suggest a treatment strategy for chemoresistant GC patients.


Subject(s)
Phosphoglycerate Dehydrogenase , Stomach Neoplasms , Humans , Phosphoglycerate Dehydrogenase/genetics , Phosphoglycerate Dehydrogenase/metabolism , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Cell Line, Tumor , Glutamine/metabolism , Nutrients
5.
Int J Cancer ; 154(5): 912-925, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37699232

ABSTRACT

Insufficient cancer treatment can induce senescent cancer cell formation and treatment resistance. The characteristics of induced senescent cancer (iSnCa) cells remain unclear. Pancreatic ductal adenocarcinoma (PDAC) has a low and nondurable response rate to current treatments. Our study aimed to analyze the properties of iSnCa cells and the relationship between cellular senescence and prognosis in PDAC. We evaluated the characteristics of gemcitabine-induced senescent cancer cells and the effect of senescence-associated secretory phenotype (SASP) factors released by iSnCa cells on surrounding PDAC cells. The relationship between cellular senescence and the prognosis was investigated in 50 patients with PDAC treated with gemcitabine-based neoadjuvant chemotherapy. Exposure to 5 ng/mL gemcitabine-induced senescence, decreased proliferation and increased senescence-associated ß-galactosidase-cell staining without cell death in PDAC cells; the expression of glutaminase1 (GLS1) and SASP factors also increased and caused epithelial-mesenchymal transition in surrounding PDAC cells. iSnCa cells were selectively removed by the GLS1 inhibitor bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES) through apoptosis induction. Cellular senescence was induced in PDAC cells via insufficient gemcitabine in subcutaneous tumor model mice. GLS1 expression was an independent prognostic factor in patients with PDAC who received gemcitabine-based neoadjuvant chemotherapy. This is the first study to identify the relationship between senescence and GLS1 in PDAC. Low-dose gemcitabine-induced senescence and increased GLS1 expression were observed in PDAC cells. Cellular senescence may contribute to treatment resistance of PDAC, hence targeting GLS1 in iSnCa cells may improve the therapeutic effect.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Animals , Mice , Gemcitabine , Deoxycytidine , Cell Line, Tumor , Carcinoma, Pancreatic Ductal/genetics , Pancreatic Neoplasms/genetics , Cell Proliferation , Drug Resistance, Neoplasm
6.
Mol Carcinog ; 63(5): 897-911, 2024 May.
Article in English | MEDLINE | ID: mdl-38353358

ABSTRACT

Increasing evidence has demonstrated that glutaminase (GLS) as a key mitochondrial enzyme plays a pivotal role in glutaminolysis, which widely participates in glutamine metabolism serving as main energy sources and building blocks for tumor growth. However, the roles and molecular mechanisms of GLS in esophageal squamous cell carcinoma (ESCC) remains unknown. Here, we found that GLS was highly expressed in ESCC tissues and cells. GLS inhibitor CB-839 significantly suppressed cell proliferation, colony formation, migration and invasion of ESCC cells, whereas GLS overexpression displayed the opposite effects. In addition, CB-839 markedly suppressed glucose consumption and lactate production, coupled with the downregulation of glycolysis-related proteins HK2, PFKM, PKM2 and LDHA, whereas GLS overexpression exhibited the adverse results. In vivo animal experiment revealed that CB-839 dramatically suppressed tumor growth, whereas GLS overexpression promoted tumor growth in ESCC cells xenografted nude mice. Mechanistically, GLS was localized in mitochondria of ESCC cells, which interacted with PDK1 protein. CB-839 attenuated the interaction of GLS and PDK1 in ESCC cells by suppressing PDK1 expression, which further evoked the downregulation of p-PDHA1 (s293), however, GLS overexpression markedly enhanced the level of p-PDHA1 (s293). These findings suggest that interaction of GLS with PDK1 accelerates the glycolysis of ESCC cells by inactivating PDH enzyme, and thus targeting GLS may be a novel therapeutic approach for ESCC patients.


Subject(s)
Benzeneacetamides , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Glutaminase , Glycolysis , Pyruvate Dehydrogenase Acetyl-Transferring Kinase , Thiadiazoles , Animals , Humans , Mice , Cell Line, Tumor , Cell Movement , Cell Proliferation , Esophageal Neoplasms/genetics , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/metabolism , Esophageal Squamous Cell Carcinoma/pathology , Gene Expression Regulation, Neoplastic , Glutaminase/genetics , Glutaminase/metabolism , Glycolysis/genetics , Mice, Nude , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/genetics , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism
7.
Microb Pathog ; 196: 106949, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39293725

ABSTRACT

The antimicrobial activity of crude and purified L-glutaminase (EC 3.5.1.2), obtained from Lactobacillus gasseri, was evaluated against multidrug-resistant Pseudomonas aeruginosa in the in vivo vaginosis condition. The L-glutaminase possessed significant antimicrobial and anti-biofilm formation activity against multi-drug resistance P. aeruginosa, which were confirmed in the BALBc rat vaginosis model, together with its effects on the immunological and histopathological aspects. The untreated animals showed heavy vaginitis, characterized by sub-epithelial edema and infiltration of mononuclear leukocytes, perivascular heavy inflammatory cells infiltration in the vaginal tissue, and moderate stromal edema. However, the L-glutaminase treatment exhibited no changes in vaginal tissue structure with normal appearance of the epithelium and lamina propria with marked repair of the vaginal section when compared with normal, uninfected, control group A. The immunomodulatory actions of the L-glutaminase were confirmed by observance of higher concentrations of tumor necrosis factor-γ (TNF-γ), and interleukin -12 (IL-12) in treated animals, while the interleukin-10 (IL-10) was higher in the infected, untreated animals' sera samples. Therefore, the L-glutaminase showed corrective and healing actions, which were observed through histopathological observations of the vaginal tissue. The investigations led to imply that L-glutaminase may have the potential to be an effective antimicrobial agent for preventing and inhibiting bacterial growth, as well as inhibiting the biofilm formation in the P. aeruginosa-originated vaginosis. The observations may be of promising value for future clinical use.

8.
BMC Cancer ; 24(1): 125, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38267906

ABSTRACT

BACKGROUND: T cell immunoglobulin and mucin-domain containing-3 (TIM-3) is a cell surface molecule that was first discovered on T cells. However, recent studies revealed that it is also highly expressed in acute myeloid leukemia (AML) cells and it is related to AML progression. As, Glutamine appears to play a prominent role in malignant tumor progression, especially in their myeloid group, therefore, in this study we aimed to evaluate the relation between TIM-3/Galectin-9 axis and glutamine metabolism in two types of AML cell lines, HL-60 and THP-1. METHODS: Cell lines were cultured in RPMI 1640 which supplemented with 10% FBS and 1% antibiotics. 24, 48, and 72 h after addition of recombinant Galectin-9 (Gal-9), RT-qPCR analysis, RP-HPLC and gas chromatography techniques were performed to evaluate the expression of glutaminase (GLS), glutamate dehydrogenase (GDH) enzymes, concentration of metabolites; Glutamate (Glu) and alpha-ketoglutarate (α-KG) in glutaminolysis pathway, respectively. Western blotting and MTT assay were used to detect expression of mammalian target of rapamycin complex (mTORC) as signaling factor, GLS protein and cell proliferation rate, respectively. RESULTS: The most mRNA expression of GLS and GDH in HL-60 cells was seen at 72 h after Gal-9 treatment (p = 0.001, p = 0.0001) and in THP-1 cell line was observed at 24 h after Gal-9 addition (p = 0.001, p = 0.0001). The most mTORC and GLS protein expression in HL-60 and THP-1 cells was observed at 72 and 24 h after Gal-9 treatment (p = 0.0001), respectively. MTT assay revealed that Gal-9 could promote cell proliferation rate in both cell lines (p = 0.001). Glu concentration in HL-60 and α-KG concentration in both HL-60 (p = 0.03) and THP-1 (p = 0.0001) cell lines had a decreasing trend. But, Glu concentration had an increasing trend in THP-1 cell line (p = 0.0001). CONCLUSION: Taken together, this study suggests TIM-3/Gal-9 interaction could promote glutamine metabolism in HL-60 and THP-1 cells and resulting in AML development.


Subject(s)
Glutamine , Leukemia, Myeloid, Acute , Humans , Glutamic Acid , Hepatitis A Virus Cellular Receptor 2 , HL-60 Cells
9.
Pharmacol Res ; 206: 107292, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39002867

ABSTRACT

Nutrient bioavailability in the tumor microenvironment plays a pivotal role in tumor proliferation and metastasis. Among these nutrients, glutamine is a key substance that promotes tumor growth and proliferation, and its downstream metabolite asparagine is also crucial in tumors. Studies have shown that when glutamine is exhausted, tumor cells can rely on asparagine to sustain their growth. Given the reliance of tumor cell proliferation on asparagine, restricting its bioavailability has emerged as promising strategy in cancer treatment. For instance, the use of asparaginase, an enzyme that depletes asparagine, has been one of the key chemotherapies for acute lymphoblastic leukemia (ALL). However, tumor cells can adapt to asparagine restriction, leading to reduced chemotherapy efficacy, and the mechanisms by which different genetically altered tumors are sensitized or adapted to asparagine restriction vary. We review the sources of asparagine and explore how limiting its bioavailability impacts the progression of specific genetically altered tumors. It is hoped that by targeting the signaling pathways involved in tumor adaptation to asparagine restriction and certain factors within these pathways, the issue of drug resistance can be addressed. Importantly, these strategies offer precise therapeutic approaches for genetically altered cancers.


Subject(s)
Asparagine , Neoplasms , Humans , Asparagine/metabolism , Animals , Neoplasms/drug therapy , Neoplasms/metabolism , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Tumor Microenvironment/drug effects , Molecular Targeted Therapy
10.
J Appl Microbiol ; 135(3)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38467390

ABSTRACT

AIMS: To identify a marine L-asparaginase with clinically desirable attributes and characterize the shortlisted candidate through in silico tools. METHODS AND RESULTS: Marine bacterial strains (number = 105) isolated from marine crabs were evaluated through a stepwise strategy incorporating the crucial attributes for therapeutic safety. The results demonstrated the potential of eight bacterial species for extracellular L-asparaginase production. However, only one isolate (Bacillus altitudinis CMFRI/Bal-2) showed clinically desirable attributes, viz. extracellular production, type-II nature, lack of concurrent L-glutaminase and urease activities, and presence of ansZ (functional gene for clinical type). The enzyme production was 22.55 ± 0.5 µM/mg protein/min within 24 h without optimization. The enzyme also showed good activity and stability in pH 7-8 and temperature 37°C, predicting the functioning inside the human body. The Michealis-Menten constant (Km) was 14.75 µM. Detailed in silico analysis based on functional gene authenticating the results of in vitro characterization and predicted the nonallergenic characteristic of the candidate. Docking results proved the higher affinity of the shortlisted candidate to L-asparagine than L-glutamine and urea. CONCLUSION: Comprehensively, the study highlighted B. altitudinis type II asparaginase as a competent candidate for further research on clinically safe asparaginases.


Subject(s)
Asparaginase , Bacillus , Humans , Asparaginase/genetics , Bacillus/genetics , Asparagine , Temperature
11.
BMC Womens Health ; 24(1): 213, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38566121

ABSTRACT

BACKGROUND: Cuproptosis is a newly identified form of unprogrammed cell death. As a pivotal metabolic regulator, glutaminase (GLS) has recently been discovered to be linked to cuproptosis. Despite this discovery, the oncogenic functions and mechanisms of GLS in various cancers are still not fully understood. METHODS: In this study, a comprehensive omics analysis was performed to investigate the differential expression levels, diagnostic and prognostic potential, correlation with tumor immune infiltration, genetic alterations, and drug sensitivity of GLS across multiple malignancies. RESULTS: Our findings revealed unique expression patterns of GLS across various cancer types and molecular subtypes of carcinomas, underscoring its pivotal role primarily in energy and nutrition metabolism. Additionally, GLS showed remarkable diagnostic and prognostic performance in specific cancers, suggesting its potential as a promising biomarker for cancer detection and prognosis. Furthermore, we focused on uterine corpus endometrial carcinoma (UCEC) and developed a novel prognostic model associated with GLS, indicating a close correlation between GLS and UCEC. Moreover, our exploration into immune infiltration, genetic heterogeneity, tumor stemness, and drug sensitivity provided novel insights and directions for future research and laid the foundation for high-quality verification. CONCLUSION: Collectively, our study is the first comprehensive investigation of the biological and clinical significance of GLS in pan-cancer. In our study, GLS was identified as a promising biomarker for UCEC, providing valuable evidence and a potential target for anti-tumor therapy. Overall, our findings shed light on the multifaceted functions of GLS in cancer and offer new avenues for further research.


Subject(s)
Carcinoma , Glutaminase , Humans , Glutaminase/genetics , Multiomics , Research , Biomarkers
12.
J Enzyme Inhib Med Chem ; 39(1): 2290911, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38078371

ABSTRACT

Alterations in normal metabolic processes are defining features of cancer. Glutamine, an abundant amino acid in the human blood, plays a critical role in regulating several biosynthetic and bioenergetic pathways that support tumour growth. Glutaminolysis is a metabolic pathway that converts glutamine into various metabolites involved in the tricarboxylic acid (TCA) cycle and generates antioxidants that are vital for tumour cell survival. As glutaminase catalyses the initial step of this metabolic pathway, it is of great significance in cancer metabolism and tumour progression. Inhibition of glutaminase and targeting of glutaminolysis have emerged as promising strategies for cancer therapy. This review explores the role of glutaminases in cancer metabolism and discusses various glutaminase inhibitors developed as potential therapies for tumour regression.


Subject(s)
Glutamine , Neoplasms , Humans , Glutamine/metabolism , Glutaminase/metabolism , Neoplasms/drug therapy , Amino Acids
13.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Article in English | MEDLINE | ID: mdl-33753479

ABSTRACT

Cellular metabolism in cancer is significantly altered to support the uncontrolled tumor growth. How metabolic alterations contribute to hormonal therapy resistance and disease progression in prostate cancer (PCa) remains poorly understood. Here we report a glutaminase isoform switch mechanism that mediates the initial therapeutic effect but eventual failure of hormonal therapy of PCa. Androgen deprivation therapy inhibits the expression of kidney-type glutaminase (KGA), a splicing isoform of glutaminase 1 (GLS1) up-regulated by androgen receptor (AR), to achieve therapeutic effect by suppressing glutaminolysis. Eventually the tumor cells switch to the expression of glutaminase C (GAC), an androgen-independent GLS1 isoform with more potent enzymatic activity, under the androgen-deprived condition. This switch leads to increased glutamine utilization, hyperproliferation, and aggressive behavior of tumor cells. Pharmacological inhibition or RNA interference of GAC shows better treatment effect for castration-resistant PCa than for hormone-sensitive PCa in vitro and in vivo. In summary, we have identified a metabolic function of AR action in PCa and discovered that the GLS1 isoform switch is one of the key mechanisms in therapeutic resistance and disease progression.


Subject(s)
Androgen Antagonists/pharmacology , Drug Resistance, Neoplasm/genetics , Glutaminase/genetics , Prostatic Neoplasms/drug therapy , Receptors, Androgen/metabolism , Androgen Antagonists/therapeutic use , Animals , Cell Line, Tumor , Computational Biology , Disease Progression , Drug Resistance, Neoplasm/drug effects , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Glutaminase/metabolism , Glutamine/metabolism , Humans , Isoenzymes/genetics , Isoenzymes/metabolism , Male , Mice , Prostate/pathology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Tissue Array Analysis , Xenograft Model Antitumor Assays
14.
Int J Mol Sci ; 25(6)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38542254

ABSTRACT

Many of the biological processes of the cell, from its structure to signal transduction, involve protein-protein interactions. On this basis, our aim was to identify cellular proteins that interact with ERK5, a serine/threonine protein kinase with a key role in tumor genesis and progression and a promising therapeutic target in many tumor types. Using affinity chromatography, immunoprecipitation, and mass spectrometry techniques, we unveiled an interaction between ERK5 and the mitochondrial glutaminase GLS in pancreatic tumor cells. Subsequent co-immunoprecipitation and immunofluorescence studies supported this interaction in breast and lung tumor cells as well. Genetic approaches using RNA interference techniques and CRISPR/Cas9 technology demonstrated that the loss of ERK5 function led to increased protein levels of GLS isoforms (KGA/GAC) and a concomitant increase in their activity in tumor cells. It is well known that the tumor cell reprograms its intermediary metabolism to meet its increased metabolic needs. In this sense, mitochondrial GLS is involved in the first step of glutamine catabolism, one of the main energy sources in the context of cancer. Our data suggest that ERK5 contributes to the regulation of tumor cell energy metabolism via glutaminolysis.


Subject(s)
Glutaminase , Lung Neoplasms , Humans , Glutaminase/genetics , Glutaminase/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Signal Transduction , RNA Interference , Lung Neoplasms/metabolism , Glutamine/metabolism , Cell Line, Tumor
15.
Int J Mol Sci ; 25(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38892241

ABSTRACT

Glutamate functions as the major excitatory neurotransmitter for primary sensory neurons and has a crucial role in sensitizing peripheral nociceptor terminals producing sensitization. Glutaminase (GLS) is the synthetic enzyme that converts glutamine to glutamate. GLS-immunoreactivity (-ir) and enzyme activity are elevated in dorsal root ganglion (DRG) neuronal cell bodies during chronic peripheral inflammation, but the mechanism for this GLS elevation is yet to be fully characterized. It has been well established that, after nerve growth factor (NGF) binds to its high-affinity receptor tropomyosin receptor kinase A (TrkA), a retrograde signaling endosome is formed. This endosome contains the late endosomal marker Rab7GTPase and is retrogradely transported via axons to the cell soma located in the DRG. This complex is responsible for regulating the transcription of several critical nociceptive genes. Here, we show that this retrograde NGF signaling mediates the expression of GLS in DRG neurons during the process of peripheral inflammation. We disrupted the normal NGF/TrkA signaling in adjuvant-induced arthritic (AIA) Sprague Dawley rats by the pharmacological inhibition of TrkA or blockade of Rab7GTPase, which significantly attenuated the expression of GLS in DRG cell bodies. The results indicate that NGF/TrkA signaling is crucial for the production of glutamate and has a vital role in the development of neurogenic inflammation. In addition, our pain behavioral data suggest that Rab7GTPase can be a potential target for attenuating peripheral inflammatory pain.


Subject(s)
Ganglia, Spinal , Glutaminase , Inflammation , Nerve Growth Factor , Rats, Sprague-Dawley , Receptor, trkA , Signal Transduction , Animals , Ganglia, Spinal/metabolism , Nerve Growth Factor/metabolism , Glutaminase/metabolism , Rats , Receptor, trkA/metabolism , Inflammation/metabolism , Inflammation/pathology , Male , Neurons/metabolism , rab GTP-Binding Proteins/metabolism , rab GTP-Binding Proteins/genetics , rab7 GTP-Binding Proteins
16.
Zhongguo Zhong Yao Za Zhi ; 49(8): 2230-2246, 2024 Apr.
Article in Zh | MEDLINE | ID: mdl-38812238

ABSTRACT

Total triterpenoids from the fruits of Chaenomeles speciosa(TCS) are active components in the prevention and treatment of gastric mucosal damage, which have potential anti-aging effects. However, it is still unclear whether TCS can improve gastric aging, especially its molecular mechanism against gastric aging. On this basis, this study explored the effect and mechanism of TCS on senescent GES-1 cells induced by D-galactose(D-gal) to provide scientific data for the clinical use of TCS to prevent gastric aging. GES-1 cells cultured in vitro and those transfected with overexpression GLS1(GLS1-OE) plasmid of glutaminase 1(GLS1) were induced to aging by D-gal, and then TCS and or GLS1 inhibitor bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl) ethyl sulfide(BPTES) were given. Cell survival rate, positive rate of ß-galactosidase(SA-ß-gal) staining, mitochondrial membrane potential(MMP), and apoptosis were investigated. GLS1 activity, levels of glutamine(Gln), glutamate(Glu), α-ketoglutarate(α-KG), urea, and ammonia in supernatant and cells were detected by enzyme-linked immunosorbent assay(ELISA) and colorimetric methods. The mRNA and protein expressions of GLS1 and the related genes of the mitochondrial apoptosis signaling pathway were measured by real-time fluorescence quantitative PCR and Western blot. The results manifested that compared with the D-gal model group and GLS1-OE D-gal model group, TCS significantly decreased the SA-ß-gal staining positive cell rate and MMP of D-gal-induced senescent GES-1 cells and GLS1-OE senescent GES-1 cells, inhibited the survival of senescent cells, and promoted their apoptosis(P<0.01). It decreased the activity of GLS1 and the content of Gln, Glu, α-KG, urea, and ammonia in supernatant and cell(P<0.01), reduced the concentration of cytochrome C(Cyto C) in mitochondria and the mRNA and protein expressions of GLS1 and proliferating nuclear antigen in cells(P<0.01). The mRNA expression of Bcl-2 and Bcl-xl, the protein expression of pro-caspase-9 and pro-caspase-3, and the ratio of Bcl-2/Bax and Bcl-xl/Bad in cells were decreased(P<0.01). Cyto C concentration in the cytoplasm, the mRNA expressions of Bax, Bad, apoptosis protease activating factor 1(Apaf-1), and protein expressions of cleaved-caspase-9, cleaved-caspase-3, cleaved-PARP-1 were increased(P<0.01). The aforementioned results indicate that TCS can counteract the senescent GES-1 cells induced by D-gal, and its mechanism may be closely related to suppressing the Gln/GLS1/α-KG metabolic axis, activating the mitochondrial apoptosis pathway, and thereby accelerating the apoptosis of the senescent cells and eliminating senescent cells.


Subject(s)
Apoptosis , Fruit , Galactose , Glutaminase , Glutamine , Mitochondria , Signal Transduction , Triterpenes , Apoptosis/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Triterpenes/pharmacology , Triterpenes/chemistry , Humans , Signal Transduction/drug effects , Cell Line , Fruit/chemistry , Glutamine/pharmacology , Glutamine/metabolism , Glutaminase/metabolism , Glutaminase/genetics , Cellular Senescence/drug effects , Ketoglutaric Acids/pharmacology , Ketoglutaric Acids/metabolism
17.
J Biol Chem ; 298(2): 101535, 2022 02.
Article in English | MEDLINE | ID: mdl-34954143

ABSTRACT

Cancer cells frequently exhibit uncoupling of the glycolytic pathway from the TCA cycle (i.e., the "Warburg effect") and as a result, often become dependent on their ability to increase glutamine catabolism. The mitochondrial enzyme Glutaminase C (GAC) helps to satisfy this 'glutamine addiction' of cancer cells by catalyzing the hydrolysis of glutamine to glutamate, which is then converted to the TCA-cycle intermediate α-ketoglutarate. This makes GAC an intriguing drug target and spurred the molecules derived from bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide (the so-called BPTES class of allosteric GAC inhibitors), including CB-839, which is currently in clinical trials. However, none of the drugs targeting GAC are yet approved for cancer treatment and their mechanism of action is not well understood. Here, we shed new light on the underlying basis for the differential potencies exhibited by members of the BPTES/CB-839 family of compounds, which could not previously be explained with standard cryo-cooled X-ray crystal structures of GAC bound to CB-839 or its analogs. Using an emerging technique known as serial room temperature crystallography, we were able to observe clear differences between the binding conformations of inhibitors with significantly different potencies. We also developed a computational model to further elucidate the molecular basis of differential inhibitor potency. We then corroborated the results from our modeling efforts using recently established fluorescence assays that directly read out inhibitor binding to GAC. Together, these findings should aid in future design of more potent GAC inhibitors with better clinical outlook.


Subject(s)
Enzyme Inhibitors , Glutaminase , Neoplasms , Sulfides , Thiadiazoles , Crystallography , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Glutaminase/antagonists & inhibitors , Glutaminase/chemistry , Glutaminase/metabolism , Glutamine/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism , Sulfides/chemistry , Sulfides/pharmacology , Temperature , Thiadiazoles/chemistry , Thiadiazoles/pharmacology
18.
J Biol Chem ; 298(2): 101564, 2022 02.
Article in English | MEDLINE | ID: mdl-34999118

ABSTRACT

The mitochondrial enzyme glutaminase C (GAC) is upregulated in many cancer cells to catalyze the first step in glutamine metabolism, the hydrolysis of glutamine to glutamate. The dependence of cancer cells on this transformed metabolic pathway highlights GAC as a potentially important therapeutic target. GAC acquires maximal catalytic activity upon binding to anionic activators such as inorganic phosphate. To delineate the mechanism of GAC activation, we used the tryptophan substitution of tyrosine 466 in the catalytic site of the enzyme as a fluorescent reporter for glutamine binding in the presence and absence of phosphate. We show that in the absence of phosphate, glutamine binding to the Y466W GAC tetramer exhibits positive cooperativity. A high-resolution X-ray structure of tetrameric Y466W GAC bound to glutamine suggests that cooperativity in substrate binding is coupled to tyrosine 249, located at the edge of the catalytic site (i.e., the "lid"), adopting two distinct conformations. In one dimer within the GAC tetramer, the lids are open and glutamine binds weakly, whereas, in the adjoining dimer, the lids are closed over the substrates, resulting in higher affinity interactions. When crystallized in the presence of glutamine and phosphate, all four subunits of the Y466W GAC tetramer exhibited bound glutamine with closed lids. Glutamine can bind with high affinity to each subunit, which subsequently undergo simultaneous catalysis. These findings explain how the regulated transitioning of GAC between different conformational states ensures that maximal catalytic activity is reached in cancer cells only when an allosteric activator is available.


Subject(s)
Glutaminase , Glutamine , Mitochondria , Catalytic Domain , Glutaminase/chemistry , Glutaminase/metabolism , Glutamine/chemistry , Glutamine/metabolism , Mitochondria/enzymology , Mitochondria/metabolism , Phosphates/chemistry , Phosphates/metabolism , Protein Conformation , Tyrosine/chemistry , Tyrosine/metabolism
19.
J Transl Med ; 21(1): 332, 2023 05 20.
Article in English | MEDLINE | ID: mdl-37210557

ABSTRACT

BACKGROUND: Despite numerous clinical trials and decades of endeavour, there is still no effective cure for Alzheimer's disease. Computational drug repositioning approaches may be employed for the development of new treatment strategies for Alzheimer's patients since an extensive amount of omics data has been generated during pre-clinical and clinical studies. However, targeting the most critical pathophysiological mechanisms and determining drugs with proper pharmacodynamics and good efficacy are equally crucial in drug repurposing and often imbalanced in Alzheimer's studies. METHODS: Here, we investigated central co-expressed genes upregulated in Alzheimer's disease to determine a proper therapeutic target. We backed our reasoning by checking the target gene's estimated non-essentiality for survival in multiple human tissues. We screened transcriptome profiles of various human cell lines perturbed by drug induction (for 6798 compounds) and gene knockout using data available in the Connectivity Map database. Then, we applied a profile-based drug repositioning approach to discover drugs targeting the target gene based on the correlations between these transcriptome profiles. We evaluated the bioavailability, functional enrichment profiles and drug-protein interactions of these repurposed agents and evidenced their cellular viability and efficacy in glial cell culture by experimental assays and Western blotting. Finally, we evaluated their pharmacokinetics to anticipate to which degree their efficacy can be improved. RESULTS: We identified glutaminase as a promising drug target. Glutaminase overexpression may fuel the glutamate excitotoxicity in neurons, leading to mitochondrial dysfunction and other neurodegeneration hallmark processes. The computational drug repurposing revealed eight drugs: mitoxantrone, bortezomib, parbendazole, crizotinib, withaferin-a, SA-25547 and two unstudied compounds. We demonstrated that the proposed drugs could effectively suppress glutaminase and reduce glutamate production in the diseased brain through multiple neurodegeneration-associated mechanisms, including cytoskeleton and proteostasis. We also estimated the human blood-brain barrier permeability of parbendazole and SA-25547 using the SwissADME tool. CONCLUSIONS: This study method effectively identified an Alzheimer's disease marker and compounds targeting the marker and interconnected biological processes by use of multiple computational approaches. Our results highlight the importance of synaptic glutamate signalling in Alzheimer's disease progression. We suggest repurposable drugs (like parbendazole) with well-evidenced activities that we linked to glutamate synthesis hereby and novel molecules (SA-25547) with estimated mechanisms for the treatment of Alzheimer's patients.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Drug Repositioning/methods , Glutaminase/genetics , Glutaminase/metabolism , Glutaminase/therapeutic use , Transcriptome , Glutamates/genetics , Glutamates/therapeutic use
20.
BMC Cancer ; 23(1): 1081, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37946141

ABSTRACT

PURPOSE: The pathological diagnosis and prognosis prediction of hepatocellular carcinoma (HCC) is challenging due to the lack of specific biomarkers. This study aimed to validate the diagnostic and prognostic efficiency of Kidney-type glutaminase (GLS1) for HCC in prospective cohorts with a large sample size. METHODS: A total of 1140 HCC patients were enrolled in our prospective clinical trials. Control cases included 114 nontumour tissues. The registered clinical trial (ChiCTR-DDT-14,005,102, chictr.org.cn) was referred to for the exact protocol. GLS1 immunohistochemistry was performed on the whole tumour section. The diagnostic and prognostic performances of GLS1 was evaluated by the receiver operating characteristic curve and Cox regression model. RESULTS: The sensitivity, specificity, positive predictive value, negative predictive value, Youden index, and area under the curve of GLS1 for the diagnosis of HCC were 0.746, 0.842, 0.979, 0.249, 0.588, and 0.814, respectively, which could be increased to 0.846, 0.886, 0.987,0.366, 0.732, and 0.921 when combined with glypican 3 (GPC3) and alpha-fetoprotein (AFP), indicating better diagnostic performance. Further, we developed a nomogram with GPC3 and GLS1 for identifying HCC which showed good discrimination and calibration. GLS1 expression was also related with age, T stage, TNM stage, Edmondson-Steiner grade, microvascular invasion, Ki67, VEGFR2, GPC3, and AFP expression in HCC. GLS1 expression was negatively correlated with disease-free survival (P < 0.001) probability of patients with HCC. CONCLUSIONS: It was validated that GLS1 was a sensitive and specific biomarker for pathological diagnosis of HCC and had prognostic value, thus having practical value for clinical application.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , alpha-Fetoproteins , Prospective Studies , Liver Neoplasms/pathology , Glutaminase , Biomarkers, Tumor , Prognosis , Kidney/pathology , Glypicans
SELECTION OF CITATIONS
SEARCH DETAIL