Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.144
Filter
Add more filters

Coleção CLAP
Publication year range
1.
Cell ; 173(2): 430-442.e17, 2018 04 05.
Article in English | MEDLINE | ID: mdl-29606353

ABSTRACT

Fetal hemoglobin (HbF, α2γ2) level is genetically controlled and modifies severity of adult hemoglobin (HbA, α2ß2) disorders, sickle cell disease, and ß-thalassemia. Common genetic variation affects expression of BCL11A, a regulator of HbF silencing. To uncover how BCL11A supports the developmental switch from γ- to ß- globin, we use a functional assay and protein binding microarray to establish a requirement for a zinc-finger cluster in BCL11A in repression and identify a preferred DNA recognition sequence. This motif appears in embryonic and fetal-expressed globin promoters and is duplicated in γ-globin promoters. The more distal of the duplicated motifs is mutated in individuals with hereditary persistence of HbF. Using the CUT&RUN approach to map protein binding sites in erythroid cells, we demonstrate BCL11A occupancy preferentially at the distal motif, which can be disrupted by editing the promoter. Our findings reveal that direct γ-globin gene promoter repression by BCL11A underlies hemoglobin switching.


Subject(s)
Carrier Proteins/metabolism , Fetal Hemoglobin/genetics , Nuclear Proteins/metabolism , Base Sequence , Binding Sites , Carrier Proteins/genetics , Cell Line , Chromatin/metabolism , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Erythroid Cells/cytology , Erythroid Cells/metabolism , Gene Editing , Humans , Nuclear Proteins/genetics , Promoter Regions, Genetic , Protein Isoforms/genetics , Protein Isoforms/metabolism , Repressor Proteins , Zinc Fingers/genetics , beta-Globins/genetics , beta-Thalassemia/genetics , beta-Thalassemia/pathology , gamma-Globins/genetics
2.
Mol Cell ; 81(2): 239-254.e8, 2021 01 21.
Article in English | MEDLINE | ID: mdl-33301730

ABSTRACT

Metazoan transcription factors typically regulate large numbers of genes. Here we identify via a CRISPR-Cas9 genetic screen ZNF410, a pentadactyl DNA-binding protein that in human erythroid cells directly activates only a single gene, the NuRD component CHD4. Specificity is conveyed by two highly evolutionarily conserved clusters of ZNF410 binding sites near the CHD4 gene with no counterparts elsewhere in the genome. Loss of ZNF410 in adult-type human erythroid cell culture systems and xenotransplantation settings diminishes CHD4 levels and derepresses the fetal hemoglobin genes. While previously known to be silenced by CHD4, the fetal globin genes are exposed here as among the most sensitive to reduced CHD4 levels.. In vitro DNA binding assays and crystallographic studies reveal the ZNF410-DNA binding mode. ZNF410 is a remarkably selective transcriptional activator in erythroid cells, and its perturbation might offer new opportunities for treatment of hemoglobinopathies.


Subject(s)
DNA/genetics , Erythroid Precursor Cells/metabolism , Fetal Hemoglobin/genetics , Mi-2 Nucleosome Remodeling and Deacetylase Complex/genetics , Transcription Factors/genetics , Animals , Binding Sites , COS Cells , CRISPR-Cas Systems , Chlorocebus aethiops , DNA/metabolism , Erythroid Precursor Cells/cytology , Erythroid Precursor Cells/transplantation , Fetal Blood/cytology , Fetal Blood/metabolism , Fetal Hemoglobin/metabolism , Fetus , Gene Editing , HEK293 Cells , Heterografts , Humans , Mi-2 Nucleosome Remodeling and Deacetylase Complex/chemistry , Mi-2 Nucleosome Remodeling and Deacetylase Complex/metabolism , Mice , Models, Molecular , Mouse Embryonic Stem Cells/cytology , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Transcription Factors/chemistry , Transcription Factors/metabolism , Transcriptional Activation
3.
Proc Natl Acad Sci U S A ; 121(8): e2312870121, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38349875

ABSTRACT

Oxidation self-charging batteries have emerged with the demand for powering electronic devices around the clock. The low efficiency of self-charging has been the key challenge at present. Here, a more efficient autoxidation self-charging mechanism is realized by introducing hemoglobin (Hb) as a positive electrode additive in the polyaniline (PANI)-zinc battery system. The heme acts as a catalyst that reduces the energy barrier of the autoxidation reaction by regulating the charge and spin state of O2. To realize self-charging, the adsorbed O2 molecules capture electrons of the reduced (discharged state) PANI, leading to the desorption of zinc ions and the oxidation of PANI to complete self-charging. The battery can discharge for 12 min (0.5 C) after 50 self-charging/discharge cycles, while there is nearly no discharge capacity in the absence of Hb. This biology-inspired electronic regulation strategy may inspire new ideas to boost the performance of self-charging batteries.

4.
Bioessays ; 46(7): e2400053, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38713161

ABSTRACT

Trypanosoma brucei is the causal agent of African Trypanosomiasis in humans and other animals. It maintains a long-term infection through an antigenic variation based population survival strategy. To proliferate in a mammal, T. brucei acquires iron and haem through the receptor mediated uptake of host transferrin and haptoglobin-hemoglobin respectively. The receptors are exposed to host antibodies but this does not lead to clearance of the infection. Here we discuss how the trypanosome avoids this fate in the context of recent findings on the structure and cell biology of the receptors.


Subject(s)
Trypanosoma brucei brucei , Trypanosomiasis, African , Trypanosoma brucei brucei/immunology , Trypanosoma brucei brucei/metabolism , Humans , Animals , Trypanosomiasis, African/immunology , Trypanosomiasis, African/parasitology , Haptoglobins/metabolism , Receptors, Cell Surface/metabolism , Receptors, Cell Surface/immunology , Transferrin/metabolism , Hemoglobins/metabolism , Protozoan Proteins/metabolism , Protozoan Proteins/immunology , Host-Parasite Interactions/immunology , Iron/metabolism , Antibodies, Protozoan/immunology
5.
Proc Natl Acad Sci U S A ; 120(5): e2211939120, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36693107

ABSTRACT

Streptococcus pyogenes (group A Streptococcus) is a clinically important microbial pathogen that requires iron in order to proliferate. During infections, S. pyogenes uses the surface displayed Shr receptor to capture human hemoglobin (Hb) and acquires its iron-laden heme molecules. Through a poorly understood mechanism, Shr engages Hb via two structurally unique N-terminal Hb-interacting domains (HID1 and HID2) which facilitate heme transfer to proximal NEAr Transporter (NEAT) domains. Based on the results of X-ray crystallography, small angle X-ray scattering, NMR spectroscopy, native mass spectrometry, and heme transfer experiments, we propose that Shr utilizes a "cap and release" mechanism to gather heme from Hb. In the mechanism, Shr uses the HID1 and HID2 modules to preferentially recognize only heme-loaded forms of Hb by contacting the edges of its protoporphyrin rings. Heme transfer is enabled by significant receptor dynamics within the Shr-Hb complex which function to transiently uncap HID1 from the heme bound to Hb's ß subunit, enabling the gated release of its relatively weakly bound heme molecule and subsequent capture by Shr's NEAT domains. These dynamics may maximize the efficiency of heme scavenging by S. pyogenes, enabling it to preferentially recognize and remove heme from only heme-loaded forms of Hb that contain iron.


Subject(s)
Hemoglobins , Streptococcus pyogenes , Humans , Hemoglobins/metabolism , Streptococcus pyogenes/chemistry , Carrier Proteins/metabolism , Heme/metabolism , Iron/metabolism
6.
Proc Natl Acad Sci U S A ; 120(25): e2302254120, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37307480

ABSTRACT

During human development, there is a switch in the erythroid compartment at birth that results in silencing of expression of fetal hemoglobin (HbF). Reversal of this silencing has been shown to be effective in overcoming the pathophysiologic defect in sickle cell anemia. Among the many transcription factors and epigenetic effectors that are known to mediate HbF silencing, two of the most potent are BCL11A and MBD2-NuRD. In this report, we present direct evidence that MBD2-NuRD occupies the γ-globin gene promoter in adult erythroid cells and positions a nucleosome there that results in a closed chromatin conformation that prevents binding of the transcriptional activator, NF-Y. We show that the specific isoform, MBD2a, is required for the formation and stable occupancy of this repressor complex that includes BCL11A, MBD2a-NuRD, and the arginine methyltransferase, PRMT5. The methyl cytosine binding preference and the arginine-rich (GR) domain of MBD2a are required for high affinity binding to methylated γ-globin gene proximal promoter DNA sequences. Mutation of the methyl cytosine-binding domain (MBD) of MBD2 results in a variable but consistent loss of γ-globin gene silencing, in support of the importance of promoter methylation. The GR domain of MBD2a is also required for recruitment of PRMT5, which in turn results in placement of the repressive chromatin mark H3K8me2s at the promoter. These findings support a unified model that integrates the respective roles of BCL11A, MBD2a-NuRD, PRMT5, and DNA methylation in HbF silencing.


Subject(s)
Fetal Hemoglobin , gamma-Globins , Adult , Infant, Newborn , Humans , Genes, Regulator , Transcription Factors , Chromatin , Cytosine , Protein-Arginine N-Methyltransferases , DNA-Binding Proteins
7.
Crit Rev Biochem Mol Biol ; 58(2-6): 132-157, 2023 12.
Article in English | MEDLINE | ID: mdl-38189101

ABSTRACT

Hemoglobin (Hb) has been identified in at least 14 molluscan taxa so far. Research spanning over 130 years on molluscan Hbs focuses on their genes, protein structures, functions, and evolution. Molluscan Hbs are categorized into single-, two-, and multiple-domain chains, including red blood cell, gill, and extracellular Hbs, based on the number of globin domains and their respective locations. These Hbs exhibit variation in assembly, ranging from monomeric and dimeric to higher-order multimeric forms. Typically, molluscan Hbs display moderately high oxygen affinity, weak cooperativity, and varying pH sensitivity. Hb's potential role in antimicrobial pathways could augment the immune defense of bivalves, which may be a complement to their lack of adaptive immunity. The role of Hb as a respiratory protein in bivalves likely originated from the substitution of hemocyanin. Molluscan Hbs demonstrate adaptive evolution in response to environmental changes via various strategies (e.g. increasing Hb types, multimerization, and amino acid residue substitutions at key sites), enhancing or altering functional properties for habitat adaptation. Concurrently, an increase in Hb assembly diversity, coupled with a downward trend in oxygen affinity, is observed during molluscan differentiation and evolution. Hb in Protobranchia, Heteroconchia, and Pteriomorphia bivalves originated from separate ancestors, with Protobranchia inheriting a relative ancient molluscan Hb gene. In bivalves, extracellular Hbs share a common origin, while gill Hbs likely emerged from convergent evolution. In summary, research on molluscan Hbs offers valuable insights into the origins, biological variations, and adaptive evolution of animal Hbs.


Subject(s)
Hemoglobins , Mollusca , Animals , Hemoglobins/genetics , Hemoglobins/chemistry , Hemoglobins/metabolism , Mollusca/genetics , Mollusca/metabolism , Oxygen/metabolism
8.
J Biol Chem ; 300(9): 107608, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39084459

ABSTRACT

Vacuolar type ATPases (V-type ATPases) are highly conserved hetero-multisubunit proton pumping machineries found in all eukaryotes. They utilize ATP hydrolysis to pump protons, acidifying intracellular or extracellular compartments, and are thus crucial for various biological processes. Despite their evolutionary conservation in malaria parasites, this proton pump remains understudied. To understand the localization and biological functions of Plasmodium falciparum V-type ATPase, we employed CRISPR/Cas9 to endogenously tag the subunit A of the V1 domain. V1A (PF3D7_1311900) was tagged with a triple hemagglutinin epitope and the TetR-DOZI-aptamer system for conditional expression under the regulation of anhydrotetracycline. Via immunofluorescence assays, we identified that V-type ATPase is expressed throughout the intraerythrocytic developmental cycle and is mainly localized to the digestive vacuole and parasite plasma membrane. Immuno-electron microscopy further revealed that V-type ATPase is also localized on secretory organelles in merozoites. Knockdown of V1A led to cytosolic pH imbalance and blockage of hemoglobin digestion in the digestive vacuole, resulting in an arrest of parasite development in the trophozoite-stage and, ultimately, parasite demise. Using bafilomycin A1, a specific inhibitor of V-type ATPases, we found that the P. falciparum V-type ATPase is likely involved in parasite invasion but is not critical for ring-stage development. Further, we detected a large molecular weight complex in blue native-PAGE (∼1.0 MDa), corresponding to the total molecular weights of V1 and Vo domains. Together, we show that V-type ATPase is localized to multiple subcellular compartments in P. falciparum, and its functionality throughout the asexual cycle varies depending on the parasite developmental stages.

9.
Circulation ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836358

ABSTRACT

BACKGROUND: Whether aortic valve stenosis (AS) can adversely affect systemic endothelial function independently of standard modifiable cardiovascular risk factors is unknown. METHODS: We therefore investigated endothelial and cardiac function in an experimental model of AS mice devoid of standard modifiable cardiovascular risk factors and human cohorts with AS scheduled for transcatheter aortic valve replacement. Endothelial function was determined by flow-mediated dilation using ultrasound. Extracellular hemoglobin (eHb) concentrations and NO consumption were determined in blood plasma of mice and humans by ELISA and chemiluminescence. This was complemented by measurements of aortic blood flow using 4-dimensional flow acquisition by magnetic resonance imaging and computational fluid dynamics simulations. The effects of plasma and red blood cell (RBC) suspensions on vascular function were determined in transfer experiments in a murine vasorelaxation bioassay system. RESULTS: In mice, the induction of AS caused systemic endothelial dysfunction. In the presence of normal systolic left ventricular function and mild hypertrophy, the increase in the transvalvular gradient was associated with elevated eryptosis, increased eHb and plasma NO consumption; eHb sequestration by haptoglobin restored endothelial function. Because the aortic valve orifice area in patients with AS decreased, postvalvular mechanical stress in the central ascending aorta increased. This was associated with elevated eHb, circulating RBC-derived microvesicles, eryptotic cells, lower haptoglobin levels without clinically relevant anemia, and consecutive endothelial dysfunction. Transfer experiments demonstrated that reduction of eHb by treatment with haptoglobin or elimination of fluid dynamic stress by transcatheter aortic valve replacement restored endothelial function. In patients with AS and subclinical RBC fragmentation, the remaining circulating RBCs before and after transcatheter aortic valve replacement exhibited intact membrane function, deformability, and resistance to osmotic and hypoxic stress. CONCLUSIONS: AS increases postvalvular swirling blood flow in the central ascending aorta, triggering RBC fragmentation with the accumulation of hemoglobin in the plasma. This increases NO consumption in blood, thereby limiting vascular NO bioavailability. Thus, AS itself promotes systemic endothelial dysfunction independent of other established risk factors. Transcatheter aortic valve replacement is capable of limiting NO scavenging and rescuing endothelial function by realigning postvalvular blood flow to near physiological patterns. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT05603520. URL: https://www.clinicaltrials.gov; Unique identifier: NCT01805739.

10.
Annu Rev Microbiol ; 74: 431-454, 2020 09 08.
Article in English | MEDLINE | ID: mdl-32905757

ABSTRACT

Understanding and controlling the spread of antimalarial resistance, particularly to artemisinin and its partner drugs, is a top priority. Plasmodium falciparum parasites resistant to chloroquine, amodiaquine, or piperaquine harbor mutations in the P. falciparum chloroquine resistance transporter (PfCRT), a transporter resident on the digestive vacuole membrane that in its variant forms can transport these weak-base 4-aminoquinoline drugs out of this acidic organelle, thus preventing these drugs from binding heme and inhibiting its detoxification. The structure of PfCRT, solved by cryogenic electron microscopy, shows mutations surrounding an electronegative central drug-binding cavity where they presumably interact with drugs and natural substrates to control transport. P. falciparum susceptibility to heme-binding antimalarials is also modulated by overexpression or mutations in the digestive vacuole membrane-bound ABC transporter PfMDR1 (P. falciparum multidrug resistance 1 transporter). Artemisinin resistance is primarily mediated by mutations in P. falciparum Kelch13 protein (K13), a protein involved in multiple intracellular processes including endocytosis of hemoglobin, which is required for parasite growth and artemisinin activation. Combating drug-resistant malaria urgently requires the development of new antimalarial drugs with novel modes of action.


Subject(s)
Antimalarials/pharmacology , Drug Resistance/genetics , Membrane Transport Proteins/genetics , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Antimalarials/therapeutic use , Artemisinins/pharmacology , Artemisinins/therapeutic use , Chloroquine/pharmacology , Chloroquine/therapeutic use , Humans , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Mutation , Quinolines/pharmacology , Quinolines/therapeutic use
11.
Stem Cells ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39110040

ABSTRACT

Prior evidence indicates that the erythroid cellular response to glucocorticoids (GC) has developmental specificity, namely, that developmentally more advanced cells that are undergoing or have undergone fetal to adult globin switching are more responsive to GC-induced expansion. To investigate the molecular underpinnings of this, we focused on the major developmental globin regulator BCL11A. We compared: a) levels of expression and nuclear content of BCL11A in adult erythroid cells upon GC stimulation; b) response to GC of CD34+ cells from patients with BCL11A microdeletions and reduced BCL11A expression, and; c) response to GC of two cellular models (HUDEP-2 and adult CD34+ cells) before and after reduction of BCL11A expression by shRNA. We observed that: a) GC-expanded erythroid cells from a large cohort of blood donors displayed amplified expression and nuclear accumulation of BCL11A; b) CD34+ cells from BCL11A microdeletion patients generated fewer erythroid cells when cultured with GC compared to their parents, while the erythroid expansion of the patients was similar to that of their parents in cultures without GC, and; c) adult CD34+ cells and HUDEP-2 cells with shRNA-depleted expression of BCL11A exhibit reduced expansion in response to GC. In addition, RNA-seq profiling of shRNA-BCL11A CD34+ cells cultured with and without GC was similar (very few differentially expressed genes), while GC-specific responses (differential expression of GILZ and of numerous additional genes) were observed only in controls cells with unperturbed BCL11A expression. These data indicate that BCL11A is an important participant of certain aspects of the stress pathway sustained by GC.

12.
J Pathol ; 263(3): 315-327, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38721910

ABSTRACT

Hemolysis-induced acute kidney injury (AKI) is attributed to heme-mediated proximal tubule epithelial cell (PTEC) injury and tubular cast formation due to intratubular protein condensation. Megalin is a multiligand endocytic receptor for proteins, peptides, and drugs in PTECs and mediates the uptake of free hemoglobin and the heme-scavenging protein α1-microglobulin. However, understanding of how megalin is involved in the development of hemolysis-induced AKI remains elusive. Here, we investigated the megalin-related pathogenesis of hemolysis-induced AKI and a therapeutic strategy using cilastatin, a megalin blocker. A phenylhydrazine-induced hemolysis model developed in kidney-specific mosaic megalin knockout (MegKO) mice confirmed megalin-dependent PTEC injury revealed by the co-expression of kidney injury molecule-1 (KIM-1). In the hemolysis model in kidney-specific conditional MegKO mice, the uptake of hemoglobin and α1-microglobulin as well as KIM-1 expression in PTECs was suppressed, but tubular cast formation was augmented, likely due to the nonselective inhibition of protein reabsorption in PTECs. Quartz crystal microbalance analysis revealed that cilastatin suppressed the binding of megalin with hemoglobin and α1-microglobulin. Cilastatin also inhibited the specific uptake of fluorescent hemoglobin by megalin-expressing rat yolk sac tumor-derived L2 cells. In a mouse model of hemolysis-induced AKI, repeated cilastatin administration suppressed PTEC injury by inhibiting the uptake of hemoglobin and α1-microglobulin and also prevented cast formation. Hemopexin, another heme-scavenging protein, was also found to be a novel ligand of megalin, and its binding to megalin and uptake by PTECs in the hemolysis model were suppressed by cilastatin. Mass spectrometry-based semiquantitative analysis of urinary proteins in cilastatin-treated C57BL/6J mice indicated that cilastatin suppressed the reabsorption of a limited number of megalin ligands in PTECs, including α1-microglobulin and hemopexin. Collectively, cilastatin-mediated selective megalin blockade is an effective therapeutic strategy to prevent both heme-mediated PTEC injury and cast formation in hemolysis-induced AKI. © 2024 The Pathological Society of Great Britain and Ireland.


Subject(s)
Acute Kidney Injury , Hemolysis , Kidney Tubules, Proximal , Low Density Lipoprotein Receptor-Related Protein-2 , Mice, Knockout , Animals , Low Density Lipoprotein Receptor-Related Protein-2/metabolism , Low Density Lipoprotein Receptor-Related Protein-2/genetics , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Kidney Tubules, Proximal/drug effects , Hemoglobins/metabolism , Mice , Cilastatin/pharmacology , Disease Models, Animal , Phenylhydrazines , Mice, Inbred C57BL , Male , Hepatitis A Virus Cellular Receptor 1/metabolism , Alpha-Globulins/metabolism , Humans
13.
Cereb Cortex ; 34(8)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39147390

ABSTRACT

Although many neuroimaging studies have evaluated changes in the prefrontal cortex during mindfulness-based interventions, most of these studies were cross-sectional studies of skilled participants or involved pre-post comparisons before and after a single session. While functional near-infrared spectroscopy is a useful tool to capture changes in the hemodynamic response of the prefrontal cortex during continuous mindfulness-based intervention, its ability to detect the accumulated effects of continuous mindfulness-based intervention is currently unclear. We investigated whether a 12-wk online mindfulness-based intervention changed the hemodynamic response of the prefrontal cortex during a verbal fluency task. Eighty-two healthy university students were randomly allocated to a 12-wk online mindfulness-based intervention group or a wait-list control group. The integral values of oxygenated hemoglobin measured using functional near-infrared spectroscopy before and after the intervention were compared to the values in the wait-list group. The intervention condition showed significantly greater functional near-infrared spectroscopy signal activation than the control condition; however, the effect sizes before and after the intervention were small. Thus, continuous mindfulness-based intervention could alter prefrontal cortex function, and functional near-infrared spectroscopy could be useful for measuring the accumulated effects of continuous mindfulness-based interventions. With a better understanding of the association between mindfulness and functional near-infrared spectroscopy signals, functional near-infrared spectroscopy can be used for biofeedback analyses.


Subject(s)
Hemodynamics , Mindfulness , Prefrontal Cortex , Spectroscopy, Near-Infrared , Humans , Mindfulness/methods , Spectroscopy, Near-Infrared/methods , Male , Female , Young Adult , Pilot Projects , Prefrontal Cortex/physiology , Prefrontal Cortex/diagnostic imaging , Hemodynamics/physiology , Adult , Brain/physiology , Brain/diagnostic imaging , Oxyhemoglobins/metabolism
14.
Mol Ther ; 32(3): 663-677, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38273654

ABSTRACT

BCL11A-XL directly binds and represses the fetal globin (HBG1/2) gene promoters, using 3 zinc-finger domains (ZnF4, ZnF5, and ZnF6), and is a potential target for ß-hemoglobinopathy treatments. Disrupting BCL11A-XL results in derepression of fetal globin and high HbF, but also affects hematopoietic stem and progenitor cell (HSPC) engraftment and erythroid maturation. Intriguingly, neurodevelopmental patients with ZnF domain mutations have elevated HbF with normal hematological parameters. Inspired by this natural phenomenon, we used both CRISPR-Cas9 and base editing at specific ZnF domains and assessed the impacts on HbF production and hematopoietic differentiation. Generating indels in the various ZnF domains by CRISPR-Cas9 prevented the binding of BCL11A-XL to its site in the HBG1/2 promoters and elevated the HbF levels but affected normal hematopoiesis. Far fewer side effects were observed with base editing- for instance, erythroid maturation in vitro was near normal. However, we observed a modest reduction in HSPC engraftment and a complete loss of B cell development in vivo, presumably because current base editing is not capable of precisely recapitulating the mutations found in patients with BCL11A-XL-associated neurodevelopment disorders. Overall, our results reveal that disrupting different ZnF domains has different effects. Disrupting ZnF4 elevated HbF levels significantly while leaving many other erythroid target genes unaffected, and interestingly, disrupting ZnF6 also elevated HbF levels, which was unexpected because this region does not directly interact with the HBG1/2 promoters. This first structure/function analysis of ZnF4-6 provides important insights into the domains of BCL11A-XL that are required to repress fetal globin expression and provide framework for exploring the introduction of natural mutations that may enable the derepression of single gene while leaving other functions unaffected.


Subject(s)
Gene Editing , gamma-Globins , Humans , Gene Editing/methods , gamma-Globins/genetics , Repressor Proteins/genetics , Repressor Proteins/metabolism , Hematopoietic Stem Cells/metabolism , Zinc Fingers , Fetal Hemoglobin/genetics , Fetal Hemoglobin/metabolism
15.
Proc Natl Acad Sci U S A ; 119(14): e2116708119, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35357971

ABSTRACT

Iron surface determinant B (IsdB) is a hemoglobin (Hb) receptor essential for hemic iron acquisition by Staphylococcus aureus. Heme transfer to IsdB is possible from oxidized Hb (metHb), but inefficient from Hb either bound to oxygen (oxyHb) or bound to carbon monoxide (HbCO), and encompasses a sequence of structural events that are currently poorly understood. By single-particle cryo-electron microscopy, we determined the structure of two IsdB:Hb complexes, representing key species along the heme extraction pathway. The IsdB:HbCO structure, at 2.9-Å resolution, provides a snapshot of the preextraction complex. In this early stage of IsdB:Hb interaction, the hemophore binds to the ß-subunits of the Hb tetramer, exploiting a folding-upon-binding mechanism that is likely triggered by a cis/trans isomerization of Pro173. Binding of IsdB to α-subunits occurs upon dissociation of the Hb tetramer into α/ß dimers. The structure of the IsdB:metHb complex reveals the final step of the extraction process, where heme transfer to IsdB is completed. The stability of the complex, both before and after heme transfer from Hb to IsdB, is influenced by isomerization of Pro173. These results greatly enhance current understanding of structural and dynamic aspects of the heme extraction mechanism by IsdB and provide insight into the interactions that stabilize the complex before the heme transfer event. This information will support future efforts to identify inhibitors of heme acquisition by S. aureus by interfering with IsdB:Hb complex formation.


Subject(s)
Cation Transport Proteins , Heme , Hemoglobins , Cation Transport Proteins/chemistry , Cryoelectron Microscopy , Heme/chemistry , Hemoglobins/chemistry , Humans , Iron/metabolism
16.
Proc Natl Acad Sci U S A ; 119(40): e2210779119, 2022 10 04.
Article in English | MEDLINE | ID: mdl-36161945

ABSTRACT

Stem cell transplantation and genetic therapies offer potential cures for patients with sickle cell disease (SCD), but these options require advanced medical facilities and are expensive. Consequently, these treatments will not be available for many years to the majority of patients suffering from this disease. What is urgently needed now is an inexpensive oral drug in addition to hydroxyurea, the only drug approved by the FDA that inhibits sickle-hemoglobin polymerization. Here, we report the results of the first phase of our phenotypic screen of the 12,657 compounds of the Scripps ReFRAME drug repurposing library using a recently developed high-throughput assay to measure sickling times following deoxygenation to 0% oxygen of red cells from sickle trait individuals. The ReFRAME library is a very important collection because the compounds are either FDA-approved drugs or have been tested in clinical trials. From dose-response measurements, 106 of the 12,657 compounds exhibit statistically significant antisickling at concentrations ranging from 31 nM to 10 µM. Compounds that inhibit sickling of trait cells are also effective with SCD cells. As many as 21 of the 106 antisickling compounds emerge as potential drugs. This estimate is based on a comparison of inhibitory concentrations with free concentrations of oral drugs in human serum. Moreover, the expected therapeutic potential for each level of inhibition can be predicted from measurements of sickling times for cells from individuals with sickle syndromes of varying severity. Our results should motivate others to develop one or more of these 106 compounds into drugs for treating SCD.


Subject(s)
Anemia, Sickle Cell , Antisickling Agents , Antisickling Agents/pharmacology , Antisickling Agents/therapeutic use , Drug Repositioning , Hemoglobin, Sickle , Humans , Hydroxyurea/pharmacology , Oxygen/therapeutic use
17.
Genes Dev ; 31(16): 1704-1713, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28916711

ABSTRACT

Chromatin structure is tightly intertwined with transcription regulation. Here we compared the chromosomal architectures of fetal and adult human erythroblasts and found that, globally, chromatin structures and compartments A/B are highly similar at both developmental stages. At a finer scale, we detected distinct folding patterns at the developmentally controlled ß-globin locus. Specifically, new fetal stage-specific contacts were uncovered between a region separating the fetal (γ) and adult (δ and ß) globin genes (encompassing the HBBP1 and BGLT3 noncoding genes) and two distal chromosomal sites (HS5 and 3'HS1) that flank the locus. In contrast, in adult cells, the HBBP1-BGLT3 region contacts the embryonic ε-globin gene, physically separating the fetal globin genes from the enhancer (locus control region [LCR]). Deletion of the HBBP1 region in adult cells alters contact landscapes in ways more closely resembling those of fetal cells, including increased LCR-γ-globin contacts. These changes are accompanied by strong increases in γ-globin transcription. Notably, the effects of HBBP1 removal on chromatin architecture and gene expression closely mimic those of deleting the fetal globin repressor BCL11A, implicating BCL11A in the function of the HBBP1 region. Our results uncover a new critical regulatory region as a potential target for therapeutic genome editing for hemoglobinopathies and highlight the power of chromosome conformation analysis in discovering new cis control elements.


Subject(s)
Chromatin/chemistry , Erythroblasts/metabolism , Gene Expression Regulation, Developmental , Regulatory Elements, Transcriptional , beta-Globins/genetics , Adult , Carrier Proteins/genetics , Fetus , Gene Silencing , Humans , Locus Control Region , Nuclear Proteins/genetics , Pseudogenes , Repressor Proteins , Transcriptome , gamma-Globins/genetics
18.
Am J Physiol Cell Physiol ; 327(2): C423-C437, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38682236

ABSTRACT

Sickle cell disease (SCD)-associated chronic hemolysis promotes oxidative stress, inflammation, and thrombosis leading to organ damage, including liver damage. Hemoglobin scavenger receptor CD163 plays a protective role in SCD by scavenging both hemoglobin-haptoglobin complexes and cell-free hemoglobin. A limited number of studies in the past have shown a positive correlation of CD163 expression with poor disease outcomes in patients with SCD. However, the role and regulation of CD163 in SCD-related hepatobiliary injury have not been fully elucidated yet. Here we show that chronic liver injury in SCD patients is associated with elevated levels of hepatic membrane-bound CD163. Hemolysis and increase in hepatic heme, hemoglobin, and iron levels elevate CD163 expression in the SCD mouse liver. Mechanistically we show that heme oxygenase-1 (HO-1) positively regulates membrane-bound CD163 expression independent of nuclear factor erythroid 2-related factor 2 (NRF2) signaling in SCD liver. We further demonstrate that the interaction between CD163 and HO-1 is not dependent on CD163-hemoglobin binding. These findings indicate that CD163 is a potential biomarker of SCD-associated hepatobiliary injury. Understanding the role of HO-1 in membrane-bound CD163 regulation may help identify novel therapeutic targets for hemolysis-induced chronic liver injury.


Subject(s)
Anemia, Sickle Cell , Antigens, CD , Antigens, Differentiation, Myelomonocytic , Biomarkers , Heme Oxygenase-1 , Hemoglobins , Hemolysis , Receptors, Cell Surface , Antigens, Differentiation, Myelomonocytic/metabolism , Antigens, Differentiation, Myelomonocytic/genetics , Anemia, Sickle Cell/metabolism , Anemia, Sickle Cell/blood , Anemia, Sickle Cell/complications , Antigens, CD/metabolism , Antigens, CD/genetics , Animals , Receptors, Cell Surface/metabolism , Receptors, Cell Surface/genetics , Humans , Biomarkers/metabolism , Biomarkers/blood , Heme Oxygenase-1/metabolism , Hemoglobins/metabolism , Mice , Male , Liver/metabolism , Liver/pathology , Female , Mice, Inbred C57BL , Adult , NF-E2-Related Factor 2/metabolism , Heme/metabolism , Liver Diseases/metabolism , Liver Diseases/pathology , Signal Transduction , Haptoglobins/metabolism , Membrane Proteins
19.
J Biol Chem ; 299(9): 104927, 2023 09.
Article in English | MEDLINE | ID: mdl-37330175

ABSTRACT

Methicillin-resistant Staphylococcus aureus, or MRSA, is one of the major causative agents of hospital-acquired infections worldwide. Novel antimicrobial strategies efficient against antibiotic-resistant strains are necessary and not only against S. aureus. Among those, strategies that aim at blocking or dismantling proteins involved in the acquisition of essential nutrients, helping the bacteria to colonize the host, are intensively studied. A major route for S. aureus to acquire iron from the host organism is the Isd (iron surface determinant) system. In particular, the hemoglobin receptors IsdH and IsdB located on the surface of the bacterium are necessary to acquire the heme moiety containing iron, making them a plausible antibacterial target. Herein, we obtained an antibody of camelid origin that blocked heme acquisition. We determined that the antibody recognized the heme-binding pocket of both IsdH and IsdB with nanomolar order affinity through its second and third complementary-determining regions. The mechanism explaining the inhibition of acquisition of heme in vitro could be described as a competitive process in which the complementary-determining region 3 from the antibody blocked the acquisition of heme by the bacterial receptor. Moreover, this antibody markedly reduced the growth of three different pathogenic strains of MRSA. Collectively, our results highlight a mechanism for inhibiting nutrient uptake as an antibacterial strategy against MRSA.


Subject(s)
Antibodies, Bacterial , Methicillin-Resistant Staphylococcus aureus , Receptors, Cell Surface , Single-Domain Antibodies , Humans , Anti-Bacterial Agents/pharmacology , Heme/metabolism , Methicillin-Resistant Staphylococcus aureus/drug effects , Receptors, Cell Surface/metabolism , Receptors, Cell Surface/therapeutic use , Single-Domain Antibodies/biosynthesis , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/metabolism , Single-Domain Antibodies/pharmacology , Staphylococcal Infections/drug therapy , Antigens, Bacterial/immunology , Antibodies, Bacterial/genetics , Antibodies, Bacterial/immunology , Camelids, New World , Animals , Protein Binding/drug effects , Models, Molecular , Molecular Dynamics Simulation
20.
Infect Immun ; 92(7): e0021124, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38864605

ABSTRACT

Neisseria gonorrhoeae is the etiological agent of the sexually transmitted infection gonorrhea. The pathogen is a global health challenge since no protective immunity results from infection, and far fewer treatment options are available with increasing antimicrobial resistance. With no efficacious vaccines, researchers are exploring new targets for vaccine development and innovative therapeutics. The outer membrane TonB-dependent transporters (TdTs) produced by N. gonorrhoeae are considered promising vaccine antigens as they are highly conserved and play crucial roles in overcoming nutritional immunity. One of these TdTs is part of the hemoglobin transport system comprised of HpuA and HpuB. This system allows N. gonorrhoeae to acquire iron from hemoglobin (hHb). In the current study, mutations in the hpuB gene were generated to better understand the structure-function relationships in HpuB. This study is one of the first to demonstrate that N. gonorrhoeae can bind to and utilize hemoglobin produced by animals other than humans. This study also determined that when HpuA is absent, mutations targeting extracellular loop 7 of HpuB led to defective hHb binding and utilization. However, when the lipoprotein HpuA is present, these loop 7 mutants recovered their ability to bind hHb, although the growth phenotype remained significantly impaired. Interestingly, loop 7 contains putative heme-binding motifs and a hypothetical α-helical region, both of which may be important for the use of hHb. Taken together, these results highlight the importance of loop 7 in the functionality of HpuB in binding hHb and extracting and internalizing iron.


Subject(s)
Bacterial Proteins , Hemoglobins , Neisseria gonorrhoeae , Neisseria gonorrhoeae/metabolism , Neisseria gonorrhoeae/genetics , Hemoglobins/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Protein Binding , Iron/metabolism , Mutation , Gonorrhea/microbiology , Bacterial Outer Membrane Proteins/metabolism , Bacterial Outer Membrane Proteins/genetics , Animals , Humans , Carrier Proteins
SELECTION OF CITATIONS
SEARCH DETAIL