Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.038
Filter
Add more filters

Publication year range
1.
Cell ; 186(19): 4100-4116.e15, 2023 09 14.
Article in English | MEDLINE | ID: mdl-37643610

ABSTRACT

Nucleosomes block access to DNA methyltransferase, unless they are remodeled by DECREASE in DNA METHYLATION 1 (DDM1LSH/HELLS), a Snf2-like master regulator of epigenetic inheritance. We show that DDM1 promotes replacement of histone variant H3.3 by H3.1. In ddm1 mutants, DNA methylation is partly restored by loss of the H3.3 chaperone HIRA, while the H3.1 chaperone CAF-1 becomes essential. The single-particle cryo-EM structure at 3.2 Å of DDM1 with a variant nucleosome reveals engagement with histone H3.3 near residues required for assembly and with the unmodified H4 tail. An N-terminal autoinhibitory domain inhibits activity, while a disulfide bond in the helicase domain supports activity. DDM1 co-localizes with H3.1 and H3.3 during the cell cycle, and with the DNA methyltransferase MET1Dnmt1, but is blocked by H4K16 acetylation. The male germline H3.3 variant MGH3/HTR10 is resistant to remodeling by DDM1 and acts as a placeholder nucleosome in sperm cells for epigenetic inheritance.


Subject(s)
Arabidopsis Proteins , Arabidopsis , DNA Methylation , Histones , Nucleosomes , Chromatin Assembly and Disassembly , DNA , DNA Modification Methylases , Epigenesis, Genetic , Histones/genetics , Nucleosomes/genetics , Semen , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism
2.
Cell ; 185(18): 3390-3407.e18, 2022 09 01.
Article in English | MEDLINE | ID: mdl-36055200

ABSTRACT

Chemical synapses between axons and dendrites mediate neuronal intercellular communication. Here, we describe a synapse between axons and primary cilia: the axo-ciliary synapse. Using enhanced focused ion beam-scanning electron microscopy on samples with optimally preserved ultrastructure, we discovered synapses between brainstem serotonergic axons and the primary cilia of hippocampal CA1 pyramidal neurons. Functionally, these cilia are enriched in a ciliary-restricted serotonin receptor, the 5-hydroxytryptamine receptor 6 (5-HTR6). Using a cilia-targeted serotonin sensor, we show that opto- and chemogenetic stimulation of serotonergic axons releases serotonin onto cilia. Ciliary 5-HTR6 stimulation activates a non-canonical Gαq/11-RhoA pathway, which modulates nuclear actin and increases histone acetylation and chromatin accessibility. Ablation of this pathway reduces chromatin accessibility in CA1 pyramidal neurons. As a signaling apparatus with proximity to the nucleus, axo-ciliary synapses short circuit neurotransmission to alter the postsynaptic neuron's epigenetic state.


Subject(s)
Axons/physiology , Chromatin/chemistry , Cilia , Synapses , Cell Nucleus/metabolism , Chromatin/metabolism , Cilia/metabolism , Hippocampus/cytology , Hippocampus/physiology , Serotonin/metabolism , Signal Transduction , Synapses/physiology
3.
Immunity ; 57(5): 987-1004.e5, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38614090

ABSTRACT

The development and function of the immune system are controlled by temporospatial gene expression programs, which are regulated by cis-regulatory elements, chromatin structure, and trans-acting factors. In this study, we cataloged the dynamic histone modifications and chromatin interactions at regulatory regions during T helper (Th) cell differentiation. Our data revealed that the H3K4me1 landscape established by MLL4 in naive CD4+ T cells is critical for restructuring the regulatory interaction network and orchestrating gene expression during the early phase of Th differentiation. GATA3 plays a crucial role in further configuring H3K4me1 modification and the chromatin interaction network during Th2 differentiation. Furthermore, we demonstrated that HSS3-anchored chromatin loops function to restrict the activity of the Th2 locus control region (LCR), thus coordinating the expression of Th2 cytokines. Our results provide insights into the mechanisms of how the interplay between histone modifications, chromatin looping, and trans-acting factors contributes to the differentiation of Th cells.


Subject(s)
Cell Differentiation , Chromatin , Histone Code , Histones , Th2 Cells , Cell Differentiation/immunology , Animals , Chromatin/metabolism , Mice , Th2 Cells/immunology , Histones/metabolism , GATA3 Transcription Factor/metabolism , Gene Expression Regulation , Mice, Inbred C57BL , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Locus Control Region , Cytokines/metabolism
4.
Cell ; 167(5): 1398-1414.e24, 2016 11 17.
Article in English | MEDLINE | ID: mdl-27863251

ABSTRACT

Characterizing the multifaceted contribution of genetic and epigenetic factors to disease phenotypes is a major challenge in human genetics and medicine. We carried out high-resolution genetic, epigenetic, and transcriptomic profiling in three major human immune cell types (CD14+ monocytes, CD16+ neutrophils, and naive CD4+ T cells) from up to 197 individuals. We assess, quantitatively, the relative contribution of cis-genetic and epigenetic factors to transcription and evaluate their impact as potential sources of confounding in epigenome-wide association studies. Further, we characterize highly coordinated genetic effects on gene expression, methylation, and histone variation through quantitative trait locus (QTL) mapping and allele-specific (AS) analyses. Finally, we demonstrate colocalization of molecular trait QTLs at 345 unique immune disease loci. This expansive, high-resolution atlas of multi-omics changes yields insights into cell-type-specific correlation between diverse genomic inputs, more generalizable correlations between these inputs, and defines molecular events that may underpin complex disease risk.


Subject(s)
Epigenomics , Immune System Diseases/genetics , Monocytes/metabolism , Neutrophils/metabolism , T-Lymphocytes/metabolism , Transcription, Genetic , Adult , Aged , Alternative Splicing , Female , Genetic Predisposition to Disease , Hematopoietic Stem Cells/metabolism , Histone Code , Humans , Male , Middle Aged , Quantitative Trait Loci , Young Adult
5.
Mol Cell ; 81(14): 2944-2959.e10, 2021 07 15.
Article in English | MEDLINE | ID: mdl-34166609

ABSTRACT

A number of regulatory factors are recruited to chromatin by specialized RNAs. Whether RNA has a more general role in regulating the interaction of proteins with chromatin has not been determined. We used proteomics methods to measure the global impact of nascent RNA on chromatin in embryonic stem cells. Surprisingly, we found that nascent RNA primarily antagonized the interaction of chromatin modifiers and transcriptional regulators with chromatin. Transcriptional inhibition and RNA degradation induced recruitment of a set of transcriptional regulators, chromatin modifiers, nucleosome remodelers, and regulators of higher-order structure. RNA directly bound to factors, including BAF, NuRD, EHMT1, and INO80 and inhibited their interaction with nucleosomes. The transcriptional elongation factor P-TEFb directly bound pre-mRNA, and its recruitment to chromatin upon Pol II inhibition was regulated by the 7SK ribonucleoprotein complex. We postulate that by antagonizing the interaction of regulatory proteins with chromatin, nascent RNA links transcriptional output with chromatin composition.


Subject(s)
Chromatin/metabolism , RNA/metabolism , Transcription Factors/metabolism , Animals , DNA-Binding Proteins/metabolism , Embryonic Stem Cells/metabolism , Gene Expression Regulation/physiology , HEK293 Cells , Humans , Male , Mice , Nucleosomes/metabolism , Positive Transcriptional Elongation Factor B/metabolism , Protein Binding/physiology , Proteomics/methods , RNA Polymerase II/metabolism , Transcription, Genetic/physiology , Transcriptional Elongation Factors/metabolism
6.
Genes Dev ; 35(9-10): 749-770, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33888563

ABSTRACT

Histone-modifying systems play fundamental roles in gene regulation and the development of multicellular organisms. Histone modifications that are enriched at gene regulatory elements have been heavily studied, but the function of modifications found more broadly throughout the genome remains poorly understood. This is exemplified by histone H2A monoubiquitylation (H2AK119ub1), which is enriched at Polycomb-repressed gene promoters but also covers the genome at lower levels. Here, using inducible genetic perturbations and quantitative genomics, we found that the BAP1 deubiquitylase plays an essential role in constraining H2AK119ub1 throughout the genome. Removal of BAP1 leads to pervasive genome-wide accumulation of H2AK119ub1, which causes widespread reductions in gene expression. We show that elevated H2AK119ub1 preferentially counteracts Ser5 phosphorylation on the C-terminal domain of RNA polymerase II at gene regulatory elements and causes reductions in transcription and transcription-associated histone modifications. Furthermore, failure to constrain pervasive H2AK119ub1 compromises Polycomb complex occupancy at a subset of Polycomb target genes, which leads to their derepression, providing a potential molecular rationale for why the BAP1 ortholog in Drosophila has been characterized as a Polycomb group gene. Together, these observations reveal that the transcriptional potential of the genome can be modulated by regulating the levels of a pervasive histone modification.


Subject(s)
Gene Expression Regulation/genetics , Genome/genetics , Histones/metabolism , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism , Animals , Cell Line , HEK293 Cells , Histone Code/genetics , Histones/genetics , Humans , Mice , Mouse Embryonic Stem Cells , Phosphorylation/genetics , Polycomb-Group Proteins/genetics , Polycomb-Group Proteins/metabolism
7.
EMBO J ; 43(19): 4197-4227, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39160277

ABSTRACT

In mammals, the transition from mitosis to meiosis facilitates the successful production of gametes. However, the regulatory mechanisms that control meiotic initiation remain unclear, particularly in the context of complex histone modifications. Herein, we show that KDM2A, acting as a lysine demethylase targeting H3K36me3 in male germ cells, plays an essential role in modulating meiotic entry and progression. Conditional deletion of Kdm2a in mouse pre-meiotic germ cells results in complete male sterility, with spermatogenesis ultimately arrested at the zygotene stage of meiosis. KDM2A deficiency disrupts H3K36me2/3 deposition in c-KIT+ germ cells, characterized by a reduction in H3K36me2 but a dramatic increase in H3K36me3. Furthermore, KDM2A recruits the transcription factor E2F1 and its co-factor HCFC1 to the promoters of key genes required for meiosis entry and progression, such as Stra8, Meiosin, Spo11, and Sycp1. Collectively, our study unveils an essential role for KDM2A in mediating H3K36me2/3 deposition and controlling the programmed gene expression necessary for the transition from mitosis to meiosis during spermatogenesis.


Subject(s)
E2F1 Transcription Factor , Jumonji Domain-Containing Histone Demethylases , Meiosis , Spermatogenesis , Animals , Male , Mice , Jumonji Domain-Containing Histone Demethylases/metabolism , Jumonji Domain-Containing Histone Demethylases/genetics , Spermatogenesis/genetics , E2F1 Transcription Factor/metabolism , E2F1 Transcription Factor/genetics , Host Cell Factor C1/metabolism , Host Cell Factor C1/genetics , Histones/metabolism , Histones/genetics , Mice, Knockout , Infertility, Male/genetics , Infertility, Male/metabolism , Histone Demethylases
8.
Mol Cell ; 78(3): 445-458.e6, 2020 05 07.
Article in English | MEDLINE | ID: mdl-32197065

ABSTRACT

Paternal dietary conditions may contribute to metabolic disorders in offspring. We have analyzed the role of the stress-dependent epigenetic regulator cyclic AMP-dependent transcription factor 7 (ATF7) in paternal low-protein diet (pLPD)-induced gene expression changes in mouse liver. Atf7+/- mutations cause an offspring phenotype similar to that caused by pLPD, and the effect of pLPD almost vanished when paternal Atf7+/- mice were used. ATF7 binds to the promoter regions of ∼2,300 genes, including cholesterol biosynthesis-related and tRNA genes in testicular germ cells (TGCs). LPD induces ATF7 phosphorylation by p38 via reactive oxygen species (ROS) in TGCs. This leads to the release of ATF7 and a decrease in histone H3K9 dimethylation (H3K9me2) on its target genes. These epigenetic changes are maintained and induce expression of some tRNA fragments in spermatozoa. These results indicate that LPD-induced and ATF7-dependent epigenetic changes in TGCs play an important role in paternal diet-induced metabolic reprograming in offspring.


Subject(s)
Activating Transcription Factors/genetics , Diet, Protein-Restricted , Epigenesis, Genetic , Liver/physiology , Spermatozoa/physiology , Activating Transcription Factors/metabolism , Animals , Female , Gene Expression Regulation , Histones/metabolism , Lysine/metabolism , Male , Mice, Inbred C57BL , Mice, Mutant Strains , Mutation , Phosphorylation , Promoter Regions, Genetic
9.
Mol Cell ; 77(4): 857-874.e9, 2020 02 20.
Article in English | MEDLINE | ID: mdl-31883950

ABSTRACT

The Polycomb repressive system is an essential chromatin-based regulator of gene expression. Despite being extensively studied, how the Polycomb system selects its target genes is poorly understood, and whether its histone-modifying activities are required for transcriptional repression remains controversial. Here, we directly test the requirement for PRC1 catalytic activity in Polycomb system function. To achieve this, we develop a conditional mutation system in embryonic stem cells that completely removes PRC1 catalytic activity. Using this system, we demonstrate that catalysis by PRC1 drives Polycomb chromatin domain formation and long-range chromatin interactions. Furthermore, we show that variant PRC1 complexes with DNA-binding activities occupy target sites independently of PRC1 catalytic activity, providing a putative mechanism for Polycomb target site selection. Finally, we discover that Polycomb-mediated gene repression requires PRC1 catalytic activity. Together these discoveries provide compelling evidence that PRC1 catalysis is central to Polycomb system function and gene regulation.


Subject(s)
Gene Expression Regulation , Polycomb Repressive Complex 1/metabolism , Animals , Biocatalysis , Cell Line , Chromatin/metabolism , Embryonic Stem Cells/enzymology , Embryonic Stem Cells/metabolism , HEK293 Cells , Histones/metabolism , Humans , Male , Mice , Point Mutation , Polycomb Repressive Complex 1/genetics , Polycomb Repressive Complex 2/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
10.
Genes Dev ; 34(5-6): 395-397, 2020 03 01.
Article in English | MEDLINE | ID: mdl-32122967

ABSTRACT

To induce cell type-specific forms of gene regulation, pioneer factors open tightly packed, inaccessible chromatin sites, enabling the molecular machinery to act on functionally significant information encoded in DNA. While previous studies of pioneer factors have revealed their functions in transcriptional regulation, pioneer factors that open chromatin for other physiological events remain undetermined. In this issue of Genes & Development, Spruce and colleagues (pp. 398-412) report the functional significance of a "pioneer complex" in mouse meiotic recombination. This complex, comprised of the zinc finger DNA-binding protein PRDM9 and the SNF2 family chromatin remodeler HELLS, exposes nucleosomal DNA to designate the sites of DNA double-strand breaks that initiate meiotic recombination. Both HELLS and PRDM9 are required for the determination of these recombination hot spots. Through the identification of a pioneer complex for meiotic recombination, this study broadens the conceptual scope of pioneer factors, indicating their functional significance in biological processes beyond transcriptional regulation.


Subject(s)
Meiosis/physiology , Recombination, Genetic/physiology , Animals , DNA Helicases/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Mice , Multiprotein Complexes/metabolism , Nucleosomes/metabolism
11.
Genes Dev ; 34(5-6): 398-412, 2020 03 01.
Article in English | MEDLINE | ID: mdl-32001511

ABSTRACT

Chromatin barriers prevent spurious interactions between regulatory elements and DNA-binding proteins. One such barrier, whose mechanism for overcoming is poorly understood, is access to recombination hot spots during meiosis. Here we show that the chromatin remodeler HELLS and DNA-binding protein PRDM9 function together to open chromatin at hot spots and provide access for the DNA double-strand break (DSB) machinery. Recombination hot spots are decorated by a unique combination of histone modifications not found at other regulatory elements. HELLS is recruited to hot spots by PRDM9 and is necessary for both histone modifications and DNA accessibility at hot spots. In male mice lacking HELLS, DSBs are retargeted to other sites of open chromatin, leading to germ cell death and sterility. Together, these data provide a model for hot spot activation in which HELLS and PRDM9 form a pioneer complex to create a unique epigenomic environment of open chromatin, permitting correct placement and repair of DSBs.


Subject(s)
DNA Helicases/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Homologous Recombination/genetics , Meiosis/physiology , Animals , Cell Death/genetics , DNA Breaks, Double-Stranded , Germ Cells/pathology , Histone Code/genetics , Infertility, Male/genetics , Infertility, Male/physiopathology , Macromolecular Substances/metabolism , Male , Meiosis/genetics , Mice
12.
Physiol Rev ; 100(4): 1753-1777, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32326823

ABSTRACT

Gene expression is needed for the maintenance of heart function under normal conditions and in response to stress. Each cell type of the heart has a specific program controlling transcription. Different types of stress induce modifications of these programs and, if prolonged, can lead to altered cardiac phenotype and, eventually, to heart failure. The transcriptional status of a gene is regulated by the epigenome, a complex network of DNA and histone modifications. Until a few years ago, our understanding of the role of the epigenome in heart disease was limited to that played by histone deacetylation. But over the last decade, the consequences for the maintenance of homeostasis in the heart and for the development of cardiac hypertrophy of a number of other modifications, including DNA methylation and hydroxymethylation, histone methylation and acetylation, and changes in chromatin architecture, have become better understood. Indeed, it is now clear that many levels of regulation contribute to defining the epigenetic landscape required for correct cardiomyocyte function, and that their perturbation is responsible for cardiac hypertrophy and fibrosis. Here, we review these aspects and draw a picture of what epigenetic modification may imply at the therapeutic level for heart failure.


Subject(s)
Epigenome/physiology , Heart Failure/metabolism , Animals , Epigenesis, Genetic , Humans
13.
Development ; 151(15)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39007366

ABSTRACT

Many tissue-specific adult stem cell lineages maintain a balance between proliferation and differentiation. Here, we study how the H3K4me3 methyltransferase Set1 regulates early-stage male germ cells in Drosophila. Early-stage germline-specific knockdown of Set1 results in temporally progressive defects, arising as germ cell loss and developing into overpopulated early-stage germ cells. These germline defects also impact the niche architecture and cyst stem cell lineage non-cell-autonomously. Additionally, wild-type Set1, but not the catalytically inactive Set1, rescues the Set1 knockdown phenotypes, highlighting the functional importance of the methyltransferase activity of Set1. Further, RNA-sequencing experiments reveal key signaling pathway components, such as the JAK-STAT pathway gene Stat92E and the BMP pathway gene Mad, which are upregulated upon Set1 knockdown. Genetic interaction assays support the functional relationships between Set1 and JAK-STAT or BMP pathways, as both Stat92E and Mad mutations suppress the Set1 knockdown phenotypes. These findings enhance our understanding of the balance between proliferation and differentiation in an adult stem cell lineage. The phenotype of germ cell loss followed by over-proliferation when inhibiting a histone methyltransferase also raises concerns about using their inhibitors in cancer therapy.


Subject(s)
Cell Differentiation , Drosophila Proteins , Drosophila melanogaster , Germ Cells , Histone-Lysine N-Methyltransferase , Signal Transduction , Animals , Male , Cell Differentiation/genetics , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Signal Transduction/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Germ Cells/metabolism , Germ Cells/cytology , Drosophila melanogaster/metabolism , Drosophila melanogaster/genetics , Stem Cells/metabolism , Stem Cells/cytology , STAT Transcription Factors/metabolism , STAT Transcription Factors/genetics , Janus Kinases/metabolism , Janus Kinases/genetics , Cell Proliferation/genetics , Cell Lineage/genetics , Gene Expression Regulation, Developmental
14.
Mol Cell ; 74(5): 1020-1036.e8, 2019 06 06.
Article in English | MEDLINE | ID: mdl-31029541

ABSTRACT

The Polycomb system modifies chromatin and plays an essential role in repressing gene expression to control normal mammalian development. However, the components and mechanisms that define how Polycomb protein complexes achieve this remain enigmatic. Here, we use combinatorial genetic perturbation coupled with quantitative genomics to discover the central determinants of Polycomb-mediated gene repression in mouse embryonic stem cells. We demonstrate that canonical Polycomb repressive complex 1 (PRC1), which mediates higher-order chromatin structures, contributes little to gene repression. Instead, we uncover an unexpectedly high degree of synergy between variant PRC1 complexes, which is fundamental to gene repression. We further demonstrate that variant PRC1 complexes are responsible for distinct pools of H2A monoubiquitylation that are associated with repression of Polycomb target genes and silencing during X chromosome inactivation. Together, these discoveries reveal a new variant PRC1-dependent logic for Polycomb-mediated gene repression.


Subject(s)
Chromatin/genetics , Genomics , Polycomb Repressive Complex 1/genetics , X Chromosome Inactivation/genetics , Animals , Histones/genetics , Mice , Mouse Embryonic Stem Cells/metabolism , RNA Interference , Ubiquitination/genetics
15.
Proc Natl Acad Sci U S A ; 121(35): e2320804121, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39172790

ABSTRACT

Breast Cancer Type 1 Susceptibility Protein (BRCA1) is a tumor-suppressor protein that regulates various cellular pathways, including those that are essential for preserving genome stability. One essential mechanism involves a BRCA1-A complex that is recruited to double-strand breaks (DSBs) by RAP80 before initiating DNA damage repair (DDR). How RAP80 itself is recruited to DNA damage sites, however, is unclear. Here, we demonstrate an intrinsic correlation between a methyltransferase DOT1L-mediated RAP80 methylation and BRCA1-A complex chromatin recruitment that occurs during cancer cell radiotherapy resistance. Mechanistically, DOT1L is quickly recruited onto chromatin and methylates RAP80 at multiple lysines in response to DNA damage. Methylated RAP80 is then indispensable for binding to ubiquitinated H2A and subsequently triggering BRCA1-A complex recruitment onto DSBs. Importantly, DOT1L-catalyzed RAP80 methylation and recruitment of BRCA1 have clinical relevance, as inhibition of DOT1L or RAP80 methylation seems to enhance the radiosensitivity of cancer cells both in vivo and in vitro. These data reveal a crucial role for DOT1L in DDR through initiating recruitment of RAP80 and BRCA1 onto chromatin and underscore a therapeutic strategy based on targeting DOT1L to overcome tumor radiotherapy resistance.


Subject(s)
BRCA1 Protein , DNA Repair , Histone Chaperones , Histone-Lysine N-Methyltransferase , Animals , Humans , Mice , BRCA1 Protein/metabolism , BRCA1 Protein/genetics , Cell Line, Tumor , Chromatin/metabolism , DNA Breaks, Double-Stranded , DNA Methylation , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Histone Chaperones/metabolism , Histone Chaperones/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Methylation , Methyltransferases/metabolism , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Radiation Tolerance/genetics
16.
Proc Natl Acad Sci U S A ; 121(32): e2404770121, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39074265

ABSTRACT

Repression of facultative heterochromatin is essential for developmental processes in numerous organisms. Methylation of histone H3 lysine 27 (H3K27) by Polycomb repressive complex 2 is a prominent feature of facultative heterochromatin in both fungi and higher eukaryotes. Although this methylation is frequently associated with silencing, the detailed mechanism of repression remains incompletely understood. We utilized a forward genetics approach to identify genes required to maintain silencing at facultative heterochromatin genes in Neurospora crassa and identified three previously uncharacterized genes that are important for silencing: sds3 (NCU01599), rlp1 (RPD3L protein 1; NCU09007), and rlp2 (RPD3L protein 2; NCU02898). We found that SDS3, RLP1, and RLP2 associate with N. crassa homologs of the Saccharomyces cerevisiae Rpd3L complex and are required for repression of a subset of H3K27-methylated genes. Deletion of these genes does not lead to loss of H3K27 methylation but increases acetylation of histone H3 lysine 14 at up-regulated genes, suggesting that RPD3L-driven deacetylation is a factor required for silencing of facultative heterochromatin in N. crassa, and perhaps in other organisms.


Subject(s)
Fungal Proteins , Gene Expression Regulation, Fungal , Heterochromatin , Histones , Neurospora crassa , Neurospora crassa/genetics , Neurospora crassa/metabolism , Heterochromatin/metabolism , Heterochromatin/genetics , Histones/metabolism , Histones/genetics , Fungal Proteins/metabolism , Fungal Proteins/genetics , Acetylation , Gene Silencing , Methylation , Histone Deacetylases/metabolism , Histone Deacetylases/genetics
17.
Genes Dev ; 33(11-12): 626-640, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30975722

ABSTRACT

Rhabdomyosarcoma (RMS) is an aggressive pediatric cancer composed of myoblast-like cells. Recently, we discovered a unique muscle progenitor marked by the expression of the Twist2 transcription factor. Genomic analyses of 258 RMS patient tumors uncovered prevalent copy number amplification events and increased expression of TWIST2 in fusion-negative RMS. Knockdown of TWIST2 in RMS cells results in up-regulation of MYOGENIN and a decrease in proliferation, implicating TWIST2 as an oncogene in RMS. Through an inducible Twist2 expression system, we identified Twist2 as a reversible inhibitor of myogenic differentiation with the remarkable ability to promote myotube dedifferentiation in vitro. Integrated analysis of genome-wide ChIP-seq and RNA-seq data revealed the first dynamic chromatin and transcriptional landscape of Twist2 binding during myogenic differentiation. During differentiation, Twist2 competes with MyoD at shared DNA motifs to direct global gene transcription and repression of the myogenic program. Additionally, Twist2 shapes the epigenetic landscape to drive chromatin opening at oncogenic loci and chromatin closing at myogenic loci. These epigenetic changes redirect MyoD binding from myogenic genes toward oncogenic, metabolic, and growth genes. Our study reveals the dynamic interplay between two opposing transcriptional regulators that control the fate of RMS and provides insight into the molecular etiology of this aggressive form of cancer.


Subject(s)
Carcinogenesis , Muscle Development , MyoD Protein/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Rhabdomyosarcoma/genetics , Rhabdomyosarcoma/metabolism , Twist-Related Protein 1/genetics , Twist-Related Protein 1/metabolism , Cells, Cultured , Chromatin Assembly and Disassembly , DNA/metabolism , Epithelial-Mesenchymal Transition , Gene Amplification , Gene Expression Regulation, Neoplastic , HEK293 Cells , Helix-Loop-Helix Motifs , Humans , MyoD Protein/chemistry , Myoblasts/metabolism , Nuclear Proteins/genetics , Repressor Proteins/chemistry , Twist-Related Protein 1/chemistry
18.
J Cell Sci ; 137(11)2024 06 01.
Article in English | MEDLINE | ID: mdl-38842578

ABSTRACT

An important mechanism of gene expression regulation is the epigenetic modification of histones. The cofactors and substrates for these modifications are often intermediary metabolites, and it is becoming increasingly clear that the metabolic and nutritional state of cells can influence these marks. These connections between the balance of metabolites, histone modifications and downstream transcriptional changes comprise a metabolic signaling program that can enable cells to adapt to changes in nutrient availability. Beyond acetylation, there is evidence now that histones can be modified by other acyl groups. In this Cell Science at a Glance article and the accompanying poster, we focus on these histone acylation modifications and provide an overview of the players that govern these acylations and their connections with metabolism.


Subject(s)
Histones , Protein Processing, Post-Translational , Animals , Humans , Acylation , Epigenesis, Genetic , Histones/metabolism
19.
Development ; 150(21)2023 11 01.
Article in English | MEDLINE | ID: mdl-37846748

ABSTRACT

Histone modifications are associated with regulation of gene expression that controls a vast array of biological processes. Often, these associations are drawn by correlating the genomic location of a particular histone modification with gene expression or phenotype; however, establishing a causal relationship between histone marks and biological processes remains challenging. Consequently, there is a strong need for experimental approaches to directly manipulate histone modifications. A class of mutations on the N-terminal tail of histone H3, lysine-to-methionine (K-to-M) mutations, was identified as dominant-negative inhibitors of histone methylation at their respective and specific residues. The dominant-negative nature of K-to-M mutants makes them a valuable tool for studying the function of specific methylation marks on histone H3. Here, we review recent applications of K-to-M mutations to understand the role of histone methylation during development and homeostasis. We highlight important advantages and limitations that require consideration when using K-to-M mutants, particularly in a developmental context.


Subject(s)
Chromatin , Histones , Histones/metabolism , Chromatin/genetics , Methylation , Mutation/genetics , Methionine/genetics , Methionine/metabolism
20.
Brief Bioinform ; 25(4)2024 May 23.
Article in English | MEDLINE | ID: mdl-38783706

ABSTRACT

RNA Polymerase II (Pol II) transcriptional elongation pausing is an integral part of the dynamic regulation of gene transcription in the genome of metazoans. It plays a pivotal role in many vital biological processes and disease progression. However, experimentally measuring genome-wide Pol II pausing is technically challenging and the precise governing mechanism underlying this process is not fully understood. Here, we develop RP3 (RNA Polymerase II Pausing Prediction), a network regularized logistic regression machine learning method, to predict Pol II pausing events by integrating genome sequence, histone modification, gene expression, chromatin accessibility, and protein-protein interaction data. RP3 can accurately predict Pol II pausing in diverse cellular contexts and unveil the transcription factors that are associated with the Pol II pausing machinery. Furthermore, we utilize a forward feature selection framework to systematically identify the combination of histone modification signals associated with Pol II pausing. RP3 is freely available at https://github.com/AMSSwanglab/RP3.


Subject(s)
Histone Code , RNA Polymerase II , RNA Polymerase II/metabolism , Humans , Transcription Elongation, Genetic , Chromatin/metabolism , Chromatin/genetics , Histones/metabolism , Machine Learning , Animals
SELECTION OF CITATIONS
SEARCH DETAIL