Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 205
Filter
1.
Nano Lett ; 24(2): 592-600, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38039420

ABSTRACT

Engineering of the catalysts' structural stability and electronic structure could enable high-throughput H2 production over electrocatalytic water splitting. Herein, a double-shell interlayer confinement strategy is proposed to modulate the spatial position of Ru nanoparticles in hollow carbon nanoreactors for achieving tunable sizes and electronic structures toward enhanced H2 evolution. Specifically, the Ru can be anchored in either the inner layer (Ru-DSC-I) or the external shell (Ru-DSC-E) of double-shell nanoreactors, and the size of Ru is reduced from 2.2 to 0.9 nm because of the double-shell confinement effect. The electronic structures are efficiently optimized thereby stabilizing active sites and lowering the reaction barrier. According to finite element analysis results, the mesoscale mass diffusion can be promoted in the double-shell configuration. The Ru-DSC-I nanoreactor exhibits a much lower overpotential (η10 = 73.5 mV) and much higher stability (100 mA cm-2). Our work might shed light on the precise design of multishell catalysts with efficient refining electrostructures toward electrosynthesis applications.

2.
Small ; 20(3): e2305517, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37670220

ABSTRACT

A novel and sustainable carbon-based material, referred to as hollow porous carbon particles encapsulating multi-wall carbon nanotubes (MWCNTs) (CNTs@HPC), is synthesized for use in supercapacitors. The synthesis process involves utilizing LTA zeolite as a rigid template and dopamine hydrochloride (DA) as the carbon source, along with catalytic decomposition of methane (CDM) to simultaneously produce MWCNTs and COx -free H2 . The findings reveal a distinctive hierarchical porous structure, comprising macropores, mesopores, and micropores, resulting in a total specific surface area (SSA) of 913 m2  g-1 . The optimal CNTs@HPC demonstrates a specific capacitance of 306 F g-1 at a current density of 1 A g-1 . Moreover, this material demonstrates an electric double-layer capacitor (EDLC) that surpasses conventional capabilities by exhibiting additional pseudocapacitance characteristics. These properties are attributed to redox reactions facilitated by the increased charge density resulting from the attraction of ions to nickel oxides, which is made possible by the material's enhanced hydrophilicity. The heightened hydrophilicity can be attributed to the presence of residual silicon-aluminum elements in CNTs@HPC, a direct outcome of the unique synthesis approach involving nickel phyllosilicate in CDM. As a result of this synthesis strategy, the material possesses excellent conductivity, enabling rapid transportation of electrolyte ions and delivering outstanding capacitive performance.

3.
Small ; 20(12): e2308263, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37946672

ABSTRACT

Anode materials with excellent properties have become the key to develop sodium-ion hybrid capacitors (SIHCs) that combine the advantages of both batteries and capacitors. Amorphous modulation is an effective strategy to realize high energy/power density in SIHCs. Herein, atomically amorphous Nb-O/N clusters with asymmetric coordination are in situ created in N-doped hollow carbon shells (Nb-O/N@C). The amorphous clusters with asymmetric Nb-O3/N1 configurations have abundant charge density and low diffusion energy barriers, which effectively modulate the charge transport paths and improve the reaction kinetics. The clusters are also enriched with unsaturated vacancy defects and isotropic ion-transport channels, and their atomic disordering exhibits high structural stress buffering, which are strong impetuses for realizing bulk-phase-indifferent ion storage and enhancing the storage properties of the composite. Based on these features, Nb-O/N@C achieves notably improved sodium-ion storage properties (reversible capacity of 240.1 mAh g-1 at 10.0 A g-1 after 8000 cycles), and has great potential for SIHCs (230 Wh Kg-1 at 4001.5 W Kg-1). This study sheds new light on developing high-performance electrodes for sodium-ion batteries and SIHCs by designing amorphous clusters and asymmetric coordination.

4.
Small ; 20(31): e2311675, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38441359

ABSTRACT

The high oxygen electrocatalytic overpotential of flexible cathodes due to sluggish reaction kinetics result in low energy conversion efficiency of wearable zinc-air batteries (ZABs). Herein, lignin, as a 3D flexible carbon-rich macromolecule, is employed for partial replacement of polyacrylonitrile and constructing flexible freestanding air electrodes (FFAEs) with large amount of mesopores and multi-hollow channels via electrospinning combined with annealing strategy. The presence of lignin with disordered structure decreases the graphitization of carbon fibers, increases the structural defects, and optimizes the pore structure, facilitating the enhancement of electron-transfer kinetics. This unique structure effectively improves the accessibility of graphitic-N/pyridinic-N with oxygen reduction reaction (ORR) activity and pyridinic-N with oxygen evolution reaction (OER) activity for FFAEs, accelerating the mass transfer process of oxygen-active species. The resulting N-doped hollow carbon fiber films (NHCFs) exhibit superior bifunctional ORR/OER performance with a low potential difference of only 0.60 V. The rechargeable ZABs with NHCFs as metal-free cathodes possess a long-term cycling stability. Furthermore, the NHCFs can be used as FFAEs for flexible ZABs which have a high specific capacity and good cycling stability under different bending states. This work paves the way to design and produce highly active metal-free bifunctional FFAEs for electrochemical energy devices.

5.
Small ; : e2311312, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38566552

ABSTRACT

The exploitation of multicomponent composites (MCCs) has become the main pathway for obtaining advanced microwave absorption materials (MAMs). Herein, a metal valence state modulation strategy is proposed to tune the electromagnetic (EM) parameters and improve microwave absorption performances. Core@shell hollow carbon microspheres@MoSe2 and hollow carbon microspheres@MoSe2/MoOx MCCs with various mixed-valence states content are well-designed and produced by a simple hydrothermal reaction or/and heat treatment process. The results reveal that the thermal treatment of hollow carbon microspheres@MoSe2 in Ar and Ar/H2 leads to the in situ formation of MoOx and multivalence state, respectively, and the enhanced content of Mo4+ in the designed MCCs greatly boosts their impedance matching characteristics, polarization, and conduction loss capacities, which lead to their evidently improved EM wave absorption properties. Amongst, the as-prepared hollow carbon microspheres@MoSe2/MoOx MCCs achieve an effective absorption bandwidth of 5.80 GHz under a matching thickness of 1.97 mm and minimum reflection loss of -21.49 dB. Therefore, this work offers a simple and universal method to fabricate core@shell hollow carbon microspheres@MoSe2/MoOx MCCs, and a novel and feasible metal valence state modulation strategy is proposed to develop high-efficiency MAMs.

6.
Nano Lett ; 23(23): 10765-10771, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-37963268

ABSTRACT

High-entropy alloy (HEA) nanoparticles (NPs) have been emerging with superior compositional tunability and multielemental synergy, presenting a unique platform for material discovery and performance optimization. Here we report a synthetic approach utilizing hollow-carbon confinement in the ordinary furnace annealing to achieve the nonequilibrium HEA-NPs such as Pt0.45Fe0.18Co0.12Ni0.15Mn0.10 with uniform size ∼5.9 nm. The facile temperature control allows us not only to reveal the detailed reaction pathway through ex situ characterization but also to tailor the HEA-NP structure from the crystalline solid solution to intermetallic. The preconfinement of metal precursors is the key to ensure the uniform distribution of metal nanoparticles with confined volume, which is essential to prevent the thermodynamically favored phase separation even during the ordinary furnace annealing. Besides, the synthesized HEA-NPs exhibit remarkable activity and stability in oxygen reduction catalysis. The demonstrated synthetic approach may significantly expand the scope of HEA-NPs with uncharted composition and performance.

7.
Angew Chem Int Ed Engl ; : e202411066, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39092491

ABSTRACT

Energy storage in supercapacitors and hybrid zinc ion capacitors (ZIC) using porous carbon materials offers a promsing alternative method for clean energy solutions. The unique combination of hierarchical porous structure and nitrogen doping in these materials has demonstrated significant capacity for energy storage. Nevertheless, the full potential of these materials, particularly the relationship between pore structure configuration and performance, remains underexplored. Herein, a confined pyrolysis strategy based on the polymerization characteristics of polydopamine (PDA) was developed to construction of hollow carbon spheres with microporous/mesoporous dual shell structure. The depth of micropores and cavity can be controlled by adjusting the duration of heat treatment and hydrothermal treatment, in accordance with the decomposition and polymerization characteristics of PDA. Due to the elasticity of this structure, the relationship between the micro/mesoporous depth of the prepared carbon spheres and the energy storage performance in supercapacitors and ZIC is established. Through optimizing the ion transport capacity of carbon spheres and considering the influence of its internal cavity structure on energy storage, the resulting carbon spheres exhibit high specific capacitance of 389 F g-1 in supercapacitor and specific capacitance of 260 F g-1 and excellent stability with 99.3% retention after 30000 chare/discharge cycles in ZIC.

8.
Angew Chem Int Ed Engl ; 63(15): e202400012, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38340327

ABSTRACT

Hollow nanoporous carbon architectures (HNCs) present significant utilitarian value for a wide variety of applications. Facile and efficient preparation of HNCs has long been pursued but still remains challenging. Herein, we for the first time demonstrate that single-component metal-organic frameworks (MOFs) crystals, rather than the widely reported hybrid ones which necessitate tedious operations for preparation, could enable the facile and versatile syntheses of functional HNCs. By controlling the growth kinetics, the MOFs crystals (STU-1) are readily engineered into different shapes with designated styles of crystalline inhomogeneity. A subsequent one-step pyrolysis of these MOFs with intraparticle difference can induce a simultaneous self-hollowing and carbonization process, thereby producing various functional HNCs including yolk-shell polyhedrons, hollow microspheres, mesoporous architectures, and superstructures. Superior to the existing methods, this synthetic strategy relies only on the complex nature of single-component MOFs crystals without involving tedious operations like coating, etching, or ligand exchange, making it convenient, efficient, and easy to scale up. An ultra-stable Na-ion battery anode is demonstrated by the HNCs with extraordinary cyclability (93 % capacity retention over 8000 cycles), highlighting a high level of functionality of the HNCs.

9.
Small ; 19(12): e2207197, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36587968

ABSTRACT

Hollow carbon spheres are potential candidates for lightweight microwave absorbers. However, the skin effect of pure carbon-based materials frequently induces a terrible impedance mismatching issue. Herein, small-sized NiO/Ni particles with heterojunctions on the N-doped hollow carbon spheres (NHCS@NiO/Ni) are constructed using SiO2 as a sacrificing template. The fabricated NHCS@NiO/Ni displayed excellent microwave absorbability with a minimum reflection loss of -44.04 dB with the matching thickness of 2 mm and a wider efficient absorption bandwidth of 4.38 GHz with the thickness of 1.7 mm, superior to most previously reported hollow absorbers. Experimental results demonstrated that the excellent microwave absorption property of the NHCS@NiO/Ni are attributed to balanced dielectric loss and optimized impedance matching characteristic due to the presence of NiO/Ni heterojunctions. Theoretical calculations suggested that the redistribution of charge at the interfaces and formation of dipoles induced by N dopants and defects are responsible for the enhanced conduction and polarization losses of NHCS@NiO/Ni. The simulations for the surface current and power loss densities reveal that the NHCS@NiO/Ni has- applicable attenuation ability toward microwave under the practical application scenario. This work paves an efficient way for the reasonable design of small-sized particles with well-defined heterojunctions on hollow nanostructures for high-efficiency microwave absorption.

10.
Small ; 19(27): e2208228, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36974577

ABSTRACT

The rational structural design of the electrode materials is significant to enhance the electrochemical performance for potassium ion storage, benefiting from the shortened ion diffusion distance, increased conductivity, and pseudo-capacitance promotion. Herein, hydrated vanadium oxide (HVO) nanosheets with enriched oxygen defects are well confined into hollow mesoporous carbon spheres (HMCS), producing Od -VOH@C nanospheres through one-step hydrothermal reaction. Attributed to the restricted growth in the HMCS, the HVO nanosheets are loosely packed, generating abundant interfacial boundaries and large specific areas. As a result, Od -VOH@C nanospheres show increased reaction kinetics and well buffer the volume effects for the K+ storage. Od -VOH@C delivers stable capacities of 138 mAh g-1 at 2.0 A g-1 over 10 000 cycles in half-cells attributed to the high pseudo-capacitance contribution. The K+ storage mechanism of insertion and conversion reaction is confirmed by ex situ X-ray diffraction, Raman, and X-ray photoelectron spectroscopy analyses. Moreover, the symmetric potassium-ion capacitors of Od -VOH@C//Od -VOH@C deliver a high energy density of 139.6 Wh kg-1 at the power density of 948.3 W kg-1 .

11.
Small ; 19(43): e2302634, 2023 10.
Article in English | MEDLINE | ID: mdl-37376867

ABSTRACT

Electrochemical bioassays based on oxidase reactions are frequently used in biological sciences and medical industries. However, the enzymatic reaction kinetics are severely restricted by the poor solubility and slow diffusion rate of oxygen in conventional solid-liquid diphase reaction systems, which inevitably compromises the detection accuracy, linearity, and reliability of the oxidase-based bioassay. Herein, an effective solid-liquid-air triphase bioassay system is provided that uses hydrophobic hollow carbon spheres (HCSs) as oxygen nanocarriers. The oxygen stored in the cavity of HCS can rapidly diffuse to the oxidase active sites through the mesoporous carbon shell, providing sufficient oxygen for oxidase-based enzymatic reactions. As a result, the triphase system can significantly improve the enzymatic reaction kinetics and obtain a 20-fold higher linear detection range than the normal diphase system. Other biomolecules can also be determined using this triphase technique, and the triphase design strategy offers a new route to address the gas deficiency problem in catalytic reactions that involve gas consumption.


Subject(s)
Biological Assay , Carbon , Reproducibility of Results , Oxygen , Oxidoreductases
12.
Small ; 19(28): e2301226, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36974608

ABSTRACT

The rational design of lightweight, broad-band, and high-performance microwave absorbers is urgently required for addressing electromagnetic pollution issue. Metal single atoms (M-SAs) absorbers receive considerable interest in the field of microwave absorption due to the unique electronic structures of M-SAs. However, the simultaneous engineering of the morphology and electronic structure of M-SAs based absorbers remains challenging. Herein, a template-assisted method is utilized to fabricate isolated Co-SAs on N-doped hollow carbon spheres (NHCS@Co-SAs) for high-performance microwave absorption. The combination of atomically dispersed Co sites and hollow supports endows NHCS@Co-SAs with excellent microwave absorption properties. Typically, at an ultralow filler content of 8 wt%, the minimum reflection loss and effective absorption bandwidth of the NHCS@Co-SAs are up to -44.96 dB and 5.25 GHz, respectively, while the absorbing thickness is only 2 mm. Theoretical calculations and experimental results indicate that the impedance matching characteristic and dielectric loss of the NHCSs can be tuned via the introduction of M-SAs, which are responsible for the excellent microwave absorption properties of NHCS@Co-SAs. This work provides an atomic-level insight into the relationship between the electronic states of absorbers and their microwave absorption properties for developing advanced microwave absorbers.

13.
Small ; 19(41): e2301415, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37287411

ABSTRACT

Carbonaceous materials are promising sodium-ion battery anodes. Improving their performance requires a detailed understanding of the ion transport in these materials, some important aspects of which are still under debate. In this work, nitrogen-doped porous hollow carbon spheres (N-PHCSs) are employed as a model system for operando analysis of sodium storage behavior in a commercial liquid electrolyte at the nanoscale. By combining the ex situ characterization at different states of charge with operando transmission electron microscopy experiments, it is found that a solvated ionic layer forms on the surface of N-PHCSs at the beginning of sodiation, followed by the irreversible shell expansion due to the solid-electrolyte interphase (SEI) formation and subsequent storage of Na(0) within the porous carbon shell. This shows that binding between Na(0) and C creates a Schottky junction making Na deposition inside the spheres more energetically favorable at low current densities. During sodiation, the SEI fills the gap between N-PHCSs, binding spheres together and facilitating the sodium ions' transport toward the current collector and subsequent plating underneath the electrode. The N-PHCSs layer acts as a protective layer between the electrolyte and the current collector, suppressing the possible growth of dendrites at the anode.

14.
Small ; : e2306367, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38054805

ABSTRACT

Developing highly efficient bi-functional noble-metal-free oxygen electrocatalysts with low-cost and scalable synthesis approach is challenging for zinc-air batteries (ZABs). Due to the flexible valence state of manganese, MnF2 is expected to provide efficient OER. However, its insulating properties may inhibit its OER process to a certain degree. Herein, during the process of converting the manganese source in the precursor of porous carbon nanofibers (PCNFs) to manganese fluoride, the manganese source is changed to manganese acetate, which allows PCNFs to grow a large number of hollow carbon nanorods (HCNRs). Meanwhile, manganese fluoride will transform from the aggregation state into uniformly dispersed MnF2 nanodots, thereby achieving highly efficient OER catalytic activity. Furthermore, the intrinsic ORR catalytic activity of the HCNRs/MnF2 @PCNFs can be enhanced due to the charge modulation effect of MnF2 nanodots inside HCNR. In addition, the HCNRs stretched toward the liquid electrolyte can increase the capture capacity of dissolved oxygen and protect the inner MnF2 , thereby enhancing the stability of HCNRs/MnF2 @PCNFs for the oxygen electrocatalytic process. MnF2 surface-modulated HCNRs can strongly enhance ORR activity, and the uniformly dispersed MnF2 can also provide higher OER activity. Thus, the prepared HCNRs/MnF2 @PCNFs obtain efficient bifunctional oxygen catalytic ability and high-performance rechargeable ZABs.

15.
Nanotechnology ; 34(36)2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37307801

ABSTRACT

Electrochemical double layer capacitors (EDLCs) are known for their high power density but hampered by low energy density. Herein, N-doped hollow carbon nanorods (NHCRs) have been constructed by a hard templating method using MnO2nanorods as the hard templates andm-phenylenediamine-formaldehyde resin as the carbon precursor. The NHCRs after activation (NHCRs-A) manifest abundant micropores/mesopores and an ultrahigh surface area (2166 m2g-1). When employed in ionic liquid (IL) electrolyte-based EDLCs, the NHCRs-A delivers a high specific capacitance (220 F g-1at 1 A g-1), an impressive energy density (110 Wh kg-1), and decent cyclability (97% retention over 15 000 cycles). The impressive energy density is derived from the abundant ion-available micropores, while the decent power density is originated from the hollow ion-diffusion channels as well as excellent wettability in ILs.In situinfrared spectroscopy together within situRaman unveil that both counter-ion adsorption and ion exchange are involved in the charge storage of NHCRs-A. This study provides insight into the construction of porous carbon materials for EDLCs.

16.
Nano Lett ; 22(3): 954-962, 2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35080402

ABSTRACT

A highly densified electrode material is desirable to achieve large volumetric capacity. However, pores acting as ion transport channels are critical for high utilization of active material. Achieving a balance between high volume density and pore utilization remains a challenge particularly for hollow materials. Herein, capillary force is employed to convert hollow fibers to a bamboo-weaving-like flexible electrode (BWFE), in which the shrinkage of hollow space results in high compactness of the electrode. The volume of the electrode can be decreased by 96% without sacrificing the gravimetric capacity. Importantly, the conductivity of BWFE after thermal treatment can reach up to 50,500 S/m which exceeds that for most other carbon materials. Detailed mechanical analysis reveals that, due to the strong interaction between nanoribbons, Young's modulus of the electrode increases by 105 times. After SnO2 active materials is impregnated, the BWFE/SnO2 electrode exhibits an exceptionally ultrahigh volumetric capacity of 2000 mAh/cm3.

17.
Small ; 18(10): e2106513, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34927355

ABSTRACT

Porous and hollow carbon materials have great superiority and prospects in electrochemical energy applications, especially for surface charge storage due to the high active surface. Herein, a general strategy is developed to synthesize mesoporous hollow carbon spheres (MHCS) with controllable texture and compositions by the synergistic effect of dopamine polymerization and metal catalysis (Cu, Bi, Zn). Mesoporous MHCS-Cu and MHCS-Bi are regular spheres, while mesoporous MHCS-Zn possesses an inward concave texture, and simultaneously has a very high surface area of 1675.5 m2 g-1 and lower oxygen content through the catalytic deoxygenation effect. MHCS-Zn displays an exceptional sodium storage kinetics and excellent long cycling life with 171.9 mAh g-1 after 2500 cycles at 5 A g-1 in compatible ether-based electrolytes. Such electrolyte enables enhanced solvated Na+ transport kinetics with appropriate electrostatic interactions at the surface of carbon anode as revealed by molecular dynamics simulations and molecular surface electrostatic potential calculations. Such an anode also displays basically constant capacity working at 0 °C, and still delivers 140 mAh g-1 at 3 A g-1 under -20 °C. Moreover, MHCS-Zn anode is coupled with Na3 V2 (PO4 )3 cathode to construct a hybrid capacitor, which exhibits a high energy density of 145 Wh Kg-1 at a very high power of 8009 W kg-1 .

18.
Small ; 18(37): e2203630, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35980947

ABSTRACT

Constructing hierarchical heterostructures is considered a useful strategy to regulate surface electronic structure and improve the electrochemical kinetics. Herein, the authors develop a hollow architecture composed of MoC1- x and WC1- x carbide nanoparticles and carbon matrix for boosting electrocatalytic hydrogen evolution and lithium ions storage. The hybridization of ultrafine nanoparticles confined in the N-doped carbon nanosheets provides an appropriate hydrogen adsorption free energy and abundant boundary interfaces for lithium intercalation, leading to the synergistically enhanced composite conductivity. As a proof of concept, the as-prepared catalyst exhibits outstanding and durable electrocatalytic performance with a low overpotential of 103 and 163 mV at 10 mA cm-2 , as well as a Tafel slope of 58 and 90 mV dec-1 in alkaline electrolyte and acid electrolyte, respectively. Moreover, evaluated as an anode for a lithium-ion battery, the as-resulted sample delivers a rate capability of 1032.1 mA h g-1 at 0.1 A g-1 . This electrode indicates superior cyclability with a capability of 679.1 mA h g-1 at 5 A g-1 after 4000 cycles. The present work provides a strategy to design effective and stable bimetallic carbide composites as superior electrocatalysts and electrode materials.

19.
Small ; 18(5): e2105767, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34881507

ABSTRACT

Nitrogen-doped carbon materials with abundant defects and strong potassium adsorption ability have been recognized as potential anodes for potassium ion batteries (PIBs). However, the limited content and uncontrolled type of nitrogen-doped sites hinder the further performance improvement of PIBs. Herein, this work proposes nitrogen phosphorous co-doped hollow carbon nanofibers (PNCNFs) derived from high-energy metal-organic frameworks (MOFs) with an ultra-high nitrogen content of 19.52 wt% and a high portion of more reactive pyridinic N sites. Furthermore, the highly open architecture exploded by released gases from high-energy MOFs provides sufficient edge sites to settle the N atoms and further form pyridinic N sites induced by phosphorous dopants. The resulting PNCNFs achieve excellent potassium ion storage performance with high reversible capacity (466.2 mAh g-1 ), superb rate capability (244.4 mAh g-1 at 8 A g-1 ), and excellent cycling performance (294.6 mAh g-1 after 3250 cycles). The density functional theory calculation reveals that the N/P defects enhance the potassium adsorption ability and improve the conductivity.

20.
Chemistry ; 28(31): e202200363, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35332603

ABSTRACT

As competitive next-generation rechargeable batteries, lithium-sulfur batteries (LSBs) suffer from the shuttle effect and the sluggish kinetics of intermediate polysulfides during charge and discharge processes, adversely affecting their electrochemical performances and actual applications. Herein, we demonstrate a polymer encapsulation strategy to synthesize atomic Fe and N co-doped hollow carbon nanospheres (Fe-NHC) with Fe-Nx sites for modifying commercial PP separator of LSBs to suppress the shuttle effect and promote the kinetics of intermediate polysulfides. Benefiting from the excellent structural design, the doped-N with positive charges could effectively adsorb negatively charged soluble polysulfides, help attract the soluble polysulfides to the Fe atoms and boost the catalytic transformation of the soluble polysulfides. Additionally, such a thin carbon shell could provide a short mass diffusion pathway and hence promote the adsorption and the catalytic conversion. Therefore, the battery with the Fe-NHC/PP separator delivers outstanding cycling and rate performances. At the large current density of 1 C, the specific capacity is 1079 mA h g-1 and maintains a low loss of 0.076 % per cycle within 500 cycles. Even at a harsh current density of 4 C, a high capacity of 824 mA h g-1 is still achieved, indicating the advantage of the Fe-NHC/PP separator in LSBs.

SELECTION OF CITATIONS
SEARCH DETAIL