ABSTRACT
In response to microbial infection, the human host deploys metal-sequestering host-defense proteins, which reduce nutrient availability and thereby inhibit microbial growth and virulence. Calprotectin (CP) is an abundant antimicrobial protein released from neutrophils and epithelial cells at sites of infection. CP sequesters divalent first-row transition metal ions to limit the availability of essential metal nutrients in the extracellular space. While functional and clinical studies of CP have been pursued for decades, advances in our understanding of its biological coordination chemistry, which is central to its role in the host-microbe interaction, have been made in more recent years. In this review, we focus on the coordination chemistry of CP and highlight studies of its metal-binding properties and contributions to the metal-withholding innate immune response. Taken together, these recent studies inform our current model of how CP participates in metal homeostasis and immunity, and they provide a foundation for further investigations of a remarkable metal-chelating protein at the host-microbe interface and beyond.
Subject(s)
Host Microbial Interactions/immunology , Host Microbial Interactions/physiology , Leukocyte L1 Antigen Complex/immunology , Leukocyte L1 Antigen Complex/metabolism , Transition Elements/metabolism , Amino Acid Sequence , Animals , Antimicrobial Cationic Peptides/genetics , Antimicrobial Cationic Peptides/immunology , Antimicrobial Cationic Peptides/metabolism , Humans , Immunity, Innate , Iron/immunology , Iron/metabolism , Leukocyte L1 Antigen Complex/genetics , Manganese/immunology , Manganese/metabolism , Models, Biological , Models, Molecular , Nickel/immunology , Nickel/metabolism , Protein Conformation , Sequence Homology, Amino Acid , Zinc/immunology , Zinc/metabolismABSTRACT
The intestinal pathogen Salmonella enterica rapidly enters the bloodstream after the invasion of intestinal epithelial cells, but how Salmonella breaks through the gut-vascular barrier is largely unknown. Here, we report that Salmonella enters the bloodstream through intestinal CX3CR1+ macrophages during early infection. Mechanistically, Salmonella induces the migration/invasion properties of macrophages in a manner dependent on host cell actin and on the pathogen effector SteC. SteC recruits host myosin light chain protein Myl12a and phosphorylates its Ser19 and Thr20 residues. Myl12a phosphorylation results in actin rearrangement, and enhanced migration and invasion of macrophages. SteC is able to utilize a wide range of NTPs other than ATP to phosphorylate Myl12a. We further solved the crystal structure of SteC, which suggests an atypical dimerization-mediated catalytic mechanism. Finally, in vivo data show that SteC-mediated cytoskeleton manipulation is crucial for Salmonella breaching the gut vascular barrier and spreading to target organs.
Subject(s)
Myosin Light Chains , Salmonella enterica , Myosin Light Chains/genetics , Myosin Light Chains/metabolism , Actins/metabolism , Epithelial Cells/metabolism , Macrophages/metabolismABSTRACT
Although commensal flora is involved in the regulation of immunity, the interplay between cytokine signaling and microbiota in atherosclerosis remains unknown. We found that interleukin (IL)-23 and its downstream target IL-22 restricted atherosclerosis by repressing pro-atherogenic microbiota. Inactivation of IL-23-IL-22 signaling led to deterioration of the intestinal barrier, dysbiosis, and expansion of pathogenic bacteria with distinct biosynthetic and metabolic properties, causing systemic increase in pro-atherogenic metabolites such as lipopolysaccharide (LPS) and trimethylamine N-oxide (TMAO). Augmented disease in the absence of the IL-23-IL-22 pathway was mediated in part by pro-atherogenic osteopontin, controlled by microbial metabolites. Microbiota transfer from IL-23-deficient mice accelerated atherosclerosis, whereas microbial depletion or IL-22 supplementation reduced inflammation and ameliorated disease. Our work uncovers the IL-23-IL-22 signaling as a regulator of atherosclerosis that restrains expansion of pro-atherogenic microbiota and argues for informed use of cytokine blockers to avoid cardiovascular side effects driven by microbiota and inflammation.
Subject(s)
Atherosclerosis/etiology , Atherosclerosis/metabolism , Diet , Gastrointestinal Microbiome , Homeostasis , Interleukin-23/metabolism , Interleukins/metabolism , Animals , Atherosclerosis/pathology , Biomarkers , Disease Models, Animal , Disease Progression , Gene Expression , Immunophenotyping , Interleukin-23/deficiency , Lipid Metabolism , Mice , Mice, Knockout , Osteopontin/genetics , Osteopontin/metabolism , Signal Transduction , Interleukin-22ABSTRACT
Shigella is a Gram-negative bacterium that causes bacillary dysentery worldwide. It invades the intestinal epithelium to elicit intense inflammation and tissue damage, yet the underlying mechanisms of its host selectivity and low infectious inoculum remain perplexing. Here, we report that Shigella co-opts human α-defensin 5 (HD5), a host defense peptide important for intestinal homeostasis and innate immunity, to enhance its adhesion to and invasion of mucosal tissues. HD5 promoted Shigella infection in vitro in a structure-dependent manner. Shigella, commonly devoid of an effective host-adhesion apparatus, preferentially targeted HD5 to augment its ability to colonize the intestinal epithelium through interactions with multiple bacterial membrane proteins. HD5 exacerbated infectivity and Shigella-induced pathology in a culture of human colorectal tissues and three animal models. Our findings illuminate how Shigella exploits innate immunity by turning HD5 into a virulence factor for infection, unveiling a mechanism of action for this highly proficient human pathogen.
Subject(s)
Bacterial Adhesion/physiology , Dysentery, Bacillary/immunology , Host-Pathogen Interactions/physiology , Shigella/pathogenicity , alpha-Defensins , Animals , HumansABSTRACT
Enterococci are gut microbes of most land animals. Likely appearing first in the guts of arthropods as they moved onto land, they diversified over hundreds of millions of years adapting to evolving hosts and host diets. Over 60 enterococcal species are now known. Two species, Enterococcus faecalis and Enterococcus faecium, are common constituents of the human microbiome. They are also now leading causes of multidrug-resistant hospital-associated infection. The basis for host association of enterococcal species is unknown. To begin identifying traits that drive host association, we collected 886 enterococcal strains from widely diverse hosts, ecologies, and geographies. This identified 18 previously undescribed species expanding genus diversity by >25%. These species harbor diverse genes including toxins and systems for detoxification and resource acquisition. Enterococcus faecalis and E. faecium were isolated from diverse hosts highlighting their generalist properties. Most other species showed a more restricted distribution indicative of specialized host association. The expanded species diversity permitted the Enterococcus genus phylogeny to be viewed with unprecedented resolution, allowing features to be identified that distinguish its four deeply rooted clades, and the entry of genes associated with range expansion such as B-vitamin biosynthesis and flagellar motility to be mapped to the phylogeny. This work provides an unprecedentedly broad and deep view of the genus Enterococcus, including insights into its evolution, potential new threats to human health, and where substantial additional enterococcal diversity is likely to be found.
Subject(s)
Enterococcus faecium , Gram-Positive Bacterial Infections , Animals , Humans , Enterococcus/genetics , Anti-Bacterial Agents/pharmacology , Enterococcus faecium/genetics , Enterococcus faecalis/genetics , Phylogeny , Microbial Sensitivity Tests , Drug Resistance, BacterialABSTRACT
Phosphatidylcholine (PC) is critical for the nitrogen-fixing symbiosis between rhizobia and legumes. We characterized three PC biosynthesis pathways in Rhizobium leguminosarum and evaluated their impact on nitrogen fixation in clover nodules. In the presence of choline, a PC synthase catalyzes the condensation of cytidine diphosphate-diacylglycerol with choline to produce PC. In the presence of lyso-PC, acyltransferases acylate this mono-acylated phospholipid to PC. The third pathway relies on phospholipid N-methyltransferases (Pmts), which sequentially methylate phosphatidylethanolamine (PE) through three rounds of methylation, yielding PC via the intermediates monomethyl-PE and dimethyl-PE. In R. leguminosarum, at least three Pmts participate in this methylation cascade. To elucidate the functions of these enzymes, we recombinantly produced and biochemically characterized them. We moved on to determine the phospholipid profiles of R. leguminosarum mutant strains harboring single and combinatorial deletions of PC biosynthesis genes. The cumulative results show that PC production occurs through the combined action of multiple enzymes, each with distinct substrate and product specificities. The methylation pathway emerges as the dominant PC biosynthesis route, and we pinpoint PmtS2, which catalyzes all three methylation steps, as the enzyme responsible for providing adequate PC amounts for a functional nitrogen-fixing symbiosis with clover. IMPORTANCE: Understanding the molecular mechanisms of symbiotic nitrogen fixation has important implications for sustainable agriculture. The presence of the phospholipid phosphatidylcholine (PC) in the membrane of rhizobia is critical for the establishment of productive nitrogen-fixing root nodules on legume plants. The reasons for the PC requirement are unknown. Here, we employed Rhizobium leguminosarum and clover as model system for a beneficial plant-microbe interaction. We found that R. leguminosarum produces PC by three distinct pathways. The relative contribution of these pathways to PC formation was determined in an array of single, double, and triple mutant strains. Several of the PC biosynthesis enzymes were purified and biochemically characterized. Most importantly, we demonstrated the essential role of PC formation by R. leguminosarum in nitrogen fixation and pinpointed a specific enzyme indispensable for plant-microbe interaction. Our study offers profound insights into bacterial PC biosynthesis and its pivotal role in biological nitrogen fixation.
Subject(s)
Bacterial Proteins , Nitrogen Fixation , Phosphatidylcholines , Rhizobium leguminosarum , Symbiosis , Rhizobium leguminosarum/metabolism , Rhizobium leguminosarum/genetics , Phosphatidylcholines/metabolism , Phosphatidylcholines/biosynthesis , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Root Nodules, Plant/microbiology , Medicago/microbiologyABSTRACT
Marine bacteria play important roles in the degradation and cycling of algal polysaccharides. However, the dynamics of epiphytic bacterial communities and their roles in algal polysaccharide degradation during kelp decay are still unclear. Here, we performed metagenomic analyses to investigate the identities and predicted metabolic abilities of epiphytic bacterial communities during the early and late decay stages of the kelp Saccharina japonica. During kelp decay, the dominant epiphytic bacterial communities shifted from Gammaproteobacteria to Verrucomicrobia and Bacteroidetes. In the early decay stage of S. japonica, epiphytic bacteria primarily targeted kelp-derived labile alginate for degradation, among which the gammaproteobacterial Vibrionaceae (particularly Vibrio) and Psychromonadaceae (particularly Psychromonas), abundant in alginate lyases belonging to the polysaccharide lyase (PL) families PL6, PL7, and PL17, were key alginate degraders. More complex fucoidan was preferred to be degraded in the late decay stage of S. japonica by epiphytic bacteria, predominantly from Verrucomicrobia (particularly Lentimonas), Pirellulaceae of Planctomycetes (particularly Rhodopirellula), Pontiellaceae of Kiritimatiellota, and Flavobacteriaceae of Bacteroidetes, which depended on using glycoside hydrolases (GHs) from the GH29, GH95, and GH141 families and sulfatases from the S1_15, S1_16, S1_17, and S1_25 families to depolymerize fucoidan. The pathways for algal polysaccharide degradation in dominant epiphytic bacterial groups were reconstructed based on analyses of metagenome-assembled genomes. This study sheds light on the roles of different epiphytic bacteria in the degradation of brown algal polysaccharides.IMPORTANCEKelps are important primary producers in coastal marine ecosystems. Polysaccharides, as major components of brown algal biomass, constitute a large fraction of organic carbon in the ocean. However, knowledge of the identities and pathways of epiphytic bacteria involved in the degradation process of brown algal polysaccharides during kelp decay is still elusive. Here, based on metagenomic analyses, the succession of epiphytic bacterial communities and their metabolic potential were investigated during the early and late decay stages of Saccharina japonica. Our study revealed a transition in algal polysaccharide-degrading bacteria during kelp decay, shifting from alginate-degrading Gammaproteobacteria to fucoidan-degrading Verrucomicrobia, Planctomycetes, Kiritimatiellota, and Bacteroidetes. A model for the dynamic degradation of algal cell wall polysaccharides, a complex organic carbon, by epiphytic microbiota during kelp decay was proposed. This study deepens our understanding of the role of epiphytic bacteria in marine algal carbon cycling as well as pathogen control in algal culture.
Subject(s)
Edible Seaweeds , Flavobacteriaceae , Kelp , Laminaria , Microbiota , Phaeophyceae , Humans , Metagenome , Kelp/metabolism , Polysaccharides/metabolism , Alginates/metabolism , Flavobacteriaceae/genetics , Flavobacteriaceae/metabolism , Carbon/metabolismABSTRACT
Endoplasmic reticulum (ER) bodies are ER-derived structures that contain a large amount of PYK10 myrosinase, which hydrolyzes tryptophan (Trp)-derived indole glucosinolates (IGs). Given the well-described role of IGs in root-microbe interactions, we hypothesized that ER bodies in roots are important for interaction with soil-borne microbes at the root-soil interface. We used mutants impaired in ER bodies (nai1), ER body-resident myrosinases (pyk10bglu21), IG biosynthesis (myb34/51/122), and Trp specialized metabolism (cyp79b2b3) to profile their root microbiota community in natural soil, evaluate the impact of axenically collected root exudates on soil or synthetic microbial communities, and test their response to fungal endophytes in a mono-association setup. Tested mutants exhibited altered bacterial and fungal communities in rhizoplane and endosphere, respectively. Natural soils and bacterial synthetic communities treated with mutant root exudates exhibited distinctive microbial profiles from those treated with wild-type (WT) exudates. Most tested endophytes severely restricted the growth of cyp79b2b3, a part of which also impaired the growth of pyk10bglu21. Our results suggest that root ER bodies and their resident myrosinases modulate the profile of root-secreted metabolites and thereby influence root-microbiota interactions.
Subject(s)
Microbiota , Tryptophan , Glycoside Hydrolases , Bacteria , Soil/chemistry , Soil Microbiology , Plant Roots/microbiology , RhizosphereABSTRACT
The vertebrate gut microbiota is a critical determinant of organismal function, yet whether and how gut microbial communities affect host fitness under natural conditions remains largely unclear. We characterised associations between a fitness proxy-individual growth rate-and bacterial gut microbiota diversity and composition in threespine stickleback fish introduced to large semi-natural ponds. We detected a 63% higher richness of bacterial taxa (α-diversity) in the guts of high-fitness fish compared to low-fitness fish, which might be driven by stronger bacterial dispersal among high-fitness fish according to the fit of a neutral community model. Further, microbial communities of high-fitness fish were more similar to one another (i.e., exhibited lower ß-diversity) than those of low-fitness fish. The lower ß-diversity found to be associated with higher host fitness is consistent with the Anna Karenina principle-that there are fewer ways to have a functional microbiota than a dysfunctional microbiota. Our study links differences in α- and ß-diversity to a fitness-related trait in a vertebrate species reared under naturalistic conditions and our findings provide a basis for functional tests of the fitness consequences of host-microbiota interactions.
ABSTRACT
Microbes constitute the most prevalent life form on Earth, yet their remarkable diversity remains mostly unrecognized. Microbial diversity in vertebrate models presents a significant challenge for investigating host-microbiome interactions. The model organism Caenorhabditis elegans has many advantages for delineating the effects of host genetics on microbial composition. In the wild, the C. elegans gut contains various microbial species, while in the laboratory it is usually a host for a single bacterial species. There is a potential host-microbe interaction between microbial metabolites, drugs, and C. elegans phenotypes. This mini-review aims to summarize the current understanding regarding the microbiome in C. elegans. Examples using C. elegans to study host-microbe-metabolite interactions are discussed.
Subject(s)
Caenorhabditis elegans , Animals , Caenorhabditis elegans/microbiology , Caenorhabditis elegans/genetics , Gastrointestinal Microbiome , Models, Animal , Microbiota , Host Microbial Interactions , Bacteria/genetics , Bacteria/classification , Bacteria/metabolismABSTRACT
Glycosylation plays a crucial role in many aspects of cell biology, including cellular and organismal integrity, structure-and-function of many glycosylated molecules in the cell, signal transduction, development, cancer, and in a number of diseases. Besides, at the inter-organismal level of interaction, a variety of glycosylated molecules are involved in the host-microbiota recognition and initiation of downstream signalling cascades depending on the outcomes of the glycome-mediated ascertainment. The role of glycosylation in host-microbe interactions is better elaborated within the context of virulence and pathogenicity in bacterial infection processes but the symbiotic host-microbe relationships also involve substantive glycome-mediated interactions. The works in the latter field have been reviewed to a much lesser extent, and the main aim of this mini-review is to compensate for this deficiency and summarise the role of glycomics in host-microbe symbiotic interactions.
Subject(s)
Host Microbial Interactions , Microbiota , Symbiosis , Glycosylation , GlycomicsABSTRACT
The oral cavity is inhabited by abundant microbes which continuously interact with the host and influence the host's health. Such host-microbe interactions (HMI) are dynamic and complex processes involving e.g. oral tissues, microbial communities and saliva. Due to difficulties in mimicking the in vivo complexity, it is still unclear how exactly HMI influence the transition between healthy status and disease conditions in the oral cavity. As an advanced approach, three-dimensional (3D) organotypic oral tissues (epithelium and mucosa/gingiva) are being increasingly used to study underlying mechanisms. These in vitro models were designed with different complexity depending on the research questions to be answered. In this review, we summarised the existing 3D oral HMI models, comparing designs and readouts, discussing applications as well as future perspectives.
ABSTRACT
The unique microbiome found in the lungs has been studied and shown to be associated with both pulmonary homeostasis and lung diseases. The lung microbiome has the potential to produce metabolites that modulate host-microbe interactions. Specifically, short-chain fatty acids (SCFAs) produced by certain strains of the lung microbiota have been shown to regulate immune function and maintain gut mucosal health. In response, this review described the distribution and composition of the microbiota in lung diseases and discussed the impact of the lung microbiota on health and lung disease. In addition, the review further elaborated on the mechanism of microbial metabolites in microbial-host interaction and their application in the treatment of lung diseases. A better understanding of the interaction between the microbiota, metabolites, and host will provide potential strategies for the development of novel methods for the treatment of pulmonary microbial induced lung diseases.
Subject(s)
Lung Diseases , Microbiota , Humans , Lung/metabolism , Lung Diseases/therapy , Fatty Acids, Volatile/metabolismABSTRACT
'Candidatus Liberibacter' is a genus of plant-associated bacteria that can be transmitted by insects of the superfamily Psylloidea. Since many members of this genus are putative causal agents of plant diseases, it is crucial in studying their interactions with the psyllid vectors. However, previous studies have mainly focused on few species associated with diseases of economic significance, and this may potentially hinder the development of a more comprehensive understanding of the ecology of 'Ca. Liberibacter'. The present study showed that an endemic psyllid species in Taiwan, Cacopsylla oluanpiensis, is infected with a species of 'Ca. Liberibacter'. The bacterium was present in geographically distant populations of the psyllid and was identified as 'Ca. Liberibacter europaeus' (CLeu), a species which generally does not induce plant symptoms. Analysis of CLeu infection densities in male and female C. oluanpiensis with different abdominal colors using quantitative polymerase chain reaction revealed that CLeu infection was not significantly associated with psyllid gender and body color. Instead, CLeu infection had a negative effect on the body sizes of both male and female psyllids, which is influenced by bacterial titer. Investigation on CLeu's distribution patterns in C. oluanpiensis's host plant Pittosporum pentandrum indicated that CLeu does not behave as a plant pathogen. Also, results showed that nymph-infested twigs had a greater chance of carrying high loads of CLeu, suggesting that ovipositing females and the nymphs are the main source of the bacterium in the plants. This study is not only the first to formally report the presence of CLeu in C. oluanpiensis and plants in the family Pittosporaceae, but also represents the first record of the bacterium in Taiwan. Overall, the findings in this work broaden the understanding of associations between psyllids and 'Ca. Liberibacter' in the field.
Subject(s)
Hemiptera , Rhizobiaceae , Animals , Liberibacter , Hemiptera/microbiology , Plant Diseases/microbiology , TaiwanABSTRACT
Symbiosis with microbes is a ubiquitous phenomenon with a massive impact on all living organisms, shaping the world around us today. Theoretical and experimental studies show that vertical transmission of symbionts leads to the evolution of mutualistic traits, whereas horizontal transmission facilitates the emergence of parasitic features. However, these studies focused on phenotypic data, and we know little about underlying molecular changes at the genomic level. Here, we combined an experimental evolution approach with infection assays, genome resequencing, and global gene expression analysis to study the effect of transmission mode on an obligate intracellular bacterial symbiont. We show that a dramatic shift in the frequency of genetic variants, coupled with major changes in gene expression, allow the symbiont to alter its position in the parasitism-mutualism continuum depending on the mode of between-host transmission. We found that increased parasitism in horizontally transmitted chlamydiae residing in amoebae was a result of processes occurring at the infectious stage of the symbiont's developmental cycle. Specifically, genes involved in energy production required for extracellular survival and the type III secretion system-the symbiont's primary virulence mechanism-were significantly up-regulated. Our results identify the genomic and transcriptional dynamics sufficient to favor parasitic or mutualistic strategies.
Subject(s)
Chlamydia/genetics , Host Microbial Interactions/genetics , Symbiosis/genetics , Amoeba/metabolism , Amoeba/microbiology , Animals , Bacteria/genetics , Biological Evolution , Chlamydia/metabolism , Genome, Bacterial/genetics , Parasites/genetics , VirulenceABSTRACT
Animal development has traditionally been viewed as an autonomous process directed by the host genome. But, in many animals, biotic and abiotic cues, like temperature and bacterial colonizers, provide signals for multiple developmental steps. Hydra offers unique features to encode these complex interactions of developmental processes with biotic and abiotic factors, and we used it here to investigate the impact of bacterial colonizers and temperature on the pattern formation process. In Hydra, formation of the head organizer involves the canonical Wnt pathway. Treatment with alsterpaullone (ALP) results in acquiring characteristics of the head organizer in the body column. Intriguingly, germfree Hydra polyps are significantly more sensitive to ALP compared to control polyps. In addition to microbes, ß-catenin-dependent pattern formation is also affected by temperature. Gene expression analyses led to the identification of two small secreted peptides, named Eco1 and Eco2, being up-regulated in the response to both Curvibacter sp., the main bacterial colonizer of Hydra, and low temperatures. Loss-of-function experiments revealed that Eco peptides are involved in the regulation of pattern formation and have an antagonistic function to Wnt signaling in Hydra.
Subject(s)
Hydra/genetics , Hydra/metabolism , beta Catenin/metabolism , Animals , Bacteria/metabolism , Body Patterning/genetics , Gene Expression Regulation, Developmental/genetics , Gene-Environment Interaction , Hydra/physiology , Peptides/metabolism , Temperature , Wnt Proteins/metabolism , Wnt Signaling Pathway/genetics , Wnt Signaling Pathway/physiologyABSTRACT
Blood is conventionally thought to be sterile. However, emerging evidence on the blood microbiome has started to challenge this notion. Recent reports have revealed the presence of genetic materials of microbes or pathogens in the blood circulation, leading to the conceptualization of a blood microbiome that is vital for physical wellbeing. Dysbiosis of the blood microbial profile has been implicated in a wide range of health conditions. Our review aims to consolidate recent findings about the blood microbiome in human health and to highlight the existing controversies, prospects, and challenges around this topic. Current evidence does not seem to support the presence of a core healthy blood microbiome. Common microbial taxa have been identified in some diseases, for instance, Legionella and Devosia in kidney impairment, Bacteroides in cirrhosis, Escherichia/Shigella and Staphylococcus in inflammatory diseases, and Janthinobacterium in mood disorders. While the presence of culturable blood microbes remains debatable, their genetic materials in the blood could potentially be exploited to improve precision medicine for cancers, pregnancy-related complications, and asthma by augmenting patient stratification. Key controversies in blood microbiome research are the susceptibility of low-biomass samples to exogenous contamination and undetermined microbial viability from NGS-based microbial profiling, however, ongoing initiatives are attempting to mitigate these issues. We also envisage future blood microbiome research to adopt more robust and standardized approaches, to delve into the origins of these multibiome genetic materials and to focus on host-microbe interactions through the elaboration of causative and mechanistic relationships with the aid of more accurate and powerful analytical tools.
Subject(s)
Legionella , Microbiota , Humans , Host Microbial Interactions , Dysbiosis/microbiology , ForecastingABSTRACT
Small RNAs (sRNAs) are universal posttranscriptional regulators of gene expression and hundreds of sRNAs are frequently found in each and every bacterium. In order to coordinate cellular processes in response to ambient conditions, many sRNAs are differentially expressed. Here, we asked how these small regulators are regulated using Agrobacterium tumefaciens as a model system. Among the best-studied sRNAs in this plant pathogen are AbcR1 regulating numerous ABC transporters and PmaR, a regulator of peptidoglycan biosynthesis, motility, and ampicillin resistance. We report that the LysR-type regulator VtlR (also known as LsrB) controls expression of AbcR1 and PmaR. A vtlR/lsrB deletion strain showed growth defects, was sensitive to antibiotics and severely compromised in plant tumor formation. Transcriptome profiling by RNA-sequencing revealed more than 1,200 genes with altered expression in the mutant. Consistent with the function of VtlR/LsrB as regulator of AbcR1, many ABC transporter genes were affected. Interestingly, the transcription factor did not only control the expression of AbcR1 and PmaR. In the mutant, 102 sRNA genes were significantly up- or downregulated. Thus, our study uncovered VtlR/LsrB as the master regulator of numerous sRNAs. Thereby, the transcriptional regulator harnesses the regulatory power of sRNAs to orchestrate the expression of distinct sub-regulons.
Subject(s)
Agrobacterium tumefaciens/genetics , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial/genetics , RNA, Bacterial/biosynthesis , RNA, Small Untranslated/biosynthesis , Transcription Factors/genetics , ATP-Binding Cassette Transporters/biosynthesis , ATP-Binding Cassette Transporters/genetics , Agrobacterium tumefaciens/drug effects , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Binding Sites , Carrier Proteins/metabolism , Gene Deletion , Peptidoglycan/biosynthesis , Transcription Factors/metabolism , Transcription, Genetic/genetics , Transcriptional Activation/geneticsABSTRACT
Gut microbiota plays a critical role in the maintenance of host health. As a low-cost and genetically tractable vertebrate model, zebrafish have been widely used for biological research. Zebrafish and humans share some similarities in intestinal physiology and function, and this allows zebrafish to be a surrogate model for investigating the crosstalk between the gut microbiota and host. Especially, zebrafish have features such as high fecundity, external fertilization, and early optical transparency. These enable the researchers to employ the fish to address questions not easily addressed in other animal models. In this review, we described the intestine structure of zebrafish. Also, we summarized the methods of generating a gnotobiotic zebrafish model, the factors affecting its intestinal flora, and the study progress of gut microbiota functions in zebrafish. Finally, we discussed the limitations and challenges of the zebrafish model for gut microbiota studies. In summary, this review established that zebrafish is an attractive research tool to understand mechanistic insights into host-microbe interaction.
Subject(s)
Gastrointestinal Microbiome , Zebrafish , Animals , Humans , IntestinesABSTRACT
The environmental context of the nitrogen-fixing mutualism between leguminous plants and rhizobial bacteria varies over space and time. Variation in resource availability, population density, and composition likely affect the ecology and evolution of rhizobia and their symbiotic interactions with hosts. We examined how host genotype, nitrogen addition, rhizobial density, and community complexity affected selection on 68 rhizobial strains in the Sinorhizobium meliloti-Medicago truncatula mutualism. As expected, host genotype had a substantial effect on the size, number, and strain composition of root nodules (the symbiotic organ). The understudied environmental variable of rhizobial density had a stronger effect on nodule strain frequency than the addition of low nitrogen levels. Higher inoculum density resulted in a nodule community that was less diverse and more beneficial but only in the context of the more selective host genotype. Higher density resulted in more diverse and less beneficial nodule communities with the less selective host. Density effects on strain composition deserve additional scrutiny as they can create feedback between ecological and evolutionary processes. Finally, we found that relative strain rankings were stable across increasing community complexity (2, 3, 8, or 68 strains). This unexpected result suggests that higher-order interactions between strains are rare in the context of nodule formation and development. Our work highlights the importance of examining mechanisms of density-dependent strain fitness and developing theoretical predictions that incorporate density dependence. Furthermore, our results have translational relevance for overcoming establishment barriers in bioinoculants and motivating breeding programs that maintain beneficial plant-microbe interactions across diverse agroecological contexts. IMPORTANCE Legume crops establish beneficial associations with rhizobial bacteria that perform biological nitrogen fixation, providing nitrogen to plants without the economic and greenhouse gas emission costs of chemical nitrogen inputs. Here, we examine the influence of three environmental factors that vary in agricultural fields on strain relative fitness in nodules. In addition to manipulating nitrogen, we also use two biotic variables that have rarely been examined: the rhizobial community's density and complexity. Taken together, our results suggest that (i) breeding legume varieties that select beneficial strains despite environmental variation is possible, (ii) changes in rhizobial population densities that occur routinely in agricultural fields could drive evolutionary changes in rhizobial populations, and (iii) the lack of higher-order interactions between strains will allow the high-throughput assessments of rhizobia winners and losers during plant interactions.