Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 207
Filter
Add more filters

Publication year range
1.
Cell ; 187(15): 3888-3903.e18, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38870946

ABSTRACT

Defective host defenses later in life are associated with changes in immune cell activities, suggesting that age-specific considerations are needed in immunotherapy approaches. In this study, we found that PD-1 and CTLA4-based cancer immunotherapies are unable to eradicate tumors in elderly mice. This defect in anti-tumor activity correlated with two known age-associated immune defects: diminished abundance of systemic naive CD8+ T cells and weak migratory activities of dendritic cells (DCs). We identified a vaccine adjuvant, referred to as a DC hyperactivator, which corrects DC migratory defects in the elderly. Vaccines containing tumor antigens and DC hyperactivators induced T helper type 1 (TH1) CD4+ T cells with cytolytic activity that drive anti-tumor immunity in elderly mice. When administered early in life, DC hyperactivators were the only adjuvant identified that elicited anti-tumor CD4+ T cells that persisted into old age. These results raise the possibility of correcting age-associated immune defects through DC manipulation.


Subject(s)
CD4-Positive T-Lymphocytes , Dendritic Cells , Mice, Inbred C57BL , Dendritic Cells/immunology , Animals , CD4-Positive T-Lymphocytes/immunology , Mice , Aging/immunology , CD8-Positive T-Lymphocytes/immunology , Immunotherapy/methods , Cancer Vaccines/immunology , Female , Neoplasms/immunology , Neoplasms/therapy , Programmed Cell Death 1 Receptor/metabolism , CTLA-4 Antigen/metabolism , Cell Movement , Antigens, Neoplasm/immunology
2.
Mol Cell ; 84(8): 1442-1459.e7, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38458200

ABSTRACT

In mammals, dosage compensation involves two parallel processes: (1) X inactivation, which equalizes X chromosome dosage between males and females, and (2) X hyperactivation, which upregulates the active X for X-autosome balance. The field currently favors models whereby dosage compensation initiates "de novo" during mouse development. Here, we develop "So-Smart-seq" to revisit the question and interrogate a comprehensive transcriptome including noncoding genes and repeats in mice. Intriguingly, de novo silencing pertains only to a subset of Xp genes. Evolutionarily older genes and repetitive elements demonstrate constitutive Xp silencing, adopt distinct signatures, and do not require Xist to initiate silencing. We trace Xp silencing backward in developmental time to meiotic sex chromosome inactivation in the male germ line and observe that Xm hyperactivation is timed to Xp silencing on a gene-by-gene basis. Thus, during the gamete-to-embryo transition, older Xp genes are transmitted in a "pre-inactivated" state. These findings have implications for the evolution of imprinting.


Subject(s)
RNA, Long Noncoding , X Chromosome Inactivation , Female , Mice , Male , Animals , X Chromosome Inactivation/genetics , Genomic Imprinting , Germ Cells , Epigenesis, Genetic , Embryo, Mammalian , RNA, Long Noncoding/genetics , X Chromosome/genetics , Mammals/genetics
3.
Trends Biochem Sci ; 49(1): 68-78, 2024 01.
Article in English | MEDLINE | ID: mdl-38040599

ABSTRACT

DNA single-strand breaks (SSBs) are among the most common lesions arising in human cells, with tens to hundreds of thousands arising in each cell, each day. Cells have efficient mechanisms for the sensing and repair of these ubiquitous DNA lesions, but the failure of these processes to rapidly remove SSBs can lead to a variety of pathogenic outcomes. The threat posed by unrepaired SSBs is illustrated by the existence of at least six genetic diseases in which SSB repair (SSBR) is defective, all of which are characterised by neurodevelopmental and/or neurodegenerative pathology. Here, I review current understanding of how SSBs arise and impact on critical molecular processes, such as DNA replication and gene transcription, and their links to human disease.


Subject(s)
DNA Breaks, Single-Stranded , DNA Repair , Humans , DNA Damage , DNA Replication , DNA
4.
Immunity ; 47(4): 697-709.e3, 2017 10 17.
Article in English | MEDLINE | ID: mdl-29045901

ABSTRACT

A heterogeneous mixture of lipids called oxPAPC, derived from dying cells, can hyperactivate dendritic cells (DCs) but not macrophages. Hyperactive DCs are defined by their ability to release interleukin-1 (IL-1) while maintaining cell viability, endowing these cells with potent aptitude to stimulate adaptive immunity. Herein, we found that the bacterial lipopolysaccharide receptor CD14 captured extracellular oxPAPC and delivered these lipids into the cell to promote inflammasome-dependent DC hyperactivation. Notably, we identified two specific components within the oxPAPC mixture that hyperactivated macrophages, allowing these cells to release IL-1 for several days, by a CD14-dependent process. In murine models of sepsis, conditions that promoted cell hyperactivation resulted in inflammation but not lethality. Thus, multiple phagocytes are capable of hyperactivation in response to oxPAPC, with CD14 acting as the earliest regulator in this process, serving to capture and transport these lipids to promote inflammatory cell fate decisions.


Subject(s)
Dendritic Cells/immunology , Inflammasomes/immunology , Lipopolysaccharide Receptors/immunology , Phagocytes/immunology , Phosphatidylcholines/immunology , Adaptive Immunity/immunology , Animals , Blotting, Western , Cell Line , Cell Survival/immunology , Dendritic Cells/metabolism , Endocytosis/drug effects , Endocytosis/immunology , Female , Flow Cytometry , HEK293 Cells , Humans , Inflammasomes/metabolism , Interleukin-1/immunology , Interleukin-1/metabolism , Lipopolysaccharide Receptors/genetics , Lipopolysaccharide Receptors/metabolism , Lipopolysaccharides/pharmacology , Macrophages/immunology , Macrophages/metabolism , Mice, Inbred C57BL , Mice, Knockout , Phagocytes/metabolism , Phosphatidylcholines/metabolism
5.
Proc Natl Acad Sci U S A ; 120(39): e2304409120, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37725640

ABSTRACT

Calcium signaling is critical for successful fertilization. In spermatozoa, calcium influx into the sperm flagella mediated by the sperm-specific CatSper calcium channel is necessary for hyperactivated motility and male fertility. CatSper is a macromolecular complex and is repeatedly arranged in zigzag rows within four linear nanodomains along the sperm flagella. Here, we report that the Tmem249-encoded transmembrane (TM) domain-containing protein, CATSPERθ is essential for the CatSper channel assembly during sperm tail formation. CATSPERθ facilitates the channel assembly by serving as a scaffold for a pore-forming subunit CATSPER4. CATSPERθ is specifically localized at the interface of a CatSper dimer and can self-interact, suggesting its potential role in CatSper dimer formation. Male mice lacking CATSPERθ are infertile because the sperm lack the entire CatSper channel from sperm flagella, rendering sperm unable to hyperactivate, regardless of their normal expression in the testis. In contrast, genetic abrogation of any of the other CatSper TM subunits results in loss of CATSPERθ protein in the spermatid cells during spermatogenesis. CATSPERθ might act as a checkpoint for the properly assembled CatSper channel complex to traffic to sperm flagella. This study provides insights into the CatSper channel assembly and elucidates the physiological role of CATSPERθ in sperm motility and male fertility.


Subject(s)
Semen , Sperm Motility , Animals , Male , Mice , Cell Membrane , Ion Channels , Membrane Proteins/genetics , Seminal Plasma Proteins , Sperm Motility/genetics , Sperm Tail , Spermatozoa
6.
Semin Immunol ; 55: 101524, 2021 06.
Article in English | MEDLINE | ID: mdl-34823995

ABSTRACT

The dysregulation of myeloid cell responses is increasingly demonstrated to be a major mechanism of pathogenesis for COVID-19. The pathological cellular and cytokine signatures associated with this disease point to a critical role of a hyperactivated innate immune response in driving pathology. Unique immunopathological features of COVID-19 include myeloid-cell dominant inflammation and cytokine release syndrome (CRS) alongside lymphopenia and acute respiratory distress syndrome (ARDS), all of which correlate with severe disease. Studies suggest a range of causes mediating myeloid hyperactivation, such as aberrant innate sensing, asynchronized immune cellular responses, as well as direct viral protein/host interactions. These include the recent identification of new myeloid cell receptors that bind SARS-CoV-2, which drive myeloid cell hyperinflammatory responses independently of lung epithelial cell infection via the canonical receptor, angiotensin-converting enzyme 2 (ACE2). The spectrum and nature of myeloid cell dysregulation in COVID-19 also differs from, at least to some extent, what is observed in other infectious diseases involving myeloid cell activation. While much of the therapeutic effort has focused on preventative measures with vaccines or neutralizing antibodies that block viral infection, recent clinical trials have also targeted myeloid cells and the associated cytokines as a means to resolve CRS and severe disease, with promising but thus far modest effects. In this review, we critically examine potential mechanisms driving myeloid cell dysregulation, leading to immunopathology and severe disease, and discuss potential therapeutic strategies targeting myeloid cells as a new paradigm for COVID-19 treatment.


Subject(s)
COVID-19 Drug Treatment , Humans , Immunity, Innate , Myeloid Cells , SARS-CoV-2
7.
J Lipid Res ; 65(7): 100579, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38880128

ABSTRACT

Sterol-regulatory element binding proteins (SREBPs) are a conserved transcription factor family governing lipid metabolism. When cellular cholesterol level is low, SREBP2 is transported from the endoplasmic reticulum to the Golgi apparatus where it undergoes proteolytic activation to generate a soluble N-terminal fragment, which drives the expression of lipid biosynthetic genes. Malfunctional SREBP activation is associated with various metabolic abnormalities. In this study, we find that overexpression of the active nuclear form SREBP2 (nSREBP2) causes caspase-dependent lytic cell death in various types of cells. These cells display typical pyroptotic and necrotic signatures, including plasma membrane ballooning and release of cellular contents. However, this phenotype is independent of the gasdermin family proteins or mixed lineage kinase domain-like (MLKL). Transcriptomic analysis identifies that nSREBP2 induces expression of p73, which further activates caspases. Through whole-genome CRISPR-Cas9 screening, we find that Pannexin-1 (PANX1) acts downstream of caspases to promote membrane rupture. Caspase-3 or 7 cleaves PANX1 at the C-terminal tail and increases permeability. Inhibition of the pore-forming activity of PANX1 alleviates lytic cell death. PANX1 can mediate gasdermins and MLKL-independent cell lysis during TNF-induced or chemotherapeutic reagents (doxorubicin or cisplatin)-induced cell death. Together, this study uncovers a noncanonical function of SREBPs as a potentiator of programmed cell death and suggests that PANX1 can directly promote lytic cell death independent of gasdermins and MLKL.


Subject(s)
Cell Death , Connexins , Nerve Tissue Proteins , Humans , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Connexins/metabolism , Connexins/genetics , Cell Death/drug effects , Sterol Regulatory Element Binding Proteins/metabolism , Sterol Regulatory Element Binding Proteins/genetics , Caspase 3/metabolism , Caspase 7/metabolism , Sterol Regulatory Element Binding Protein 2
8.
Biol Reprod ; 110(4): 684-697, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38145487

ABSTRACT

The protein kinase A (PKA) signaling pathway, which mediates protein phosphorylation, is important for sperm motility and male fertility. This process relies on A-kinase anchoring proteins that organize PKA and its signalosomes within specific subcellular compartments. Previously, it was found that the absence of A-kinase anchoring protein 3 (AKAP3) leads to multiple morphological abnormalities in mouse sperm. But how AKAP3 regulates sperm motility is yet to be elucidated. AKAP3 has two amphipathic domains, here named dual and RI, in its N-terminus. These domains are responsible for binding regulatory subunits I alpha (RIα) and II alpha (RIIα) of PKA and for RIα only, respectively. Here, we generated mutant mice lacking the dual and RI domains of AKAP3. It was found that the deletion of these domains caused male mouse infertile, accompanied by mild defects in the fibrous sheath of sperm tails. Additionally, the levels of serine/threonine phosphorylation of PKA substrates and tyrosine phosphorylation decreased in the mutant sperm, which exhibited a defect in hyperactivation under capacitation conditions. The protein levels of PKA subunits remained unchanged. But, interestingly, the regulatory subunit RIα was mis-localized from principal piece to midpiece of sperm tail, whereas this was not observed for RIIα. Further protein-protein interaction assays revealed a preference for AKAP3 to bind RIα over RIIα. Collectively, our findings suggest that AKAP3 is important for sperm hyperactivity by regulating type-I PKA signaling pathway mediated protein phosphorylation via its dual and RI domains.


Subject(s)
A Kinase Anchor Proteins , Cyclic AMP-Dependent Protein Kinase Type I , Sperm Motility , Animals , Male , Mice , A Kinase Anchor Proteins/genetics , A Kinase Anchor Proteins/metabolism , Cyclic AMP-Dependent Protein Kinase Type I/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Fertility/genetics , Semen/metabolism , Signal Transduction/physiology , Sperm Motility/genetics , Spermatozoa/metabolism , Sperm Capacitation/genetics
9.
Hum Reprod ; 39(4): 658-673, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38335261

ABSTRACT

STUDY QUESTION: What is the significance and mechanism of human seminal plasma extracellular vesicles (EVs) in regulating human sperm functions? SUMMARY ANSWER: EV increases the intracellular Ca2+ concentrations [Ca2+]i via extracellular Ca2+ influx by activating CatSper channels, and subsequently modulate human sperm motility, especially hyperactivated motility, which is attributed to both protein and non-protein components in EV. WHAT IS KNOWN ALREADY: EVs are functional regulators of human sperm function, and EV cargoes from normal and asthenozoospermic seminal plasma are different. Pre-fusion of EV with sperm in the acidic and non-physiological sucrose buffer solution could elevate [Ca2+]i in human sperm. CatSper, a principle Ca2+ channel in human sperm, is responsible for the [Ca2+]i regulation when sperm respond to diverse extracellular stimuli. However, the role of CatSper in EV-evoked calcium signaling and its potential physiological significance remain unclear. STUDY DESIGN, SIZE, DURATION: EV isolated from the seminal plasma of normal and asthenozoospermic semen were utilized to investigate the mechanism by which EV regulates calcium signal in human sperm, including the involvement of CatSper and the responsible cargoes in EV. In addition, the clinical application potential of EV and EV protein-derived peptides were also evaluated. This is a laboratory study that went on for more than 5 years and involved more than 200 separate experiments. PARTICIPANTS/MATERIALS, SETTING, METHODS: Semen donors were recruited in accordance with the Institutional Ethics Committee on human subjects of the Affiliated Hospital of Nantong University and Jiangxi Maternal and Child Health Hospital. The Flow NanoAnalyzer, western blotting, and transmission electron microscope were used to systematically characterize seminal plasma EV. Sperm [Ca2+]i responses were examined by fluorimetric measurement. The whole-cell patch-clamp technique was performed to record CatSper currents. Sperm motility parameters were assessed by computer-assisted sperm analysis. Sperm hyperactivation was also evaluated by examining their penetration ability in viscous methylcellulose media. Protein and non-protein components in EV were analyzed by liquid chromatography-mass spectrum. The levels of prostaglandins, reactive oxygen species, malonaldehyde, and DNA integrity were detected by commercial kits. MAIN RESULTS AND THE ROLE OF CHANCE: EV increased [Ca2+]i via an extracellular Ca2+ influx, which could be suppressed by a CatSper inhibitor. Also, EV potentiated CatSper currents in human sperm. Furthermore, the EV-in [Ca2+]i increase and CatSper currents were absent in a CatSper-deficient sperm, confirming the crucial role of CatSper in EV induced Ca2+ signaling in human sperm. Both proteins and non-protein components of EV contributed to the increase of [Ca2+]i, which were important for the effects of EV on human sperm. Consequently, EV and its cargos promoted sperm hyperactivated motility. In addition, seminal plasma EV protein-derived peptides, such as NAT1-derived peptide (N-P) and THBS-1-derived peptide (T-P), could activate the sperm calcium signal and enhance sperm function. Interestingly, EV derived from asthenozoospermic semen caused a lower increase of [Ca2+]i than that isolated from normal seminal plasma (N-EV), and N-EV significantly improved sperm motility and function in both asthenozoospermic samples and frozen-thawed sperm. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: This was an in vitro study and caution must be taken when extrapolating the physiological relevance to in vivo regulation of sperm. WIDER IMPLICATIONS OF THE FINDINGS: Our findings demonstrate that the CatSper-mediated-Ca2+ signaling is involved in EV-modulated sperm function under near physiological conditions, and EV and their derivates are a novel CatSper and sperm function regulators with potential for clinical application. They may be developed to improve sperm motility resulting from low [Ca2+]i response and/or freezing and thawing. STUDY FUNDING/COMPETING INTEREST(S): This research was supported by the National Natural Science Foundation of China (32271167), the Social Development Project of Jiangsu Province (BE2022765), the Nantong Social and People's Livelihood Science and Technology Plan (MS22022087), the Basic Science Research Program of Nantong (JC22022086), and the Jiangsu Innovation and Entrepreneurship Talent Plan (JSSCRC2021543). The authors declare no conflict of interest.


Subject(s)
Asthenozoospermia , Calcium Channels , Extracellular Vesicles , Semen , Sperm Motility , Humans , Male , Asthenozoospermia/metabolism , Calcium/metabolism , Calcium Channels/metabolism , Calcium Signaling , Peptides/metabolism , Peptides/pharmacology , Semen/chemistry , Semen/metabolism , Sperm Motility/physiology , Spermatozoa/metabolism , Extracellular Vesicles/chemistry , Extracellular Vesicles/metabolism
10.
Exp Eye Res ; 239: 109785, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38211682

ABSTRACT

To investigate the effect of plasma-derived exosomal proteins on neutrophil hyperactivation in Behcet's uveitis (BU), we treated neutrophils from healthy controls with plasma-derived exosomes from active BU patients, and determined the level of neutrophil activation by real-time quantitative PCR (RT-qPCR) and cytokine detection assay. The results revealed that exosomes from active BU patients could activate neutrophils as shown by increasing the expression levels of pro-inflammatory cytokines (IL-17 and IL-6), chemokines (IL-8 and MCP-1), and NETs (MPO and ELANE). Label-free quantitative proteomic analysis of plasma-derived exosomes from patients and healthy controls found a remarkably distinct protein profile and identified differentially expressed proteins (DEPs) between the two groups. The results of GO, KEGG, and GSEA enrichment analysis showed that DEPs were enriched in innate immune-mediated and neutrophil hyperactivation-related signaling pathways. The protein-protein interaction (PPI) analysis determined that SHP2 was a downregulated key hub protein in the exosomes of active BU patients. Knockdown of SHP2 in human neutrophil cell lines (NB4 cells) was shown to promote the secretion of pro-inflammatory cytokines, chemokines, and NETs. The converse effects were observed following SHP2 overexpression. In conclusion, we highlighted a pathogenic role of plasma-derived exosomal SHP2 deficiency in facilitating neutrophil activation and suggested that SHP2 might be an immunoprotective factor in BU pathologic process.


Subject(s)
Behcet Syndrome , Uveitis , Humans , Blood Proteins/metabolism , Chemokines/metabolism , Cytokines/metabolism , Neutrophils/metabolism , Proteomics , Uveitis/metabolism
11.
Cell Commun Signal ; 22(1): 360, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38992657

ABSTRACT

Inhibitory phosphatases, such as the inositol-5-phosphatase SHIP1 could potentially contribute to B-cell acute lymphoblastic leukemia (B-ALL) by raising the threshold for activation of the autoimmunity checkpoint, allowing malignant cells with strong oncogenic B-cell receptor signaling to escape negative selection. Here, we show that SHIP1 is differentially expressed across B-ALL subtypes and that high versus low SHIP1 expression is associated with specific B-ALL subgroups. In particular, we found high SHIP1 expression in both, Philadelphia chromosome (Ph)-positive and ETV6-RUNX1-rearranged B-ALL cells. As demonstrated by targeted knockdown of SHIP1 by RNA interference, proliferation of B-ALL cells in vitro and their tumorigenic spread in vivo depended in part on SHIP1 expression. We investigated the regulation of SHIP1, as an important antagonist of the AKT signaling pathway, by the B-cell-specific transcription factor Ikaros. Targeted restoration of Ikaros and pharmacological inhibition of the antagonistic casein kinase 2, led to a strong reduction in SHIP1 expression and at the same time to a significant inhibition of AKT activation and cell growth. Importantly, the tumor suppressive function of Ikaros was enhanced by a SHIP1-dependent additive effect. Furthermore, our study shows that all three AKT isoforms contribute to the pro-mitogenic and anti-apoptotic signaling in B-ALL cells. Conversely, hyperactivation of a single AKT isoform is sufficient to induce negative selection by increased oxidative stress. In summary, our study demonstrates the regulatory function of Ikaros on SHIP1 expression in B-ALL and highlights the relevance of sustained SHIP1 expression to prevent cells with hyperactivated PI3K/AKT/mTOR signaling from undergoing negative selection.


Subject(s)
B-Lymphocytes , Ikaros Transcription Factor , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases , Proto-Oncogene Proteins c-akt , Signal Transduction , Ikaros Transcription Factor/genetics , Ikaros Transcription Factor/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/genetics , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/metabolism , Humans , B-Lymphocytes/metabolism , Cell Line, Tumor , Cell Proliferation , Animals , Mice
12.
Lung ; 202(2): 157-170, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38494528

ABSTRACT

PURPOSE: To investigate the transcriptome of human bronchial epithelial cells (HBEC) in response to serum from patients with different degrees of inflammation. METHODS: Serum from 19 COVID-19 patients obtained from the Hannover Unified Biobank was used. At the time of sampling, 5 patients had a WHO Clinical Progression Scale (WHO-CPS) score of 9 (severe illness). The remaining 14 patients had a WHO-CPS of below 9 (range 1-7), and lower illness. Multiplex immunoassay was used to assess serum inflammatory markers. The culture medium of HBEC was supplemented with 2% of the patient's serum, and the cells were cultured at 37 °C, 5% CO2 for 18 h. Subsequently, cellular RNA was used for RNA-Seq. RESULTS: Patients with scores below 9 had significantly lower albumin and serum levels of E-selectin, IL-8, and MCP-1 than patients with scores of 9. Principal component analysis based on 500 "core genes" of RNA-seq segregated cells into two subsets: exposed to serum from 4 (I) and 15 (II) patients. Cells from a subset (I) treated with serum from 4 patients with a score of 9 showed 5566 differentially expressed genes of which 2793 were up- and 2773 downregulated in comparison with cells of subset II treated with serum from 14 patients with scores between 1 and 7 and one with score = 9. In subset I cells, a higher expression of TLR4 and CXCL8 but a lower CDH1, ACE2, and HMOX1, and greater effects on genes involved in metabolic regulation, cytoskeletal organization, and kinase activity pathways were observed. CONCLUSION: This simple model could be useful to characterize patient serum and epithelial cell properties.


Subject(s)
Inflammation , Transcriptome , Humans , Inflammation/genetics , Inflammation/metabolism , Epithelial Cells/metabolism , Biomarkers/metabolism
13.
J Reprod Dev ; 70(2): 96-103, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38346725

ABSTRACT

Progesterone (P) and 17ß-estradiol (Eß) form the well-known hormone pair that regulates sperm capacitation. Here, we examined the regulatory effects of P and Eß on sperm hyperactivation in mice and evaluated the in vitro fertilization (IVF) success. Although P enhanced hyperactivation, Eß dose-dependently suppressed the P-enhanced hyperactivation. Moreover, P increased IVF success, whereas Eß suppressed the P-induced increase in IVF success in a dose-dependent manner. Thus, P and Eß competitively regulate hyperactivation and IVF success in mice. Since P and Eß concentrations generally change during the estrous cycle, sperm are speculated to capacitate in response to the oviductal environment and fertilize the oocyte.


Subject(s)
Estradiol , Progesterone , Humans , Female , Male , Animals , Mice , Progesterone/pharmacology , Estradiol/pharmacology , Semen , Spermatozoa/physiology , Fertilization in Vitro , Fertilization , Sperm Capacitation , Sperm Motility
14.
Proc Natl Acad Sci U S A ; 118(44)2021 11 02.
Article in English | MEDLINE | ID: mdl-34716265

ABSTRACT

Mammalian sperm migration within the complex and dynamic environment of the female reproductive tract toward the fertilization site requires navigational mechanisms, through which sperm respond to the tract environment and maintain the appropriate swimming behavior. In the oviduct (fallopian tube), sperm undergo a process called "hyperactivation," which involves switching from a nearly symmetrical, low-amplitude, and flagellar beating pattern to an asymmetrical, high-amplitude beating pattern that is required for fertilization in vivo. Here, exploring bovine sperm motion in high-aspect ratio microfluidic reservoirs as well as theoretical and computational modeling, we demonstrate that sperm hyperactivation, in response to pharmacological agonists, modulates sperm-sidewall interactions and thus navigation via physical boundaries. Prior to hyperactivation, sperm remained swimming along the sidewalls of the reservoirs; however, once hyperactivation caused the intrinsic curvature of sperm to exceed a critical value, swimming along the sidewalls was reduced. We further studied the effect of noise in the intrinsic curvature near the critical value and found that these nonthermal fluctuations yielded an interesting "Run-Stop" motion on the sidewall. Finally, we observed that hyperactivation produced a "pseudo-chemotaxis" behavior, in that sperm stayed longer within microfluidic chambers containing higher concentrations of hyperactivation agonists.


Subject(s)
Sperm Motility/physiology , Spermatozoa/metabolism , Spermatozoa/physiology , Animals , Cattle , Chemotaxis/physiology , Male , Mammals , Microfluidic Analytical Techniques/methods , Microfluidics , Signal Transduction/physiology , Sperm-Ovum Interactions/physiology
15.
Semin Cancer Biol ; 85: 69-94, 2022 10.
Article in English | MEDLINE | ID: mdl-34175443

ABSTRACT

Cancer is the second leading cause of human death globally. PI3K/Akt/mTOR signaling is one of the most frequently dysregulated signaling pathways observed in cancer patients that plays crucial roles in promoting tumor initiation, progression and therapy responses. This is largely due to that PI3K/Akt/mTOR signaling is indispensable for many cellular biological processes, including cell growth, metastasis, survival, metabolism, and others. As such, small molecule inhibitors targeting major kinase components of the PI3K/Akt/mTOR signaling pathway have drawn extensive attention and been developed and evaluated in preclinical models and clinical trials. Targeting a single kinase component within this signaling usually causes growth arrest rather than apoptosis associated with toxicity-induced adverse effects in patients. Combination therapies including PI3K/Akt/mTOR inhibitors show improved patient response and clinical outcome, albeit developed resistance has been reported. In this review, we focus on revealing the mechanisms leading to the hyperactivation of PI3K/Akt/mTOR signaling in cancer and summarizing efforts for developing PI3K/Akt/mTOR inhibitors as either mono-therapy or combination therapy in different cancer settings. We hope that this review will facilitate further understanding of the regulatory mechanisms governing dysregulation of PI3K/Akt/mTOR oncogenic signaling in cancer and provide insights into possible future directions for targeted therapeutic regimen for cancer treatment, by developing new agents, drug delivery systems, or combination regimen to target the PI3K/Akt/mTOR signaling pathway. This information will also provide effective patient stratification strategy to improve the patient response and clinical outcome for cancer patients with deregulated PI3K/Akt/mTOR signaling.


Subject(s)
Neoplasms , Proto-Oncogene Proteins c-akt , Humans , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors , Molecular Targeted Therapy , TOR Serine-Threonine Kinases/metabolism , Signal Transduction , Neoplasms/drug therapy , Neoplasms/genetics
16.
Curr Issues Mol Biol ; 45(9): 6995-7010, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37754226

ABSTRACT

After sperm enter the female reproductive tract, the physicochemical and biochemical microenvironment undergoes significant changes. In particular, the large changes in various ions encountered by sperm may alter the physiology of sperm, ultimately compromising capacitation and fertilization. Thus, the rapid response to environmental variations is vital for sperm functions. For example, Calcium, the most crucial ion for sperm functions, enters into sperm via Ca2+ permeable ion channels. The cation channel of sperm (CatSper) is a sperm-specific, pH-sensitive, and Ca2+-permeable ion channel. It is responsible for the predominant Ca2+ entry in mammalian sperm and is involved in nearly every event of sperm to acquire fertilizing capability. In addition, CatSper also serves as a pivotal polymodal chemosensor in mammalian sperm by responding to multiple chemical cues. Physiological chemicals (such as progesterone, prostaglandins, ß-defensins, and odorants) provoke Ca2+ entry into sperm by activating CatSper and thus triggering sperm functions. Additionally, synthetic and natural chemicals (such as medicines, endocrine disrupting chemicals, drugs of abuse, and antioxidants) affect sperm functions by regulating CatSper-dependent Ca2+ signaling. Therefore, understanding the interactions between CatSper and extracellular ligands sheds light on the mechanisms underlying male infertility and offers innovative diagnostic and treatment approaches. This underscores the importance of CatSper as a crucial regulatory target in male reproduction, linking sperm function with the extracellular environment. In conclusion, this review comprehensively summarizes the relevant studies describing the environmental factors that affect CatSper in humans and rodents.

17.
Mol Reprod Dev ; 90(3): 129-140, 2023 03.
Article in English | MEDLINE | ID: mdl-36682071

ABSTRACT

Potassium channels play essential roles in the regulation of male fertility. However, potassium channels mediating K+ currents in human sperm (IKSper ) remain controversial. Besides SLO3, the SLO1 potassium channel is a potential candidate for human sperm KSper. This study intends to elucidate the function of SLO1 potassium channel during human sperm capacitation. Human sperm were treated with iberiotoxin (IbTX, a SLO1 specific inhibitor) and clofilium (SLO3 inhibitor) separately or simultaneously during in vitro capacitation. A computer-assisted sperm analyzer was used to assess sperm motility. The sperm acrosome reaction (AR) was analyzed using fluorescein isothiocyanate-conjugated Pisum sativum agglutinin staining. Sperm protein tyrosine phosphorylation was studied using western blotting. Intracellular Ca2+ , K+ , Cl- , and pH were analyzed using ion fluorescence probes. Independent inhibition with IbTX or clofilium decreased the sperm hyperactivation, AR, and protein tyrosine phosphorylation, and was accompanied by an increase in [K+ ]i , [Cl- ]i , and pHi , but a decrease in [Ca2+ ]i . Simultaneously inhibition with IbTX and clofilium lower sperm hyperactivation and AR more than independent inhibition. The increase in [K+ ]i , [Cl- ]i , and pHi , and the decrease in [Ca2+ ]i were more pronounced. This study suggested that the SLO1 potassium channel may have synergic roles with SLO3 during human sperm capacitation.


Subject(s)
Acrosome Reaction , Sperm Capacitation , Humans , Male , Sperm Capacitation/physiology , Acrosome Reaction/physiology , Semen/metabolism , Sperm Motility , Spermatozoa/metabolism , Potassium Channels/metabolism , Homeostasis
18.
J Reprod Dev ; 69(3): 147-153, 2023 Jun 06.
Article in English | MEDLINE | ID: mdl-36935121

ABSTRACT

Progesterone (P) enhances spermatozoal hyperactivation, a capacitation event. Hyperactivation is associated with successful in vitro fertilization (IVF). In this study, we examined the effects of P on hyperactivation and IVF in mice. P enhanced spermatozoal hyperactivation and increased IVF success rate in a dose-dependent manner. Moreover, P affected spermatozoal hyperactivation and IVF through the membrane progesterone receptor of the spermatozoal head. These results show that P regulates spermatozoal capacitation and fertilization in mice. The concentration of P changes during the estrous cycle, indicating that spermatozoa are capacitated in response to the oviductal environment and subsequently fertilize the oocyte.


Subject(s)
Progesterone , Sperm Capacitation , Male , Animals , Mice , Progesterone/pharmacology , Progesterone/physiology , Semen , Fertilization in Vitro/methods , Spermatozoa/physiology , Fertilization , Sperm Motility
19.
J Reprod Dev ; 69(5): 279-290, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37690839

ABSTRACT

Progesterone (P) is a well-known enhancer of hyperactivation which is associated with the success of in vitro fertilization (IVF). In this study, we examined whether P-enhanced hyperactivation affected IVF success in rats. When rat spermatozoa were exposed to 10, 20, and 40 ng/ml P, 20 ng/ml P enhanced hyperactivation via the membrane progesterone receptor. In addition, the enhancement of hyperactivation by 20 ng/ml P was regulated by phospholipase C, transmembrane adenylate cyclase, and protein kinase A. However, 20 ng/ml P did not affect IVF success. These results suggest that 20 ng/ml P enhances rat spermatozoal hyperactivation through non-genomic pathways. Because the concentration of P changes during the estrous cycle, it seems that rat spermatozoa are hyperactivated in response to the oviductal environment. However, the effect of 20 ng/ml P does not seem to fully capacitate spermatozoa.


Subject(s)
Progesterone , Sperm Capacitation , Male , Humans , Female , Rats , Animals , Progesterone/metabolism , Spermatozoa/metabolism , Fertilization in Vitro , Oviducts , Sperm Motility
20.
Int J Mol Sci ; 24(22)2023 Nov 08.
Article in English | MEDLINE | ID: mdl-38003282

ABSTRACT

This study was designed to analyze changes in the spermatozoa of three species of Phodopus hamsters incubated under different conditions. Cauda epididymal sperm were incubated for 4 h in modified Tyrode's medium containing albumin, lactate, pyruvate, and Hepes (mTALP-H), in the same medium with the addition of bicarbonate (mTALP-BH), or with bicarbonate and 20 ng/mL of progesterone (mTALP-BH+P4). Media with bicarbonate are believed to promote capacitation in rodent species. Sperm motility, viability, capacitation patterns, and kinematics were assessed at different times. Capacitation in live cells was quantified after staining with Hoechst 33258 and chlortetracycline. Patterns believed to correspond to non-capacitated cells (F pattern), capacitated, acrosome-intact cells (B pattern), and acrosome-reacted cells (AR pattern) were recognized. Kinematics were examined via computer-assisted sperm analysis (CASA). The results showed a decrease in total motility in all three species in different media, with a sharp decrease in progressive motility in bicarbonate-containing media (without or with progesterone), suggesting hyperactivated motion. However, none of the other signs of hyperactivation described in rodents (i.e., decrease in STR or LIN, together with an increase in ALH) were observed. F pattern cells diminished with time in all media and were generally lower in P. roborovskii and higher in P. campbelli. B pattern cells increased in mTALP-BH media in all species. Progesterone did not enhance the percentage of B pattern cells. Finally, AR pattern cells increased in all species incubated in different media, showing the highest percentage in P. roborovskii and the lowest in P. campbelli. Comparisons between media revealed that there were higher percentages of F pattern cells and lower percentages of B pattern cells over time in medium without bicarbonate (mTALP-H) in comparison to media containing bicarbonate (mTALP-BH; mTALP-BH+P4). Overall, changes consistent with the acquisition of capacitation and development of hyperactivated motility were found; however, further studies are required to better characterize media necessary to support the pathways involved in these processes in Phodopus species.


Subject(s)
Phodopus , Progesterone , Cricetinae , Animals , Male , Bicarbonates/pharmacology , Sperm Capacitation/physiology , Biomechanical Phenomena , Sperm Motility/physiology , Semen , Spermatozoa/physiology , Albumins , Lactic Acid , Pyruvic Acid
SELECTION OF CITATIONS
SEARCH DETAIL