ABSTRACT
BACKGROUND: The infection of the liver by Plasmodium parasites is an obligatory step leading to malaria disease. Following hepatocyte invasion, parasites differentiate into replicative liver stage schizonts and, in the case of Plasmodium species causing relapsing malaria, into hypnozoites that can lie dormant for extended periods of time before activating. The liver stages of Plasmodium remain elusive because of technical challenges, including low infection rate. This has been hindering experimentations with well-established technologies, such as electron microscopy. A deeper understanding of hypnozoite biology could prove essential in the development of radical cure therapeutics against malaria. RESULTS: The liver stages of the rodent parasite Plasmodium berghei, causing non-relapsing malaria, and the simian parasite Plasmodium cynomolgi, causing relapsing malaria, were characterized in human Huh7 cells or primary non-human primate hepatocytes using Correlative Light-Electron Microscopy (CLEM). Specifically, CLEM approaches that rely on GFP-expressing parasites (GFP-CLEM) or on an immunofluorescence assay (IFA-CLEM) were used for imaging liver stages. The results from P. berghei showed that host and parasite organelles can be identified and imaged at high resolution using both CLEM approaches. While IFA-CLEM was associated with more pronounced extraction of cellular content, samples' features were generally well preserved. Using IFA-CLEM, a collection of micrographs was acquired for P. cynomolgi liver stage schizonts and hypnozoites, demonstrating the potential of this approach for characterizing the liver stages of Plasmodium species causing relapsing malaria. CONCLUSIONS: A CLEM approach that does not rely on parasites expressing genetically encoded tags was developed, therefore suitable for imaging the liver stages of Plasmodium species that lack established protocols to perform genetic engineering. This study also provides a dataset that characterizes the ultrastructural features of liver stage schizonts and hypnozoites from the simian parasite species P. cynomolgi.
Subject(s)
Malaria , Parasites , Animals , Humans , Liver/parasitology , Malaria/parasitology , Plasmodium berghei , Microscopy, ElectronABSTRACT
Latent liver stages termed hypnozoites cause relapsing Plasmodium vivax malaria infection and represent a major obstacle in the goal of malaria elimination. Hypnozoites are clinically undetectable, and presently, there are no biomarkers of this persistent parasite reservoir in the human liver. Here, we have identified parasite and human proteins associated with extracellular vesicles (EVs) secreted from in vivo infections exclusively containing hypnozoites. We used P. vivax-infected human liver-chimeric (huHEP) FRG KO mice treated with the schizonticidal experimental drug MMV048 as hypnozoite infection model. Immunofluorescence-based quantification of P. vivax liver forms showed that MMV048 removed schizonts from chimeric mice livers. Proteomic analysis of EVs derived from FRG huHEP mice showed that human EV cargo from infected FRG huHEP mice contain inflammation markers associated with active schizont replication and identified 66 P. vivax proteins. To identify hypnozoite-specific proteins associated with EVs, we mined the proteome data from MMV048-treated mice and performed an analysis involving intragroup and intergroup comparisons across all experimental conditions followed by a peptide compatibility analysis with predicted spectra to warrant robust identification. Only one protein fulfilled this stringent top-down selection, a putative filamin domain-containing protein. This study sets the stage to unveil biological features of human liver infections and identify biomarkers of hypnozoite infection associated with EVs.
Subject(s)
Extracellular Vesicles , Malaria, Vivax , Parasites , Humans , Mice , Animals , Malaria, Vivax/drug therapy , Malaria, Vivax/parasitology , Plasmodium vivax , Proteomics , Proteome , Filamins , Liver , Biomarkers , Mass SpectrometryABSTRACT
BACKGROUND: The zoonotic simian parasite Plasmodium cynomolgi develops into replicating schizonts and dormant hypnozoites during the infection of hepatocytes and is used as a model organism to study relapsing malaria. The transcriptional profiling of P. cynomolgi liver stages was previously reported and revealed many important biological features of the parasite but left out the host response to malaria infection. METHODS: Previously published RNA sequencing data were used to quantify the expression of host genes in rhesus macaque hepatocytes infected with P. cynomolgi in comparison to either cells from uninfected samples or uninfected bystander cells. RESULTS: Although the dataset could not be used to resolve the transcriptional profile of hypnozoite-infected hepatocytes, it provided a snapshot of the host response to liver stage schizonts at 9-10 day post-infection and identified specific host pathways that are modulated during the exo-erythrocytic stage of P. cynomolgi. CONCLUSIONS: This study constitutes a valuable resource characterizing the hepatocyte response to P. cynomolgi infection and provides a framework to build on future research that aims at understanding hepatocyte-parasite interactions during relapsing malaria infection.
Subject(s)
Malaria , Parasites , Plasmodium cynomolgi , Animals , Plasmodium cynomolgi/genetics , Macaca mulatta/parasitology , Hepatocytes/parasitology , Malaria/parasitology , Liver/parasitologyABSTRACT
BACKGROUND: Malaria is ranked as the leading communicable disease in Ethiopia, where Plasmodium falciparum and Plasmodium vivax are co-endemic. The incidence of P. vivax is usually considered to be less seasonal than P. falciparum. Clinical cases of symptomatic P. falciparum exhibit notable seasonal variation, driven by rainfall-dependent variation in the abundance of Anopheles mosquitoes. A similar peak of clinical cases of P. vivax is usually observed during the rainy season. However, the ability of P. vivax to relapse causing new blood-stage infections weeks to months after an infectious mosquito bite can lead to substantial differences in seasonal patterns of clinical cases. These cannot be detected with currently available diagnostic tools and are not cleared upon treatment with routinely administered anti-malarial drugs. METHODS: A health- facility based cross-sectional study was conducted in Adama malaria diagnostic centre from May 2015 to April 2016. Finger-prick blood samples were collected for thin and thick blood film preparation from participants seeking treatment for suspected cases of febrile malaria. Informed consent was obtained from each study participant or their guardians. Seasonal patterns in malaria cases were analysed using statistical models, identifying the peaks in cases, and the seasonally varying proportion of P. vivax cases attributable to relapses. RESULTS: The proportion of patients with malaria detectable by light microscopy was 36.1% (1141/3161) of which P. vivax, P. falciparum, and mixed infections accounted for 71.4, 25.8 and 2.8%, respectively. Of the febrile patients diagnosed, 2134 (67.5%) were males and 1919 (60.7%) were urban residents. The model identified a primary peak in P. falciparum and P. vivax cases from August to October, as well as a secondary peak of P. vivax cases from February to April attributable to cases arising from relapses. During the secondary peak of P. vivax cases approximately 77% (95% CrI 68, 84%) of cases are estimated to be attributable to relapses. During the primary peak from August to October, approximately 40% (95% CrI 29, 57%) of cases are estimated to be attributable to relapses. DISCUSSION: It is not possible to diagnose whether a P. vivax case has been caused by blood-stage infection from a mosquito bite or a relapse. However, differences in seasonal patterns of P. falciparum and P. vivax cases can be used to estimate the population-level proportion of P. vivax cases attributable to relapses. These observations have important implications for the epidemiological assessment of vivax malaria, and initiating therapy that is effective against both blood stages and relapses.
Subject(s)
Malaria, Vivax/epidemiology , Plasmodium vivax/physiology , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Cross-Sectional Studies , Ethiopia/epidemiology , Female , Humans , Infant , Infant, Newborn , Malaria, Vivax/parasitology , Male , Middle Aged , Recurrence , Seasons , Young AdultABSTRACT
Malaria recurrences after an initially successful therapy and malarial fever occurring a long time after infection are well-known problems in malariology. Currently, two distinct types of malaria recurrences are defined: recrudescence and relapse. A recrudescence is thought to originate from circulating Plasmodium blood stages which do not cause fever before a certain level of a microscopically detectable parasitemia is reached. Contrary, a relapse is thought to originate from quiescent intracellular hepatic parasite stages called hypnozoites. Recrudescences would typically occur in infections due to Plasmodium falciparum. Plasmodium knowlesi, and Plasmodium malariae, whereas relapses would be caused exclusively by Plasmodium vivax and Plasmodium ovale. This schematic view is, however, insufficiently supported by experimental evidence. For instance, hypnozoites of P. ovale have never been experimentally documented. On the other hand, the nonfinding of P. malariae hypnozoites turned into the proof for the nonexistence of P. malariae hypnozoites. Clinical relapse-type recurrences have been observed in both P. ovale and P. malariae infections, and decade-long incubation times have also been reported in P. falciparum infections. We propose a gradual hypothesis in accordance with the continuity concept of biological evolution: both, relapse and recrudescence may be potentially caused by all Plasmodium spp. We hypothesize that the difference between the various Plasmodium spp. is quantitative rather than qualitative: there are Plasmodium spp. which frequently cause relapses such as P. vivax, particularly the P.v. Chesson strain, species which cause relapses less frequently, such as P. ovale and sometimes P. malariae, and species which may exceptionally cause relapses such as P. falciparum. All species may cause recrudescences. As clinical consequences, we propose that 8-aminquinolines may be considered in a relapse-type recrudescence regardless of the causal Plasmodium sp., whereas primaquine relapse prevention might not be routinely indicated in malaria due to P. ovale.
Subject(s)
Antimalarials/therapeutic use , Malaria/veterinary , Plasmodium/physiology , Aminoquinolines/therapeutic use , Humans , Liver/parasitology , Malaria/drug therapy , Malaria/parasitology , Parasitemia , Plasmodium/drug effects , Plasmodium falciparum/drug effects , Plasmodium falciparum/physiology , Plasmodium knowlesi/drug effects , Plasmodium knowlesi/physiology , Plasmodium malariae/drug effects , Plasmodium malariae/physiology , Plasmodium ovale/drug effects , Plasmodium ovale/physiology , Plasmodium vivax/drug effects , Plasmodium vivax/physiology , Primaquine/therapeutic use , Recurrence , Species SpecificityABSTRACT
Plasmodium vivax is geographically the most widely dispersed human malaria parasite species. It has shown resilience and a great deal of adaptability. Genomic studies suggest that P. vivax originated from Asia or Africa and moved to the rest of the world. Although P. vivax is evolutionarily an older species than Plasmodium falciparum, its biology, transmission, pathology, and control still require better elucidation. P. vivax poses problems for malaria elimination because of the ability of a single primary infection to produce multiple relapses over months and years. P. vivax malaria elimination program needs early diagnosis, and prompt and complete radical treatment, which is challenging, to simultaneously exterminate the circulating parasites and dormant hypnozoites lodged in the hepatocytes of the host liver. As prompt surveillance and effective treatments are rolled out, preventing primaquine toxicity in the patients having glucose-6-phosphate dehydrogenase (G6PD) deficiency should be a priority for the vivax elimination program. This review sheds light on the burden of P. vivax, changing epidemiological patterns, the hurdles in elimination efforts, and the essential tools needed not just in India but globally. These tools encompass innovative treatments for eliminating dormant parasites, coping with evolving drug resistance, and the development of potential vaccines against the parasite.
Subject(s)
Malaria, Vivax , Malaria , Humans , Malaria, Vivax/epidemiology , Malaria, Vivax/prevention & control , India/epidemiology , Asia , AfricaABSTRACT
Plasmodium vivax is the most geographically widespread human malaria parasite. Global malaria efforts have been less successful at reducing the burden of P. vivax compared to P. falciparum, owing to the unique biology and related treatment complexity of P. vivax. As a result, P. vivax is now the dominant malaria parasite throughout the Asia-Pacific and South America causing up to 14 million clinical cases every year and is considered a major obstacle to malaria elimination. Key features circumventing existing malaria control tools are the transmissibility of asymptomatic, low-density circulating infections and reservoirs of persistent dormant liver stages (hypnozoites) that are undetectable but reactivate to cause relapsing infections and sustain transmission. In this review we summarise the new knowledge shaping our understanding of the global epidemiology of P. vivax infections, highlighting the challenges for elimination and the tools that will be required achieve this.
Subject(s)
Disease Reservoirs/parasitology , Malaria, Vivax , Plasmodium vivax/physiology , Humans , Liver/parasitology , Malaria, Falciparum/epidemiology , Malaria, Falciparum/prevention & control , Malaria, Vivax/epidemiology , Malaria, Vivax/prevention & control , Malaria, Vivax/transmission , Plasmodium vivax/isolation & purificationABSTRACT
Malaria-causing Plasmodium vivax parasites can linger in the human liver for weeks to years and reactivate to cause recurrent blood-stage infection. Although they are an important target for malaria eradication, little is known about the molecular features of replicative and non-replicative intracellular liver-stage parasites and their host cell dependence. Here, we leverage a bioengineered human microliver platform to culture patient-derived P. vivax parasites for transcriptional profiling. Coupling enrichment strategies with bulk and single-cell analyses, we capture both parasite and host transcripts in individual hepatocytes throughout the course of infection. We define host- and state-dependent transcriptional signatures and identify unappreciated populations of replicative and non-replicative parasites that share features with sexual transmissive forms. We find that infection suppresses the transcription of key hepatocyte function genes and elicits an anti-parasite innate immune response. Our work provides a foundation for understanding host-parasite interactions and reveals insights into the biology of P. vivax dormancy and transmission.
Subject(s)
Malaria, Vivax , Malaria , Hepatocytes/parasitology , Humans , Liver/parasitology , Malaria/parasitology , Malaria, Vivax/parasitology , Plasmodium vivax/geneticsABSTRACT
Malaria hypnozoites are dormant parasite stages that reside inside hepatocytes. Upon activation, these stages can resume growth, causing new episodes of blood stage malaria infection. This chapter describes a fast and sensitive protocol for the detection of bioluminescent (BL) hypnozoites in vitro. Using transgenic Plasmodium cynomolgi parasites that differentially express the BL reporter proteins firefly luciferase and the ultrabright NanoLuc, hypnozoites can be distinguished from liver stage schizonts. This robust method sets the stage for implementation in large-scale drug screening platforms with the aim to find new compounds that eliminate hypnozoites.
Subject(s)
Malaria , Plasmodium cynomolgi , Hepatocytes , Humans , Luciferases/genetics , Malaria/diagnosis , Malaria/parasitology , Plasmodium cynomolgi/physiology , RecurrenceABSTRACT
Many standard-textbook population-genetic results apply to a wide range of species. Sometimes, however, population-genetic models and principles need to be tailored to a particular species. This is particularly true for malaria, which next to tuberculosis and HIV/AIDS ranks among the economically most relevant infectious diseases. Importantly, malaria is not one disease-five human-pathogenic species of Plasmodium exist. P. falciparum is not only the most severe form of human malaria, but it also causes the majority of infections. The second most relevant species, P. vivax, is already considered a neglected disease in several endemic areas. All human-pathogenic species have distinct characteristics that are not only crucial for control and eradication efforts, but also for the population-genetics of the disease. This is particularly true in the context of selection. Namely, fitness is determined by so-called fitness components, which are determined by the parasites live-history, which differs between malaria species. The presence of hypnozoites, i.e., dormant liver-stage parasites, which can cause disease relapses, is a distinct feature of P. vivax and P. ovale sp. In P. malariae inactivated blood-stage parasites can cause a recrudescence years after the infection was clinically cured. To properly describe population-genetic processes, such as the spread of anti-malarial drug resistance, these features must be accounted for appropriately. Here, we introduce and extend a population-genetic framework for the evolutionary dynamics of malaria, which applies to all human-pathogenic malaria species. The model focuses on, but is not limited to, the spread of drug resistance. The framework elucidates how the presence of dormant liver stage or inactivated blood stage parasites that act like seed banks delay evolutionary processes. It is shown that, contrary to standard population-genetic theory, the process of selection and recombination cannot be decoupled in malaria. Furthermore, we discuss the connection between haplotype frequencies, haplotype prevalence, transmission dynamics, and relapses or recrudescence in malaria.
ABSTRACT
Plasmodium is a genus of apicomplexan parasites which replicate in the liver before causing malaria. Plasmodium vivax can also persist in the liver as dormant hypnozoites and cause clinical relapse upon activation, but the molecular mechanisms leading to activation have yet to be discovered. In this study, we use high-resolution microscopy to characterize temporal changes of the P. vivax liver stage tubovesicular network (TVN), a parasitophorous vacuole membrane (PVM)-derived network within the host cytosol. We observe extended membrane clusters, tubules, and TVN-derived vesicles present throughout P. vivax liver stage development. Additionally, we demonstrate an unexpected presence of the TVN in hypnozoites and observe some association of this network to host nuclei. We also reveal that the host water and solute channel aquaporin-3 (AQP3) associates with TVN-derived vesicles and extended membrane clusters. AQP3 has been previously shown to localize to the PVM of P. vivax hypnozoites and liver schizonts but has not yet been shown in association to the TVN. Our results highlight host-parasite interactions occur in both dormant and replicating liver stage P. vivax forms and implicate AQP3 function during this time. Together, these findings enhance our understanding of P. vivax liver stage biology through characterization of the TVN with an emphasis on the presence of this network in dormant hypnozoites.
Subject(s)
Malaria, Vivax , Plasmodium , Animals , Liver , Plasmodium vivax , SchizontsABSTRACT
The phenomenon of relapsing malaria has been recognised for centuries. It is caused in humans by the parasite species Plasmodium vivax and Plasmodium ovale, which can arrest growth at an early, asymptomatic stage as hypnozoites inside liver cells. These dormant parasites can remain quiescent for months or years, then reactivate causing symptomatic malaria. The dynamics of hypnozoite dormancy and reactivation are well documented but the molecular basis remains a complete mystery. Here, I observe that the process has striking parallels with plant vernalisation, whereby plants remain dormant through the winter before flowering in spring. Vernalisation is thoroughly studied in several plant species and its mechanisms are known in exquisite detail. Vernalisation may thus provide a useful framework for interrogating hypnozoite biology.
Subject(s)
Life Cycle Stages/physiology , Plant Dormancy/physiology , Plasmodium ovale/physiology , Plasmodium vivax/physiology , Animals , Humans , Malaria/parasitologyABSTRACT
Hypnozoites are dormant liver-stage parasites unique to relapsing malarial species, including the important human pathogen Plasmodium vivax, and pose a barrier to the elimination of malaria. Little is known regarding the biology of these stages, largely due to their inaccessible location. Hypnozoites can be cultured in vitro but these cultures always consist of a mixture of hepatocytes, developing forms, and hypnozoites. Here, using a GFP-expressing line of the hypnozoite model parasite Plasmodium cynomolgi, we describe a protocol for the FACS-based isolation of malarial hypnozoites. The purified hypnozoites can be used for a range of '-omics' studies to dissect the biology of this cryptic stage of the malarial life cycle.
ABSTRACT
Control of malaria caused by Plasmodium vivax can be improved by the discovery and development of novel drugs against the parasite's liver stage, which includes relapse-causing hypnozoites. Several recent reports describe breakthroughs in the culture of the P. vivax liver stage in 384-well microtiter plates, with the goal of enabling a hypnozoite-focused drug screen. Herein we describe assay details, protocol developments, and different assay formats to interrogate the chemical sensitivity of the P. vivax liver stage in one such medium-throughput platform. The general assay protocol includes seeding of primary human hepatocytes which are infected with P. vivax sporozoites generated from the feeding of Anopheles dirus mosquitoes on patient isolate bloodmeals. This protocol is unique in that, after source drug plates are supplied, all culture-work steps have been optimized to preclude the need for automated liquid handling, thereby allowing the assay to be performed within resource-limited laboratories in malaria-endemic countries. Throughput is enhanced as complex culture methods, such as extracellular matrix overlays, multiple cell types in co-culture, or hepatic spheroids, are excluded as the workflow consists entirely of routine culture methods for adherent cells. Furthermore, installation of a high-content imager at the study site enables assay data to be read and transmitted with minimal logistical delays. Herein we detail distinct assay improvements which increase data quality, provide a means to limit the confounding effect of hepatic metabolism on assay data, and detect activity of compounds with a slow-clearance phenotype. Graphical abstract: Overview of P. vivax liver stage screening assay performed at the Institute Pasteur of Cambodia.
ABSTRACT
Human liver is the primary and obligatory site for malaria infection where sporozoites invade host hepatocytes. Malaria hepatic stages are asymptomatic and represent an attractive target for development of anti-malarial interventions and vaccines. However, owing to lack of robust and reproducible in vitro culture system, it is difficult to target and study this imperative malaria liver stage. Here, we describe a procedure that allow cultivation and visualization of malaria hepatic stages including dormant hypnozoites using primary simian hepatocytes. This method enables sensitive and quantitative assessment of different hepatic stages in vitro.
ABSTRACT
Relapses of Plasmodium dormant liver hypnozoites compromise malaria eradication efforts. New radical cure drugs are urgently needed, yet the vast gap in knowledge of hypnozoite biology impedes drug discovery. We previously unraveled the transcriptome of 6 to 7 day-old P. cynomolgi liver stages, highlighting pathways associated with hypnozoite dormancy (Voorberg-van der Wel et al., 2017). We now extend these findings by transcriptome profiling of 9 to 10 day-old liver stage parasites, thus revealing for the first time the maturation of the dormant stage over time. Although progression of dormancy leads to a 10-fold decrease in transcription and expression of only 840 genes, including genes associated with housekeeping functions, we show that pathways involved in quiescence, energy metabolism and maintenance of genome integrity remain the prevalent pathways active in mature hypnozoites.
Subject(s)
Gene Expression Profiling , Liver/parasitology , Plasmodium cynomolgi/growth & development , Plasmodium cynomolgi/genetics , Animals , Primates , Time FactorsABSTRACT
Plasmodium liver hypnozoites, which cause disease relapse, are widely considered to be the last barrier towards malaria eradication. The biology of this quiescent form of the parasite is poorly understood which hinders drug discovery. We report a comparative transcriptomic dataset of replicating liver schizonts and dormant hypnozoites of the relapsing parasite Plasmodium cynomolgi. Hypnozoites express only 34% of Plasmodium physiological pathways, while 91% are expressed in replicating schizonts. Few known malaria drug targets are expressed in quiescent parasites, but pathways involved in microbial dormancy, maintenance of genome integrity and ATP homeostasis were robustly expressed. Several transcripts encoding heavy metal transporters were expressed in hypnozoites and the copper chelator neocuproine was cidal to all liver stage parasites. This transcriptomic dataset is a valuable resource for the discovery of vaccines and effective treatments to combat vivax malaria.