ABSTRACT
Over the last 100 years, high-altitude researchers have amassed a comprehensive understanding of the global cardiac responses to acute, prolonged and lifelong hypoxia. When lowlanders are exposed to hypoxia, the drop in arterial oxygen content demands an increase in cardiac output, which is facilitated by an elevated heart rate at the same time as ventricular volumes are maintained. As exposure is prolonged, haemoconcentration restores arterial oxygen content, whereas left ventricular filling and stroke volume are lowered as a result of a combination of reduced blood volume and hypoxic pulmonary vasoconstriction. Populations native to high-altitude, such as the Sherpa in Asia, exhibit unique lifelong or generational adaptations to hypoxia. For example, they have smaller left ventricular volumes compared to lowlanders despite having larger total blood volume. More recent investigations have begun to explore the mechanisms underlying such adaptive responses by combining novel imaging techniques with interventions that manipulate cardiac preload, afterload, and/or contractility. This work has revealed the contributions and interactions of (i) plasma volume constriction; (ii) sympathoexcitation; and (iii) hypoxic pulmonary vasoconstriction with respect to altering cardiac loading, or otherwise preserving or enhancing biventricular systolic and diastolic function even amongst high altitude natives with excessive erythrocytosis. Despite these advances, various areas of investigation remain understudied, including potential sex-related differences in response to high altitude. Collectively, the available evidence supports the conclusion that the human heart successfully adapts to hypoxia over the short- and long-term, without signs of myocardial dysfunction in healthy humans, except in very rare cases of maladaptation.
Subject(s)
Acclimatization , Altitude , Acclimatization/physiology , Adaptation, Physiological , Humans , Hypoxia , Oxygen/physiologyABSTRACT
Pulmonary hypertension is a serious clinical condition characterised by increased pulmonary arterial pressure. This can lead to right ventricular failure which can be fatal. Connexins are gap junction-forming membrane proteins which serve to exchange small molecules of less than 1 kD between cells. Connexins can also form hemi-channels connecting the intracellular and extracellular environments. Hemi-channels can mediate adenosine triphosphate release and are involved in autocrine and paracrine signalling. Recently, our group and others have identified evidence that connexin-mediated signalling may be involved in the pathogenesis of pulmonary hypertension. In this review, we discuss the evidence that dysregulated connexin-mediated signalling is associated with pulmonary hypertension.
Subject(s)
Connexins/metabolism , Hypertension, Pulmonary/metabolism , Signal Transduction , Animals , Disease Models, Animal , Gap Junctions/metabolism , Humans , Hypertension, Pulmonary/pathologyABSTRACT
OBJECTIVE: Endothelium-independent coronary vasoconstriction induced by continuous hypoxia contributes to the development of ischemic heart diseases. Acute elevation of homocysteine (Hcy) has a potent of vasodilation. The present study aims to investigate the role of Hcy in endothelium-independent hypoxic coronary vasoconstriction and its underlying mechanisms. METHODS AND RESULTS: Vessel tension of isolated porcine coronary arteries was measured by organ chamber study and the protein expression were detected by western blot. A sustained contraction of porcine coronary artery was induced when exposed to prolonged hypoxia for more than 15 min, which was significantly reduced by Hcy in a dose-dependent manner but not affected by cysteine or N-acetyl-l-cysteine. Phosphorylated myosin light chain (MLC-p) at Ser19 was decreased when exposure to hypoxia for 15 min, and could be reversed by prolonged hypoxia for 30 and 60 min. The recovery of MLC-p at Ser19 by hypoxia for more than 30 min could be abolished by Hcy. The protein levels of phosphorylated Akt at Ser473 and phosphorylated P85 at Tyr508 were decreased by Hcy in normoxia, and were also reduced exposure to hypoxia for 15 min and then augmented by prolonged hypoxia for more than 30 min, which could be prevented by Hcy. The protein level of P110α was not affected by Hcy or prolonged hypoxia. CONCLUSIONS: This study demonstrates that Hcy can ameliorate the endothelium-independent hypoxic coronary vasoconstriction, in which the inhibition of PI3K/Akt signaling pathway may be involved.
Subject(s)
Class Ia Phosphatidylinositol 3-Kinase/metabolism , Coronary Vessels/drug effects , Homocysteine/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Vasoconstriction/drug effects , Animals , Blotting, Western , Coronary Vessels/metabolism , Coronary Vessels/physiology , Dose-Response Relationship, Drug , Endothelium, Vascular/physiology , Hypoxia , In Vitro Techniques , Myosin Light Chains/metabolism , Phosphorylation/drug effects , Protein Subunits/metabolism , Serine/metabolism , Swine , Time Factors , Tyrosine/metabolismABSTRACT
We previously reported that hypoxia augments α-adrenergic contraction (hypoxic vasoconstriction, HVC) of skeletal arteries in rats. The underlying mechanism may involve hypoxic inhibition of endothelial nitric oxide synthase (eNOS) expressed in skeletal arterial myocytes (16). To further explore the novel role of muscular eNOS in the skeletal artery, we compared HVC in femoral arteries (FAs) from eNOS knockout (KO) mice with that from wild-type (WT) and heterozygous (HZ) mice. Immunohistochemical assays revealed that, in addition to endothelia, eNOS is also expressed in the medial layer of FAs, albeit at a much lower level. However, the medial eNOS signal was not evident in HZ FAs, despite strong expression in the endothelium; similar observations were made in WT carotid arteries (CAs). The amplitude of contraction induced by 1 µM phenylephrine (PhE) was greater in HZ than in WT FAs. Hypoxia (3% Po2) significantly augmented PhE-induced contraction in WT FAs but not in HZ or KO FAs. No HVC was observed in PhE-pretreated WT CAs. The NOS inhibitor nitro-l-arginine methyl ester (0.1 mM) also augmented PhE contraction in endothelium-denuded WT FAs but not in WT CAs. Inhibitors specific to neuronal NOS and inducible NOS did not augment PhE-induced contraction of WT FAs. NADPH oxidase 4 (NOX4) inhibitor (GKT137831, 5 µM), but not NOX2 inhibitor (apocynin, 100 µM), suppressed HVC. Consistent with the role of reactive oxygen species (ROS), HVC was also inhibited by pretreatment with tiron or polyethylene glycol-catalase. Taken together, these data suggest that the eNOS expressed in smooth muscle cells in FAs attenuates α-adrenergic vasoconstriction; this suppression is alleviated under hypoxia, which potentiates vasoconstriction in a NOX4/ROS-dependent mechanism.
Subject(s)
Carotid Arteries/metabolism , Endothelium/physiology , Femoral Artery/metabolism , Muscle, Smooth, Vascular/metabolism , Nitric Oxide Synthase Type III/metabolism , Vasoconstriction/physiology , Animals , Arginine/analogs & derivatives , Arginine/metabolism , Carotid Arteries/drug effects , Endothelium/drug effects , Endothelium/metabolism , Enzyme Inhibitors/pharmacology , Femoral Artery/drug effects , Femoral Artery/physiology , Mice , Mice, Knockout , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/physiology , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/physiology , NADPH Oxidase 4 , NADPH Oxidases/metabolism , Phenylephrine/pharmacology , Reactive Oxygen Species/metabolism , Vasoconstriction/drug effectsABSTRACT
PURPOSE: The aim of this review is to discuss hypoxia-induced pulmonary hypertension (PH) and the role of microRNAs (miRNAs). BACKGROUND: Acute global hypoxia causes pulmonary vasoconstriction and increased pulmonary arterial blood pressure. Chronic exposure to sustained or intermittent hypoxia as in high altitude residents, chronic obstructive lung disease and sleep-disordered breathing can lead to pulmonary hypertension (PH) and right ventricular dysfunction. The development of PH is a poor prognostic sign in these patients that affects both quality of life and mortality. The mechanism of PH due to hypoxia has not been fully established. However, its pathophenotype is similar to idiopathic pulmonary arterial hypertension in the form of vascular cell proliferation and aberrant vascular remodeling. MicroRNAs (miRNAs) are small non-coding RNA molecules that negatively regulate gene expression, therefore potentially regulating a host of cellular signaling pathways. Several miRNAs have been identified to be involved in hypoxia models of PH in animals, in patients with PH, congestive heart failure and myocardial infarction. RESULTS: MiRNAs have been mechanistically linked to the control of a wide range of cellular responses-hypoxia, TGF-ß signaling and inflammatory pathways-known to influence normal developmental physiology as well as regulating pulmonary arterial smooth muscle cell and endothelial cell phenotypes and their influence on pulmonary remodeling in the setting of hypoxia and pulmonary arterial hypertension (PAH). The blood levels of these miRNAs correlate with disease severity and prognosis. CONCLUSIONS: Research on the role of these potential biomarkers will provide insight into the pathogenesis of PH and right heart failure and opportunities in therapeutics.
Subject(s)
Hypertension, Pulmonary/genetics , Hypoxia/genetics , MicroRNAs/genetics , Humans , Lung/blood supply , Sleep Apnea, Obstructive/genetics , Vascular Remodeling/genetics , Vasoconstriction/genetics , Ventricular Dysfunction, Right/geneticsABSTRACT
Pulmonary hypertension of the newborn (PHN) constitutes a critical condition with severe cardiovascular and neurological consequences. One of its main causes is hypoxia during gestation, and thus, it is a public health concern in populations living above 2500 m. Although some mechanisms are recognized, the pathophysiological facts that lead to PHN are not fully understood, which explains the lack of an effective treatment. Oxidative stress is one of the proposed mechanisms inducing pulmonary vascular dysfunction and PHN. Therefore, we assessed whether melatonin, a potent antioxidant, improves pulmonary vascular function. Twelve newborn sheep were gestated, born, and raised at 3600 meters. At 3 days old, lambs were catheterized and daily cardiovascular measurements were recorded. Lambs were divided into two groups, one received daily vehicle as control and another received daily melatonin (1 mg/kg/d), for 8 days. At 11 days old, lung tissue and small pulmonary arteries (SPA) were collected. Melatonin decreased pulmonary pressure and resistance for the first 3 days of treatment. Further, melatonin significantly improved the vasodilator function of SPA, enhancing the endothelial- and muscular-dependent pathways. This was associated with an enhanced nitric oxide-dependent and nitric oxide independent vasodilator components and with increased nitric oxide bioavailability in lung tissue. Further, melatonin reduced the pulmonary oxidative stress markers and increased enzymatic and nonenzymatic antioxidant capacity. Finally, these effects were associated with an increase of lumen diameter and a mild decrease in the wall of the pulmonary arteries. These outcomes support the use of melatonin as an adjuvant in the treatment for PHN.
Subject(s)
Antioxidants/pharmacology , Hypertension, Pulmonary/metabolism , Lung/drug effects , Melatonin/pharmacology , Oxidative Stress/drug effects , Pulmonary Artery/drug effects , Animals , Animals, Newborn , Lung/blood supply , Pulmonary Artery/physiology , SheepABSTRACT
cGMP is considered the only mediator synthesized by soluble guanylyl cyclase (sGC) in response to nitric oxide (NO). However, purified sGC can synthesize several other cyclic nucleotides, including inosine 3',5'-cyclic monophosphate (cIMP). The present study was designed to determine the role of cIMP in hypoxic contractions of isolated porcine coronary arteries. Vascular responses were examined by measuring isometric tension. Cyclic nucleotides were assayed by HPLC tandem mass spectroscopy. Rho kinase (ROCK) activity was determined by measuring the phosphorylation of myosin phosphatase target subunit 1 using Western blot analysis and an ELISA kit. The level of cIMP, but not that of cGMP, was elevated by hypoxia in arteries with, but not in those without, endothelium [except if treated with diethylenetriamine (DETA) NONOate]; the increases in cIMP were inhibited by the sGC inhibitor 1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one (ODQ). Hypoxia (Po2: 25-30 mmHg) augmented contractions of arteries with and without endothelium if treated with DETA NONOate; these hypoxic contractions were blocked by ODQ. In arteries without endothelium, hypoxic augmentation of contraction was also obtained with exogenous cIMP. In arteries with endothelium, hypoxic augmentation of contraction was further enhanced by inosine 5'-triphosphate, the precursor for cIMP. The augmentation of contraction caused by hypoxia or cIMP was accompanied by increased phosphorylation of myosin phosphatase target subunit 1 at Thr(853), which was prevented by the ROCK inhibitor Y-27632. ROCK activity in the supernatant of isolated arteries was stimulated by cIMP in a concentration-dependent fashion. These results demonstrate that cIMP synthesized by sGC is the likely mediator of hypoxic augmentation of coronary vasoconstriction, in part by activating ROCK.
Subject(s)
Coronary Vessels/enzymology , Cyclic IMP/metabolism , Endothelium, Vascular/enzymology , Guanylate Cyclase/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Signal Transduction , Vasoconstriction , Animals , Cell Hypoxia , Coronary Vessels/drug effects , Dose-Response Relationship, Drug , Enzyme Activation , Enzyme Inhibitors/pharmacology , Guanylate Cyclase/antagonists & inhibitors , Myosin-Light-Chain Phosphatase/metabolism , Nitric Oxide Donors/pharmacology , Phosphorylation , Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors , Signal Transduction/drug effects , Soluble Guanylyl Cyclase , Swine , Up-Regulation , Vasoconstriction/drug effects , Vasoconstrictor Agents/pharmacology , rho-Associated Kinases/antagonists & inhibitors , rho-Associated Kinases/metabolismABSTRACT
Chronic hypoxia-induced pulmonary hypertension (CHPH) is a severe disease that is characterized by increased proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs) leading to pulmonary vascular remodeling. The resulting increase in pulmonary vascular resistance (PVR) causes right ventricular hypertrophy and ultimately right heart failure. In addition, increased PVR can also be a consequence of hypoxic pulmonary vasoconstriction (HPV) under generalized hypoxia. Increased proliferation and migration of PASMCs are often associated with high intracellular Ca2+ concentration. Recent publications suggest that Ca2+-permeable nonselective classical transient receptor potential (TRPC) proteins-especially TRPC1 and 6-are crucially involved in acute and sustained hypoxic responses and the pathogenesis of CHPH. The aim of our study was to investigate whether the simultaneous deletion of TRPC proteins 1, 3 and 6 protects against CHPH-development and affects HPV in mice. We used a mouse model of chronic hypoxia as well as isolated, ventilated and perfused mouse lungs and PASMC cell cultures. Although right ventricular systolic pressure as well as echocardiographically assessed PVR and right ventricular wall thickness (RVWT) were lower in TRPC1, 3, 6-deficient mice, these changes were not related to a decreased degree of pulmonary vascular muscularization and a reduced proliferation of PASMCs. However, both acute and sustained HPV were almost absent in the TRPC1, 3, 6-deficient mice and their vasoconstrictor response upon KCl application was reduced. This was further validated by myographical experiments. Our data revealed that 1) TRPC1, 3, 6-deficient mice are partially protected against development of CHPH, 2) these changes may be caused by diminished HPV and not an altered pulmonary vascular remodeling.
ABSTRACT
The ability to detect oxygen availability is a ubiquitous attribute of aerobic organisms. However, the mechanism(s) that transduce oxygen concentration or availability into appropriate physiological responses is less clear and often controversial. This review will make the case for oxygen-dependent metabolism of hydrogen sulfide (H2S) and polysulfides, collectively referred to as reactive sulfur species (RSS) as a physiologically relevant O2 sensing mechanism. This hypothesis is based on observations that H2S and RSS metabolism is inversely correlated with O2 tension, exogenous H2S elicits physiological responses identical to those produced by hypoxia, factors that affect H2S production or catabolism also affect tissue responses to hypoxia, and that RSS efficiently regulate downstream effectors of the hypoxic response in a manner consistent with a decrease in O2. H2S-mediated O2 sensing is then compared to the more generally accepted reactive oxygen species (ROS) mediated O2 sensing mechanism and a number of reasons are offered to resolve some of the confusion between the two.
ABSTRACT
Objective: Chronic hypoxia causes pulmonary vasoconstriction leading to pulmonary hypertension and right ventricular hypertrophy. Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of nitric oxide (NO) synthesis; its level increases in hypoxia (HX) concomitantly with reduced activity of dimethylarginine dimethylaminohydrolases (DDAH-1 and DDAH-2), enzymes metabolizing ADMA. Ddah1 knockout (KO) mice may therefore help to understand the pathophysiological roles of this enzyme and its substrate, ADMA, in the development of hypoxia-associated pulmonary hypertension. Methods: Ddah1 KO mice and their wild-type (WT) littermates were subjected to normoxia (NX) or for 21 days. We measured ADMA concentration in plasma and lungs, DDAH1 and DDAH2 mRNA and protein expression in the lungs, right ventricular systolic pressure (RVSP), right ventricular hypertrophy by the Fulton index, and cardiomyocyte hypertrophy by dystrophin staining of the heart. Results: Ddah1 KO mice had higher ADMA concentrations in plasma and in lung tissue than WT in NX (p < 0.05). ADMA significantly increased in WT-HX in plasma and lungs, while there were no significant differences in WT-HX vs. KO-HX. This finding was paralleled by a 38 ± 13% reduction in Ddah1 but not Ddah2 mRNA expression, and reduced DDAH1 protein expression but stable DDAH2 protein levels in WT mice. Ddah1 KO mice showed significant elevation of DDAH2 protein but not mRNA levels, which further increased in HX. HX led to increased RVSP and right ventricular hypertrophy in both, WT and KO mice, with no significant differences between both genotypes. Conclusions: Chronic hypoxia causes an elevation of ADMA, which may impair NO production and lead to endothelial dysfunction and vasoconstriction. Downregulation of DDAH1 expression and activity may be involved in this; however, knockout of the Ddah1 gene does not modify the hypoxia-induced pathophysiological changes of pulmonary blood pressure and right ventricular hypertrophy, possibly due to compensatory upregulation of DDAH2 protein.
ABSTRACT
Hypoxic pulmonary vasoconstriction (HPV) is a protective mechanism maintaining blood oxygenation by redirecting blood flow from poorly ventilated to well-ventilated areas in the lung. Such a beneficial effect is blunted by antihypertensive treatment with dihydropyridine calcium channel inhibitors. The aim of the present study was to evaluate the effect of urapidil, an antihypertensive agent acting as an α1 adrenergic antagonist and a partial 5-HT1A agonist, on HPV in porcine proximal and distal pulmonary artery rings, and to characterize underlying mechanisms. Rings from proximal and distal porcine pulmonary artery were suspended in organ chambers and aerated with a 95% O2 + 5% CO2 gas mixture. HPV was induced by changing the gas to a 95% N2 + 5% CO2 mixture following a low level of pre-contraction with U46619. Hypoxia induced a contractile response in both proximal and distal pulmonary artery rings. This effect is observed in the presence of a functional endothelium and is inhibited by a soluble guanylyl cyclase inhibitor (ODQ), a NO scavenger (carboxy-PTIO), and by catalase in proximal pulmonary artery rings. The endothelium-dependent HPV is prevented by nicardipine and clevidipine but remained unaffected by urapidil in both proximal and distal pulmonary artery rings. These findings indicate that urapidil, in contrast to nicardipine and clevidipine, preserves the hypoxia-triggered vasoconstriction in isolated pulmonary arteries. They further indicate the involvement of the NO-guanylyl cyclase pathway and H2 O2 in HPV. Further research is warranted to determine the potential clinical relevance of the preserved hypoxia-induced pulmonary vasoconstriction by urapidil.
Subject(s)
Calcium Channel Blockers/pharmacology , Calcium Channels/metabolism , Hypoxia/drug therapy , Lung/drug effects , Piperazines/pharmacology , Pulmonary Artery/drug effects , Vasoconstriction/drug effects , Animals , Calcium/metabolism , Calcium Signaling/drug effects , Dihydropyridines/pharmacology , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Hypoxia/metabolism , Lung/metabolism , Pulmonary Artery/metabolism , SwineABSTRACT
The development of pulmonary hypertension is a poor prognostic sign in patients with obstructive sleep apnea (OSA) and affects both mortality and quality of life. Although pulmonary hypertension in OSA is traditionally viewed as a result of apneas and intermittent hypoxia during sleep, recent studies indicate that neither of these factors correlates very well with pulmonary artery pressure. Human data show that pulmonary hypertension in the setting of OSA is, in large part, due to left heart dysfunction with either preserved or diminished ejection fraction. Longstanding increased left heart filling pressures eventually lead to pulmonary venous hypertension. The combination of hypoxic pulmonary vasoconstriction and pulmonary venous hypertension with abnormal production of mediators will result in vascular cell proliferation and aberrant vascular remodeling leading to pulmonary hypertension. These changes are in many ways similar to those seen in other forms of pulmonary hypertension and suggest shared mechanisms. The majority of patients with OSA do not receive a diagnosis and are undertreated. Appreciating the high prevalence and understanding the mechanisms of pulmonary hypertension in OSA would lead to better recognition and management of the condition.
ABSTRACT
The goal of this study was to elucidate the importance of nitric oxide production during hypoxic pulmonary vasoconstriction (HPV). One group of Sprague Dawley rats received an ip injection of saline (controls), while a second group received an ip injection of Escherichia coli lipopolysacharides (LPS-treated) to render them septic. Three hours later, the animals were anesthetized and prepared for the isolated lung experiment. The lungs were ventilated and perfused with diluted autologous blood (Hct 23%) at constant flow rate while monitoring pulmonary arterial pressure (Pa). Nitric oxide production from the lungs was monitored by measuring its concentration in the mixed exhaled gas (NOe) offline. NOe in the isolated lungs was 2 ppb in controls and 90 ppb in the LPS treated lungs. Hypoxia caused Pa to rise from 10 to 17 mmHg in control lungs, and from 10 to 27 mmHg in the LPS treated lungs. NO production was then manipulated to determine if it affects HPV. NOe was increased by adding L-arginine to the blood, and was blocked by adding nitro-L-arginine (LNA). L-Arginine had minimal effect on NOe in control lungs, but increased NOe in LPS treated lungs, and yet HPV was similar in the 2 groups. Despite inhibition of NO synthesis with nitro-L-arginine (LNA), HPV was potentiated equally in control and in LPS treated lungs (Pa rose by 23 mmHg). Thus NO production did not affect the difference in HPV between control and LPS treated lungs. The results suggest that NO does not plays a primary role in HPV.