Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 272
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Annu Rev Immunol ; 37: 201-224, 2019 04 26.
Article in English | MEDLINE | ID: mdl-30576253

ABSTRACT

The engagement of a T cell with an antigen-presenting cell (APC) or activating surface results in the formation within the T cell of several distinct actin and actomyosin networks. These networks reside largely within a narrow zone immediately under the T cell's plasma membrane at its site of contact with the APC or activating surface, i.e., at the immunological synapse. Here we review the origin, organization, dynamics, and function of these synapse-associated actin and actomyosin networks. Importantly, recent insights into the nature of these actin-based cytoskeletal structures were made possible in several cases by advances in light microscopy.


Subject(s)
Actins/metabolism , Actomyosin/metabolism , Antigen-Presenting Cells/metabolism , Cytoskeleton/metabolism , Immunological Synapses/metabolism , T-Lymphocytes/metabolism , Animals , Antigen Presentation , Humans , Lymphocyte Activation
2.
Immunity ; 57(6): 1378-1393.e14, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38749447

ABSTRACT

Tumors weakly infiltrated by T lymphocytes poorly respond to immunotherapy. We aimed to unveil malignancy-associated programs regulating T cell entrance, arrest, and activation in the tumor environment. Differential expression of cell adhesion and tissue architecture programs, particularly the presence of the membrane tetraspanin claudin (CLDN)18 as a signature gene, demarcated immune-infiltrated from immune-depleted mouse pancreatic tumors. In human pancreatic ductal adenocarcinoma (PDAC) and non-small cell lung cancer, CLDN18 expression positively correlated with more differentiated histology and favorable prognosis. CLDN18 on the cell surface promoted accrual of cytotoxic T lymphocytes (CTLs), facilitating direct CTL contacts with tumor cells by driving the mobilization of the adhesion protein ALCAM to the lipid rafts of the tumor cell membrane through actin. This process favored the formation of robust immunological synapses (ISs) between CTLs and CLDN18-positive cancer cells, resulting in increased T cell activation. Our data reveal an immune role for CLDN18 in orchestrating T cell infiltration and shaping the tumor immune contexture.


Subject(s)
Carcinoma, Pancreatic Ductal , Claudins , Lymphocyte Activation , Pancreatic Neoplasms , T-Lymphocytes, Cytotoxic , Animals , Humans , Mice , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/metabolism , Cell Line, Tumor , Claudins/metabolism , Claudins/genetics , Gene Expression Regulation, Neoplastic/immunology , Immunological Synapses/metabolism , Immunological Synapses/immunology , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Lymphocyte Activation/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Membrane Microdomains/metabolism , Membrane Microdomains/immunology , Mice, Inbred C57BL , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/pathology , T-Lymphocytes, Cytotoxic/immunology , Tumor Microenvironment/immunology
3.
Annu Rev Cell Dev Biol ; 32: 303-325, 2016 10 06.
Article in English | MEDLINE | ID: mdl-27501450

ABSTRACT

T cells express a somatically recombined antigen receptor (αßTCR) that is calibrated during development to respond to changes in peptides displayed by major histocompatibility complex proteins (pMHC) on the surface of antigen-presenting cells (APC). A key characteristic of pMHC for adaptive immunity is the ability to sample internal states of cells and tissues to sensitively detect changes associated with infection, cell derangement, or tissue injury. Physical T cell-APC contact sets up an axis for polarization of TCR, adhesion molecules, kinases, cytoskeletal elements, and organelles inherent in this mode of juxtacrine signaling. The discovery of further lateral organization of the TCR and adhesion molecules into radially symmetric compartments, the immunological synapse, revealed an intersecting plane of symmetry and potential for regulated symmetry breaking to control duration of T cell-APC interactions. In addition to organizing signaling machinery, the immunological synapse directs the polarized transport and secretion of cytokines and cytolytic agents across the synaptic cleft and is a site for the generation and exocytic release of bioactive microvesicles that can functionally affect recipient APC and other cells in the environment. This machinery is coopted by retroviruses, and human immune deficiency virus-1 may even use antigen-specific synapses for infection of healthy T cells. Here, we discuss recent advances in the molecular and cell biological mechanisms of immunological synapse assembly and signaling and its role in intercellular communication across the synaptic cleft.


Subject(s)
Cell Communication , Immunological Synapses/metabolism , Signal Transduction , T-Lymphocytes/cytology , T-Lymphocytes/metabolism , Animals , Cytoskeleton/metabolism , HIV Infections/pathology , Humans
4.
Immunity ; 53(2): 290-302.e6, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32768386

ABSTRACT

CD47 acts as a "don't eat me" signal that protects cells from phagocytosis by binding and activating its receptor SIPRA on macrophages. CD47 suppresses multiple different pro-engulfment "eat me" signals, including immunoglobulin G (IgG), complement, and calreticulin, on distinct target cells. This complexity has limited understanding of how the "don't eat me" signal is transduced biochemically. Here, we utilized a reconstituted system with a defined set of signals to interrogate the mechanism of SIRPA activation and its downstream targets. CD47 ligation altered SIRPA localization, positioning SIRPA for activation at the phagocytic synapse. At the phagocytic synapse, SIRPA inhibited integrin activation to limit macrophage spreading across the surface of the engulfment target. Chemical reactivation of integrin bypassed CD47-mediated inhibition and rescued engulfment, similar to the effect of a CD47 function-blocking antibody. Thus, the CD47-SIRPA axis suppresses phagocytosis by inhibiting inside-out activation of integrin signaling in the macrophage, with implications to cancer immunotherapy applications.


Subject(s)
CD47 Antigen/metabolism , Integrins/metabolism , Macrophages/immunology , Phagocytosis/immunology , Receptors, Immunologic/metabolism , Animals , Calreticulin/immunology , Cell Line , Complement System Proteins/immunology , HEK293 Cells , Humans , Immunoglobulin G/immunology , Macrophage Activation/immunology , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Phosphatidylserines/immunology , RAW 264.7 Cells , Signal Transduction/immunology
5.
Immunity ; 49(3): 427-437.e4, 2018 09 18.
Article in English | MEDLINE | ID: mdl-30217409

ABSTRACT

How cytotoxic T lymphocytes (CTLs) sense T cell receptor (TCR) signaling in order to specialize an area of plasma membrane for granule secretion is not understood. Here, we demonstrate that immune synapse formation led to rapid localized changes in the phosphoinositide composition of the plasma membrane, both reducing phosphoinositide-4-phosphate (PI(4)P), PI(4,5)P2, and PI(3,4,5)P3 and increasing diacylglycerol (DAG) and PI(3,4)P2 within the first 2 min of synapse formation. These changes reduced negative charge across the synapse, triggering the release of electrostatically bound PIP5 kinases that are required to replenish PI(4,5)P2. As PI(4,5)P2 decreased, actin was depleted from the membrane, allowing secretion. Forced localization of PIP5Kß across the synapse prevented actin depletion, blocking both centrosome docking and secretion. Thus, PIP5Ks act as molecular sensors of TCR activation, controlling actin recruitment across the synapse, ensuring exquisite co-ordination between TCR signaling and CTL secretion.


Subject(s)
Actins/metabolism , Cell Membrane/metabolism , Cytoplasmic Granules/metabolism , Immunological Synapses/metabolism , Phosphatidylinositols/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , T-Lymphocytes, Cytotoxic/immunology , Animals , Cell Degranulation , Cell Line , Cytotoxicity, Immunologic , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Mice, Transgenic , Receptors, Antigen, T-Cell/metabolism , Signal Transduction
6.
Trends Immunol ; 44(6): 424-434, 2023 06.
Article in English | MEDLINE | ID: mdl-37137805

ABSTRACT

The COVID-19 pandemic, caused by SARS-CoV-2, has caused an estimated 5 billion infections and 20 million deaths by respiratory failure. In addition to the respiratory disease, SARS-CoV-2 infection has been associated with many extrapulmonary complications not easily explainable by the respiratory infection. A recent study showed that the SARS-CoV-2 spike protein, which mediates cell entry by binding to the angiotensin-converting enzyme 2 (ACE2) receptor, signals through ACE2 to change host cell behavior. In CD8+ T cells, spike-dependent ACE2-mediated signaling suppresses immunological synapse (IS) formation and impairs their killing ability, leading to immune escape of virus-infected cells. In this opinion article, we discuss the consequences of ACE2 signaling on the immune response and propose that it contributes to the extrapulmonary manifestations of COVID-19.


Subject(s)
COVID-19 , Humans , Angiotensin-Converting Enzyme 2/metabolism , CD8-Positive T-Lymphocytes/metabolism , Immune Evasion , Pandemics , Protein Binding , SARS-CoV-2/metabolism
7.
J Biol Chem ; 300(7): 107428, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823638

ABSTRACT

Adaptive immune responses comprise the activation of T cells by peptide antigens that are presented by proteins of the Major Histocompatibility Complex (MHC) on the surface of an antigen-presenting cell. As a consequence of the T cell receptor interacting productively with a certain peptide-MHC complex, a specialized cell-cell junction known as the immunological synapse forms and is accompanied by changes in the spatiotemporal patterning and function of intracellular signaling molecules. Key modifications occurring at the cytoplasmic leaflet of the plasma and internal membranes in activated T cells comprise lipid switches that affect the binding and distribution of proteins within or near the lipid bilayer. Here, we describe two major classes of lipid switches that act at this critical water/membrane interface. Phosphoinositides are derived from phosphatidylinositol, an amphiphilic molecule that contains two fatty acid chains and a phosphate group that bridges the glycerol backbone to the carbohydrate inositol. The inositol ring can be variably (de-)phosphorylated by dedicated kinases and phosphatases, thereby creating phosphoinositide signatures that define the composition and properties of signaling molecules, molecular complexes, or whole organelles. Palmitoylation refers to the reversible attachment of the fatty acid palmitate to a substrate protein's cysteine residue. DHHC enzymes, named after the four conserved amino acids in their active site, catalyze this post-translational modification and thereby change the distribution of proteins at, between, and within membranes. T cells utilize these two types of molecular switches to adjust their properties to an activation process that requires changes in motility, transport, secretion, and gene expression.


Subject(s)
Immunological Synapses , T-Lymphocytes , Immunological Synapses/metabolism , Immunological Synapses/immunology , Humans , Animals , T-Lymphocytes/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/cytology , Phosphatidylinositols/metabolism , Lipoylation
8.
EMBO J ; 39(16): e104730, 2020 08 17.
Article in English | MEDLINE | ID: mdl-32643825

ABSTRACT

The chimeric antigen receptor (CAR) directs T cells to target and kill specific cancer cells. Despite the success of CAR T therapy in clinics, the intracellular signaling pathways that lead to CAR T cell activation remain unclear. Using CD19 CAR as a model, we report that, similar to the endogenous T cell receptor (TCR), antigen engagement triggers the formation of CAR microclusters that transduce downstream signaling. However, CAR microclusters do not coalesce into a stable central supramolecular activation cluster (cSMAC). Moreover, LAT, an essential scaffold protein for TCR signaling, is not required for microcluster formation, immunological synapse formation, nor actin remodeling following CAR activation. However, CAR T cells still require LAT for an optimal production of the cytokine IL-2. Together, these data show that CAR T cells can bypass LAT for a subset of downstream signaling outputs, thus revealing a rewired signaling pathway as compared to native T cells.


Subject(s)
Immunological Synapses/immunology , Interleukin-2/immunology , Receptors, Chimeric Antigen/immunology , Signal Transduction/immunology , T-Lymphocytes/immunology , HEK293 Cells , Humans , Immunological Synapses/genetics , Interleukin-2/genetics , Jurkat Cells , Receptors, Chimeric Antigen/genetics , Signal Transduction/genetics
9.
EMBO J ; 39(5): e102783, 2020 03 02.
Article in English | MEDLINE | ID: mdl-31894880

ABSTRACT

When migratory T cells encounter antigen-presenting cells (APCs), they arrest and form radially symmetric, stable intercellular junctions termed immunological synapses which facilitate exchange of crucial biochemical information and are critical for T-cell immunity. While the cellular processes underlying synapse formation have been well characterized, those that maintain the symmetry, and thereby the stability of the synapse, remain unknown. Here we identify an antigen-triggered mechanism that actively promotes T-cell synapse symmetry by generating cytoskeletal tension in the plane of the synapse through focal nucleation of actin via Wiskott-Aldrich syndrome protein (WASP), and contraction of the resultant actin filaments by myosin II. Following T-cell activation, WASP is degraded, leading to cytoskeletal unraveling and tension decay, which result in synapse breaking. Thus, our study identifies and characterizes a mechanical program within otherwise highly motile T cells that sustains the symmetry and stability of the T cell-APC synaptic contact.


Subject(s)
Antigen-Presenting Cells/metabolism , Immunological Synapses/metabolism , Wiskott-Aldrich Syndrome Protein/metabolism , Wiskott-Aldrich Syndrome/metabolism , Actin Cytoskeleton/metabolism , Actins/metabolism , Animals , Antigen-Presenting Cells/immunology , Cell Movement , Cytoskeleton/metabolism , Humans , Lymphocyte Activation , Male , Mice , Mice, Inbred C57BL , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Wiskott-Aldrich Syndrome/immunology , Wiskott-Aldrich Syndrome Protein/genetics
10.
EMBO J ; 39(24): e105594, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33146906

ABSTRACT

Failures to produce neutralizing antibodies upon HIV-1 infection result in part from B-cell dysfunction due to unspecific B-cell activation. How HIV-1 affects antigen-specific B-cell functions remains elusive. Using an adoptive transfer mouse model and ex vivo HIV infection of human tonsil tissue, we found that expression of the HIV-1 pathogenesis factor NEF in CD4 T cells undermines their helper function and impairs cognate B-cell functions including mounting of efficient specific IgG responses. NEF interfered with T cell help via a specific protein interaction motif that prevents polarized cytokine secretion at the T-cell-B-cell immune synapse. This interference reduced B-cell activation and proliferation and thus disrupted germinal center formation and affinity maturation. These results identify NEF as a key component for HIV-mediated dysfunction of antigen-specific B cells. Therapeutic targeting of the identified molecular surface in NEF will facilitate host control of HIV infection.


Subject(s)
B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , HIV Infections/immunology , Animals , HEK293 Cells , HIV-1 , Humans , Immune Evasion/immunology , Lymphocyte Activation , Male , Mice , Mice, Inbred C57BL
11.
Eur J Immunol ; 53(11): e2350393, 2023 11.
Article in English | MEDLINE | ID: mdl-37598303

ABSTRACT

Dendritic cells (DCs) bridge innate and adaptive immunity. Their main function is to present antigens to prime T cells and initiate and shape adaptive responses. Antigen presentation takes place through intimate contacts between the two cells, termed immune synapses (IS). During the formation of IS, information travels towards the T-cell side to induce and tune its activation; but it also travels in reverse via engagement of membrane receptors and within extracellular vesicles transferred to the DC. Such reverse information transfer and its consequences on DC fate have been largely neglected. Here, we review the events and effects of IS-mediated antigen presentation on DCs. In addition, we discuss novel technological advancements that enable monitoring DCs interactions with T lymphocytes, the main effects of DCs undergoing productive IS (postsynaptic DCs, or psDCs), and how reverse information transfer could be harnessed to modulate immune responses for therapeutic intervention.


Subject(s)
Dendritic Cells , Immunological Synapses , T-Lymphocytes , Antigen Presentation , Antigens
12.
Strahlenther Onkol ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38955824

ABSTRACT

Glofitamab, an anti-CD20 antibody, is approved as a third-line treatment for relapsed or refractory (r/r) diffuse large-cell B lymphoma (DLBCL), achieving a complete response in nearly 40% of patients. This humanized IgG1 bispecific monoclonal antibody binds to CD20 on malignant B lymphocytes and to CD3 on cytotoxic T cells. This dual binding forms an immunological synapse, activating T lymphocytes and leading to the lysis of tumor cells. Salvage radiotherapy is also effective for r/r DLBCL, but its combination with systemic treatments like glofitamab may increase radiation-induced toxicity. We report the first case of a patient with r/r DLBCL receiving concurrent salvage radiotherapy and glofitamab. A 68-year-old female diagnosed with stage IV DLBCL underwent initial treatment with R-CHOP, then Car-T cell therapy, followed by glofitamab for recurrence. Upon early metabolic progression detected by 18FDG-PET/CT, salvage radiotherapy was administered to the refractory site concurrently with glofitamab. The patient experienced mild para-spinal pain post-radiotherapy but no other significant toxicities. Three months post-treatment, she showed a complete metabolic response with no radiotherapy toxicity, as evidenced by PET-CT, and no signs of radiation pneumonitis. This case indicates that combining glofitamab with salvage radiotherapy is tolerable and suggests potential efficacy, warranting further investigation in prospective studies for r/r DLBCL.

13.
Adv Exp Med Biol ; 1444: 197-205, 2024.
Article in English | MEDLINE | ID: mdl-38467981

ABSTRACT

Programmed cell death-1 (PD-1) is one of the most famous coinhibitory receptors that are expressed on effector T cells to regulate their function. The PD-1 ligands, PD-L1 and PD-L2, are expressed by various cells throughout the body at steady state and their expression was further regulated within different pathological conditions such as tumor-bearing and chronic inflammatory diseases. In recent years, immune checkpoint inhibitor (ICI) therapies with anti-PD-1 or anti-PD-L1 has become a standard treatment for various malignancies and has shown remarkable antitumor effects. Since the discovery of PD-1 in 1992, a huge number of studies have been conducted to elucidate the function of PD-1. Herein, this paper provides an overview of PD-1 biological findings and sheds some light on the current technology for molecular imaging of PD-1.


Subject(s)
Neoplasms , Programmed Cell Death 1 Receptor , Humans , Programmed Cell Death 1 Receptor/metabolism , Neoplasms/metabolism , T-Lymphocytes/metabolism , B7-H1 Antigen/metabolism , Immunotherapy/methods , Molecular Imaging
14.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Article in English | MEDLINE | ID: mdl-33903232

ABSTRACT

The development of follicular helper CD4 T (TFH) cells is a dynamic process resulting in a heterogenous pool of TFH subsets. However, the cellular and molecular determinants of this heterogeneity and the possible mechanistic links between them is not clear. We found that human TFH differentiation is associated with significant changes in phenotypic, chemokine, functional, metabolic and transcriptional profile. Furthermore, this differentiation was associated with distinct positioning to follicular proliferating B cells. Single-cell T cell receptor (TCR) clonotype analysis indicated the transitioning toward PD-1hiCD57hi phenotype. Furthermore, the differentiation of TFH cells was associated with significant reduction in TCR level and drastic changes in immunological synapse formation. TFH synapse lacks a tight cSMAC (central supra molecular activation Cluster) but displays the TCR in peripheral microclusters, which are potentially advantageous in the ability of germinal center (GC) B cells to receive necessary help. Our data reveal significant aspects of human TFH heterogeneity and suggest that the PD-1hiCD57hi TFH cells, in particular, are endowed with distinctive programming and spatial positioning for optimal GC B cell help.


Subject(s)
Cell Differentiation/genetics , Cell Lineage/immunology , Receptors, Antigen, T-Cell/genetics , T Follicular Helper Cells/immunology , CD4-Positive T-Lymphocytes/immunology , CD57 Antigens/genetics , Cell Communication/immunology , Cell Differentiation/immunology , Cell Lineage/genetics , Chemokines/genetics , Germinal Center/immunology , Germinal Center/metabolism , Humans , Immunological Synapses/genetics , Immunological Synapses/immunology , Lymphocyte Activation/immunology , Phenotype , Programmed Cell Death 1 Receptor/genetics , Receptors, Antigen, T-Cell/immunology , T Follicular Helper Cells/metabolism , T-Lymphocyte Subsets/immunology
15.
J Cell Physiol ; 238(5): 976-991, 2023 05.
Article in English | MEDLINE | ID: mdl-36852591

ABSTRACT

Voltage-dependent potassium channel Kv1.3 plays a key role on T-cell activation; however, lack of reliable antibodies has prevented its accurate detection under endogenous circumstances. To overcome this limitation, we created a Jurkat T-cell line with endogenous Kv1.3 channel tagged, to determine the expression, location, and changes upon activation of the native Kv1.3 channels. CRISPR-Cas9 technique was used to insert a Flag-Myc peptide at the C terminus of the KCNA3 gene. Basal or activated channel expression was studied using western blot analysis and imaging techniques. We identified two isoforms of Kv1.3 other than the canonical channel (54 KDa) differing on their N terminus: a longer isoform (70 KDa) and a truncated isoform (43 KDa). All three isoforms were upregulated after T-cell activation. We focused on the functional characterization of the truncated isoform (short form, SF), because it has not been previously described and could be present in the available Kv1.3-/- mice models. Overexpression of SF in HEK cells elicited small amplitude Kv1.3-like currents, which, contrary to canonical Kv1.3, did not induce HEK proliferation. To explore the role of endogenous SF isoform in a native system, we generated both a knockout Jurkat clone and a clone expressing only the SF isoform. Although the canonical isoform (long form) localizes mainly at the plasma membrane, SF remains intracellular, accumulating perinuclearly. Accordingly, SF Jurkat cells did not show Kv1.3 currents and exhibited depolarized resting membrane potential (VM ), decreased Ca2+ influx, and a reduction in the [Ca2+ ]i increase upon stimulation. Functional characterization of these Kv1.3 channel isoforms showed their differential contribution to signaling pathways involved in formation of the immunological synapse. We conclude that alternative translation initiation generates at least three endogenous Kv1.3 channel isoforms in T cells that exhibit different functional roles. For some of these functions, Kv1.3 proteins do not need to form functional plasma membrane channels.


Subject(s)
Kv1.3 Potassium Channel , Animals , Humans , Mice , Cell Line , Cell Membrane/metabolism , Jurkat Cells , Protein Isoforms/genetics , Protein Isoforms/metabolism , Kv1.3 Potassium Channel/genetics , Kv1.3 Potassium Channel/metabolism
16.
Cell Mol Life Sci ; 79(5): 230, 2022 Apr 09.
Article in English | MEDLINE | ID: mdl-35396942

ABSTRACT

The voltage-dependent potassium (Kv) channel Kvß family was the first identified group of modulators of Kv channels. Kvß regulation of the α-subunits, in addition to their aldoketoreductase activity, has been under extensive study. However, scarce information about their specific α-subunit-independent biology is available. The expression of Kvßs is ubiquitous and, similar to Kv channels, is tightly regulated in leukocytes. Although Kvß subunits exhibit cytosolic distribution, spatial localization, in close contact with plasma membrane Kv channels, is crucial for a proper immune response. Therefore, Kvß2.1 is located near cell surface Kv1.3 channels within the immunological synapse during lymphocyte activation. The objective of this study was to analyze the structural elements that participate in the cellular distribution of Kvßs. It was demonstrated that Kvß peptides, in addition to the cytoplasmic pattern, targeted the cell surface in the absence of Kv channels. Furthermore, Kvß2.1, but not Kvß1.1, targeted lipid raft microdomains in an S-acylation-dependent manner, which was concomitant with peptide localization within the immunological synapse. A pair of C-terminal cysteines (C301/C311) was mostly responsible for the specific palmitoylation of Kvß2.1. Several insults altered Kvß2.1 membrane localization. Therefore, growth factor-dependent proliferation enhanced surface targeting, whereas PKC activation impaired lipid raft expression. However, PSD95 stabilized Kvß2.1 in these domains. This data shed light on the molecular mechanism by which Kvß2.1 clusters into immunological synapses during leukocyte activation.


Subject(s)
Membrane Microdomains , Acylation
17.
BMC Biol ; 20(1): 189, 2022 08 24.
Article in English | MEDLINE | ID: mdl-36002835

ABSTRACT

BACKGROUND: T cell activation leads to increased expression of the receptor for the iron transporter transferrin (TfR) to provide iron required for the cell differentiation and clonal expansion that takes place during the days after encounter with a cognate antigen. However, T cells mobilise TfR to their surface within minutes after activation, although the reason and mechanism driving this process remain unclear. RESULTS: Here we show that T cells transiently increase endocytic uptake and recycling of TfR upon activation, thereby boosting their capacity to import iron. We demonstrate that increased TfR recycling is powered by a fast endocytic sorting pathway relying on the membrane proteins flotillins, Rab5- and Rab11a-positive endosomes. Our data further reveal that iron import is required for a non-canonical signalling pathway involving the kinases Zap70 and PAK, which controls adhesion of the integrin LFA-1 and eventually leads to conjugation with antigen-presenting cells. CONCLUSIONS: Altogether, our data suggest that T cells boost their iron importing capacity immediately upon activation to promote adhesion to antigen-presenting cells.


Subject(s)
Receptors, Transferrin , Transferrin , Endocytosis/physiology , Endosomes/metabolism , Iron/metabolism , Receptors, Transferrin/metabolism , T-Lymphocytes , Transferrin/metabolism
18.
Immunol Rev ; 291(1): 75-90, 2019 09.
Article in English | MEDLINE | ID: mdl-31402506

ABSTRACT

To efficiently initiate activation responses against rare ligands in the microenvironment, lymphocytes employ sophisticated mechanisms involving signaling amplification. Recently, a signaling amplification mechanism initiated from phosphatidylinositol (PI) 4, 5-biphosphate [PI(4,5)P2] hydrolysis and synthesis for sustained B cell activation has been reported. Antigen and B cell receptor (BCR) recognition triggered the prompt reduction of PI(4,5)P2 density within the BCR microclusters, which led to the positive feedback for the synthesis of PI(4,5)P2 outside of the BCR microclusters. At single molecule level, the diffusion of PI(4,5)P2 was slow, allowing for the maintenance of a PI(4,5)P2 density gradient between the inside and outside of the BCR microclusters and the persistent supply of PI(4,5)P2 from outside to inside of the BCR microclusters. Here, we review studies that have contributed to uncovering the molecular mechanisms of PI(4,5)P2-derived signaling amplification model. Based on these studies, we proposed a "gasoline engine model" in which the activation of B cell signaling inside the microclusters is similar to the working principle of burning gasoline within the engine chamber of a gasoline engine. We also discuss the evidences showing the potential universality of this model and future prospects.


Subject(s)
B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Lymphocyte Activation/immunology , Phosphatidylinositols/metabolism , Receptors, Antigen, B-Cell/metabolism , Animals , Cell Membrane/immunology , Humans , Signal Transduction
19.
Immunol Rev ; 288(1): 28-36, 2019 03.
Article in English | MEDLINE | ID: mdl-30874359

ABSTRACT

Follicular T-helper (TFH ) cells play a crucial role in three aspects of the germinal center (GC) response. They promote GC formation, arbitrate competition among GC B cells to determine the outcome of affinity maturation, and regulate GC output of memory and plasma cells to shape the long-lived humoral immune memory. Of fundamental importance are dynamic physical interactions between TFH and B cells, which are the main platform for TFH cells to deliver "help" factors to B cells and also for reciprocal signaling from B cells to maintain the helper state of TFH cells. Recent work has significantly expanded our understanding of how T-B interactions are spatiotemporally regulated and molecularly orchestrated to fulfill those TFH functions. In this review, we elaborate two modes of T-B interactions, the antigen-specific or cognate mode in which TFH cells engage individual antigen-presenting B cells and the antigen nonspecific bystander mode in which TFH cells are engaged with the ensemble of follicular B cells. We discuss findings that indicate how short-lived cognate T-B contacts coupled with an intercellular positive feedback drive affinity-based selection and how bystander interactions between T and B cells regulate follicular T-cell recruitment and maintenance of an appropriate helper state. We argue that this combination of bystander and cognate interactions with B cells constantly shapes the internal state of TFH cells and provides the platform to execute their helper functions.


Subject(s)
B-Lymphocytes/immunology , Germinal Center/immunology , T-Lymphocytes, Helper-Inducer/immunology , Animals , Antigen Presentation , Bystander Effect/immunology , Cytokines/metabolism , Humans , Immunity, Humoral , Immunologic Memory , Paracrine Communication , Signal Transduction
20.
Clin Immunol ; 242: 109098, 2022 09.
Article in English | MEDLINE | ID: mdl-35973636

ABSTRACT

T cells following immunological synapse (IS) formation with antigen-presenting cells produce multiple cytokines through T cell receptor, integrin, and costimulatory signaling. Here, we investigated the cytokine profiles following IS formation in response to staphylococcal superantigen exposure in three adolescent patients with classical Wiskott-Aldrich syndrome (WAS) and in one patient with leukocyte adhesion deficiency (LAD) type 1. All WAS patients showed lower Th1 and Th2-skewed cytokine production; similar results were observed in the flow cytometric analysis of IFNγ- and IL-4-producing T cells. The patient with LAD type 1 with somatic mosaicism in 2% of CD8+ T cells showed lower Th1 and Th2 cytokine production than healthy controls. The patients with WAS were susceptible to infections and atopic manifestations, and the patients with LAD type 1 showed cold abscess on their skin, our findings using patient samples provide clinical insights into the mechanisms underlying immunodeficiency related to the symptoms of each disease.


Subject(s)
Wiskott-Aldrich Syndrome , Adolescent , Cytokines , Humans , Immunological Synapses/metabolism , Leukocyte-Adhesion Deficiency Syndrome , Lymphocyte Activation , Wiskott-Aldrich Syndrome Protein/genetics
SELECTION OF CITATIONS
SEARCH DETAIL