Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 223
Filter
Add more filters

Publication year range
1.
Small ; 20(34): e2307976, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38462955

ABSTRACT

Transformation of metal-organic framework (MOF) particles into thin films is urgently needed for the persistent development of well-applicable devices, and recently emerging functional-integrated hybrid frameworks. Although some flexible polymers and exclusive modification approaches have been proposed, the additive-free and widely applicable strategy has not been reported, hampering the deep investigation of the structure-performance relationship. A universal strategy for the in situ growth of large-area and continuous MOF films with controllable microstructures is introduced, through the modification of multi-scale and multi-structure substrates with poly(4-vinylpyridine) as the anchor to capture metal ions via Coulomb attraction. Based on the clarified structure-adsorption-separation mechanisms, the customized devices fabricated by in situ growth can achieve highly selective adsorption and excellently synergetic separation of various industrially relevant isomers. In addition, this strategy is also feasible for the construction of MOF-on-MOFs with varied lattice parameters. This strategy is easy to implement and will be widely applicable to the surface growth of diverse MOFs on desired substrates, and provides a new concept for developing hybrid MOFs integrating with customized functionalities.

2.
Small ; 20(34): e2401150, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38506563

ABSTRACT

The unique optical and electrical properties of graphene-based heterojunctions make them significant for artificial synaptic devices, promoting the advancement of biomimetic vision systems. However, mass production and integration of device arrays are necessary for visual imaging, which is still challenging due to the difficulty in direct growth of wafer-scale graphene patterns. Here, a novel strategy is proposed using photosensitive polymer as a solid carbon source for in situ growth of patterned graphene on diverse substrates. The growth mechanism during high-temperature annealing is elucidated, leading to wafer-scale graphene patterns with exceptional uniformity, ideal crystalline quality, and precise control over layer number by eliminating the release of volatile from oxygen-containing resin. The growth strategy enables the fabrication of two-inch optoelectronic artificial synaptic device array based on graphene/n-AlGaN heterojunction, which emulates key functionalities of biological synapses, including short-term plasticity, long-term plasticity, and spike-rate-dependent plasticity. Moreover, the mimicry of visual learning in the human brain is attributed to the regulation of excitatory and inhibitory post-synapse currents, following a learning rule that prioritizes initial recognition before memory formation. The duration of long-term memory reaches 10 min. The in situ growth strategy for patterned graphene represents the novelty for fabricating fundamental hardware of an artificial neuromorphic system.

3.
Small ; 20(30): e2311471, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38429237

ABSTRACT

Lithium-sulfur batteries (LSBs) are facing many challenges, such as the inadequate conductivity of sulfur, the shuttle effect caused by lithium polysulfide (LiPSs), lithium dendrites, and the flammability, which have hindered their commercial applications. Herein, a "four-in-one" functionalized coating is fabricated on the surface of polypropylene (PP) separator by using a novel flame-retardant namely InC-HCTB to meet these challenges. InC-HCTB is obtained by cultivating polyphosphazene on the surface of carbon nanotubes with an in situ growth strategy. First, this unique architecture fosters an enhanced conductive network, bolstering the bidirectional enhancement of both ionic and electronic conductivities. Furthermore, InC-HCTB effectively inhibits the shuttle effect of LiPSs. LSBs exhibit a remarkable capacity of 1170.7 mA h g-1 at 0.2 C, and the capacity degradation is a mere 0.0436% over 800 cycles at 1 C. Third, InC-HCTB coating serves as an ion migration network, hindering the growth of lithium dendrites. More importantly, InC-HCTB exhibits notable flame retardancy. The radical trapping action in the gas phase and the protective effect of the shielded char layer in the condensed phase are simulated and verified. This facile in situ growth strategy constructs a "four-in-one" functional separator coating, rendering InC-HCTB a promising additive for the large-scale production of safe and stable LSBs.

4.
Small ; 20(20): e2306521, 2024 May.
Article in English | MEDLINE | ID: mdl-38366268

ABSTRACT

Metal-organic frameworks (MOFs) are high-performance adsorbents for atmospheric water harvesting but have poor water-desorption ability, requiring excess energy input to release the trapped water. Addressing this issue, a Janus-structured adsorbent with functional asymmetry is presented. The material exhibits contrasting functionalities on either face - a hygroscopic face interfaced with a photothermal face. Hygroscopic aluminum fumarate MOF and photothermal CuxS layers are in-situ grown on opposite sides of a Cu/Al bimetallic substrate, resulting in a CuxS-Cu/Al-MOF Janus hygro-photothermal hybrid. The two faces serve as independent "factories" for photothermal conversion and water adsorption-desorption respectively, while the interfacing bimetallic layer serves as a "heat conveyor belt" between them. Due to the high porosity and hydrophilicity of the MOF, the hybrid exhibits a water-adsorption capacity of 0.161 g g-1 and a fast adsorption rate (saturation within 52 min) at 30% relative humidity. Thanks to the photothermal CuxS, the hybrid can reach 71.5 °C under 1 Sun in 20 min and desorb 97% adsorbed water in 40 min, exhibiting a high photothermal conversion efficiency of over 90%. CuxS-Cu/Al-MOF exhibits minimal fluctuations after 200 cycles, and its water-generation capacity is 3.21 times that of powdery MOF in 3 h in a self-designed prototype in one cycle.

5.
Small ; 20(34): e2401078, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38593301

ABSTRACT

Currently, the only thermoelectric (TE) materials commercially available at room temperature are those based on bismuth telluride. However, their widespread application is limited due to their inferior thermoelectric and mechanical properties. In this study, a strategy of growing a rigid second phase of MoSe2 is employed, in situ within the matrix phase to achieve n-type bismuth telluride-based materials with exceptional mechanical and thermoelectric properties. The in situ grown second phase contributes to both the electronic and lattice thermal conductivities. This is primarily attributed to the strong energy filtering effect, as the second phase forms a semi-common lattice interfacial structure with the matrix phase during growth. Furthermore, for composites containing 2 wt% MoSe2, a maximum zT value of 1.24 at 373 K can be achieved. On this basis, 8-pair TE module is fabricated and 1-pair TE module is optimized using a homemade p-type material. The optimized 1-pair TE module generates a maximum output power of 13.6 µW, which is twice that of the 8-pair TE module and four times more than the 8-pair TE module fabricated by commercial material. This work facilitates the development of the TE module by presenting a novel approach to obtaining bismuth telluride-based thermoelectric materials with superior thermoelectric and mechanical properties.

6.
Chemistry ; : e202403185, 2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39340304

ABSTRACT

With high specific surface area, excellent polysulfide conversion activity, and fast electron/ion transfer at the interface, MXene-derived heterostructures can be employed as catalysts for lithium-sulfur (Li-S) batteries to accelerate sulfur redox kinetics and suppress shuttle effect. However, the preparation of MXene-derived heterostructures often requires high-temperature reactions, which can easily lead to the oxidation of MXene and sacrifice the electrical conductivity. Herein, a catalytic two-dimensional heterostructure (ZnS/MXene) was successfully synthesized via a mild method. The MXene skeleton retains the original nanosheet structure without oxidation. The in situ-grown ZnS nanospheres prevent the restacking of MXene nanosheets, which not only increases the active sites, but also guarantees channels for the fast passage of lithium ions. The interfacial built-in electric field further promotes electron/ion migration, thereby expediting the polysulfide conversion and suppressing the shuttle effect. Consequently, the batteries using ZnS/MXene modified separators exhibit a high initial discharge capacity of 1230 mAh g-1 at 0.1 C and a low decaying rate of 0.082% per cycle after 500 cycles at 0.5 C. This work offers a reference for the fabrication of MXene-based heterostructure in Li-S batteries.

7.
Chemphyschem ; 25(6): e202300634, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38415889

ABSTRACT

Acetylene (C2 H2 ) monitoring in real time and online is essential for erasing transformer risks and guaranteeing normal equipment operation and operator safety. This study examines the direct fabrication of ultrathin SnO2 nanowalls on Ag-Pd substrates using a simple solvothermal method that doesn't demand the use of any additional motivators or templates. The thickness and shape of the nanowalls can be controlled by varying the cetyl trimethyl ammonium bromide (CTAB) concentration in the solvent. As observed, the gas sensor (SnO2 -3) fabricated by 2.4 g CTAB exhibits superior gas-sensing features. This is primarily due to the hollow structure constructed by the arrangement of nanowalls, which delivers not only enough gas diffusion pathways but also enough reaction sites during the gas sensing processes. The findings suggest that low-cost SnO2 nanowalls created using a straightforward procedure could be taken into consideration as prospective candidates for use in industrial C2 H2 sensing applications.

8.
Macromol Rapid Commun ; : e2400333, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39042062

ABSTRACT

Construction of self-healing materials with improved mechanical performance is a great challenge. A strong and tough self-healing composite is fabricated via in situ growth of zeolitic imidazole framework-8 (ZIF-8) nanocrystals in imidazole-containing polymer networks. By adjusting the stoichiometric ratio of the zinc salt to 2-methylimidazole, composites with various mechanical performances are obtained. The existence of ZIF-8 nanocrystals via in situ growth in the polymer networks is confirmed by X-ray diffraction (XRD), transmission electron microscopy (TEM), and atomic force microscopy (AFM). The zinc-imidazole interactions between the ZIF-8 nanocrystals and the polymer are confirmed by attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. The composites can repair themselves under mild conditions owing to dynamic zinc-imidazole interactions. The self-healing efficiency of composites can reach up to 91% under the condition of 60 °C for 48 h. In contrast to the pure zinc cation crosslinking system, the composite containing ZIF-8 nanocrystals prepared via in situ growth exhibited enhanced tensile strength and toughness by 43% and 100%, respectively. This study proves that incorporating the metal-organic frameworks (MOFs) materials into a self-healing system via an in situ growth strategy is highly promising for designing self-healing materials with improved mechanical performance.

9.
J Sep Sci ; 47(2): e2300686, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38286732

ABSTRACT

Designing advanced stationary phases to improve separation efficiency is essential in capillary electrochromatography. Due to their outstanding performance, covalent organic frameworks have recently demonstrated considerable promise in the field of separation science. Herein, an open-tubular capillary electrochromatography method was reported using porous imine-based covalent organic framework with sufficiently available interaction sites as stationary phase. The imine-based covalent organic framework coated capillary was easily prepared via an in situ growth method at room temperature, and its separation performance was evaluated, indicating the high separation efficiency for three types of analytes, including herbicides, polybrominated dibenzofurans, and bisphenols. Moreover, the imine-based covalent organic framework coated capillary showed good reproducibility and stability, with intraday (n = 3), interday (n = 3), and column-to-column (n = 3) relative standard deviations of retention time and peak areas of less than 5%. The separation efficiency of the coated capillary remained unchanged even after 200 runs and the maximum theoretical plates reached up to 85 595 N/m for 4,4'-ethylidenebisphenol. It was predicted that the imine-based covalent organic framework stationary phase would be a strong contender for chromatographic separation with high efficiency.

10.
Sensors (Basel) ; 24(13)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-39001103

ABSTRACT

Flexible ammonia (NH3) gas sensors have gained increasing attention for their potential in medical diagnostics and health monitoring, as they serve as a biomarker for kidney disease. Utilizing the pre-designable and porous properties of covalent organic frameworks (COFs) is an innovative way to address the demand for high-performance NH3 sensing. However, COF particles frequently encounter aggregation, low conductivity, and mechanical rigidity, reducing the effectiveness of portable NH3 detection. To overcome these challenges, we propose a practical approach using polyvinyl alcohol-carrageenan (κPVA) as a template for in the situ growth of two-dimensional COF film and particles to produce a flexible hydrogel gas sensor (COF/κPVA). The synergistic effect of COF and κPVA enhances the gas sensing, water retention, and mechanical properties. The COF/κPVA hydrogel shows a 54.4% response to 1 ppm NH3 with a root mean square error of less than 5% and full recovery compared to the low response and no recovery of bare κPVA. Owing to the dual effects of the COF film and the particles anchoring the water molecules, the COF/κPVA hydrogel remained stable after 70 h in atmospheric conditions, in contrast, the bare κPVA hydrogel was completely dehydrated. Our work might pave the way for highly sensitive hydrogel gas sensors, which have intriguing applications in flexible electronic devices for gas sensing.

11.
Nano Lett ; 23(6): 2195-2202, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36913436

ABSTRACT

Due to their low cost and simplified production process, electron-transport-layer-free (ETL-free) perovskite solar cells (PSCs) have attracted great attention recently. However, the performance of ETL-free PSCs is still at a disadvantage compared to cells with a conventional n-i-p structure due to the severe recombination of charge carriers at the perovskite/anode interface. Here, we report a strategy to fabricate stable ETL-free FAPbI3 PSCs by in situ formation of a low dimensional perovskite layer between the FTO and the perovskite. This interlayer gives rise to the energy band bending and reduced defect density in the perovskite film and indirect contact and improved energy level alignment between the anode and perovskite, which facilitates charge carrier transport and collection and suppresses charge carrier recombination. As a result, ETL-free PSCs with a power conversion efficiency (PCE) exceeding 22% are achieved under ambient conditions.

12.
Molecules ; 29(11)2024 May 25.
Article in English | MEDLINE | ID: mdl-38893383

ABSTRACT

The thermally stable zirconium-based MOF, UiO-66, was employed for the preparation of bonded porous-layer open-tubular (PLOT) GC columns. The synthesis included the in situ growth of the UiO-66 film on the inner wall of the capillary through a one-step solvothermal procedure. SEM-EDX analysis revealed the formation of a thin, continuous, uniform, and compact layer of UiO-66 polycrystals on the functionalized inner wall of the column. The average polarity (ΔIav = 700) and the McReynolds constants reflected the polar nature of the UiO-66 stationary phase. Several mixtures of small organic compounds and real samples were used to evaluate the separation performance of the fabricated columns. Linear alkanes from n-pentane to n-decane were baseline separated within 1.35 min. Also, a series of six n-alkylbenzenes (C3-C8) were separated within 3 min with a minimum resolution of 3.09, whereas monohalobenzene mixtures were separated at 220 °C within 14s. UiO-66 PLOT columns are ideally suited for the isothermal separation of chlorobenzene structural isomers at 210 °C within 45 s with Rs ≥ 1.37. The prepared column featured outstanding thermal stability (up to 450 °C) without any observed bleeding or significant impact on its performance. This feature enabled the analysis of various petroleum-based samples.

13.
Molecules ; 29(2)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38257223

ABSTRACT

Sodium manganese hexacyanoferrate (NaMnHCF) has emerged as a research hotspot among Prussian blue analogs for sodium-ion battery cathode materials due to its advantages of high voltage, high specific capacity, and abundant raw materials. However, its practical application is limited by its poor electronic conductivity. In this study, we aim to solve this problem through the in situ growth of NaMnHCF on carbon nanotubes (CNTs) using a simple coprecipitation method. The results show that the overall electronic conductivity of NaMnHCF is significantly improved after the introduction of CNTs. The NaMnHCF@10%CNT sample presents a specific capacity of 90 mA h g-1, even at a current density of 20 C (2400 mA g-1). The study shows that the optimized composite exhibits a superior electrochemical performance at different mass loadings (from low to high), which is attributed to the enhanced electron transport and shortened electron pathway. Surprisingly, the cycling performance of the composites was also improved, resulting from decreased polarization and the subsequent reduction in the side reactions at the cathode/electrolyte interface. Furthermore, we revealed the evolution of potential plateau roots from the extraction of crystal water during the charge-discharge process of NaMnHCF based on the experimental results. This study is instructive not only for the practical application of NaMnHCF materials but also for advancing our scientific understanding of the behavior of crystal water during the charge-discharge process.

14.
Angew Chem Int Ed Engl ; 63(28): e202400382, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38619863

ABSTRACT

Lithium-ion batteries, essential for electronics and electric vehicles, predominantly use cathodes made from critical materials like cobalt. Sulfur-based cathodes, offering a high theoretical capacity of 1675 mAh g-1 and environmental advantages due to sulfur's abundance and lower toxicity, present a more sustainable alternative. However, state-of-the-art sulfur-based electrodes do not reach the theoretical capacities, mainly because conventional electrode production relies on mixing of components into weakly coordinated slurries. Consequently, sulfur's mobility leads to battery degradation-an effect known as the "sulfur-shuttle". This study introduces a solution by developing a microporous, covalently-bonded, imine-based polymer network grown in situ around sulfur particles on the current collector. The polymer network (i) enables selective transport of electrolyte and Li-ions through pores of defined size, and (ii) acts as a robust host to retain the active component of the electrode (sulfur species). The resulting cathode has superior rate performance from 0.1 C (1360 mAh g-1) to 3 C (807 mAh g-1). Demonstrating a high-performance, sustainable sulfur cathode produced via a simple one-pot process, our research underlines the potential of microporous polymers in addressing sulfur diffusion issues, paving the way for sulfur electrodes as viable alternatives to traditional metal-based cathodes.

15.
Angew Chem Int Ed Engl ; : e202417902, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39383300

ABSTRACT

Single- and few-layer graphene-based thermal interface materials (TIMs) with extraordinary high-temperature resistance and ultra-high thermal conductivity are very essential to develop the next-generation integrated circuits. However, the function of the as-prepared graphene-based TIMs would undergo severe degradation when being transferred to chips, as the interface between the TIMs and chips possesses a very small interfacial thermal conductance. Here, a "2.5D" all-carbon interface containing rich covalent bonding, namely a sp2/sp3 hybrid interfaces is designed and realized by a plasma-assisted chemical vapor deposition with a function of ultra-rapid quenching. The interfacial thermal conductance of the 2.5D interface is excitingly very high, up to 110-117 MWm-2K-1 at graphene thickness of 12-25 nm, which is even more than 30% higher than various metal/diamond contacts, and orders of magnitude higher than the existing all-carbon contacts. Atomic-level simulation confirm the key role of the efficient heat conduction via covalent C-C bonds, and reveal that the covalent-based heat transport could contribute 85% to the total interfacial conduction at a hybridization degree of 22 at%. This study provides an efficient strategy to design and construct 2.5D all-carbon interfaces, which can be used to develop high performance all-carbon devices and circuits.

16.
Angew Chem Int Ed Engl ; 63(45): e202411579, 2024 Nov 04.
Article in English | MEDLINE | ID: mdl-39086196

ABSTRACT

Prussian blue analogues (PBAs) have been widely studied in aqueous zinc-ion batteries (AZIBs) due to the characteristics of large specific surface area, open aperture, and straightforward synthesis. In this work, vanadium-based PBA nanocubes were firstly prepared using a mild in situ conversion strategy at room temperature without the protection of noble gas. Benefiting from the multiple-redox active sites of V3+/V4+, V4+/V5+, and Fe2+/Fe3+, the cathode exhibited an excellent discharge specific capacity of 200 mAh g-1 in AZIBs, which is much higher than those of other metal-based PBAs nanocubes. To further improve the long-term cycling stability of the V-PBA cathode, a high concentration water-in-salt electrolyte (4.5 M ZnSO4+3 M Zn(OTf)2), and a water-based eutectic electrolyte (5.55 M glucose+3 M Zn(OTf)2) were designed to successfully inhibit the dissolution of vanadium and improve the deposition of Zn2+ onto the zinc anode. More importantly, the assembled AZIBs maintained 55 % of their highest discharge specific capacity even after 10000 cycles at 10 A g-1 with superior rate capability. This study provides a new strategy for the preparation of pure PBA nanostructures and a new direction for enhancing the long-term cycling stability of PBA-based AZIBs at high current densities for industrialization prospects.

17.
Small ; 19(50): e2304808, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37501314

ABSTRACT

The synthesis of efficient and highly selective catalysts and rational reactor design play decisive roles in the industrial application of the electrocatalytic carbon dioxide reduction reaction (CO2 RR). In this study, a dual-metal-organic framework (MOF) copper-based catalytic electrode is designed and prepared in one step by in situ synthesis on a foamed copper substrate. The MOF-on-MOF structure can effectively inhibit the generation of H2 and CO, and further enhance the selectivity of HCOOH. Furthermore, by using cheap and durable poly(tetrafluoroethylene) (PTFE) instead of an expensive and fragile GDE, the optimized reactor design improves the stability and durability of the gas channel and the replaceability of the electrode. The structure-optimized reactor has a maximum Faradaic efficiency of 89.2% in neutral medium, and an average current density of 26.1 mA cm-2 in the flow cell, which has comparable performance to a GDE and can continue to operate stably. The use of PTFE improves the service life of the gas mass transfer channel, and the independent catalytic electrode can provide good catalytic efficiency. These results provide new insights into the reaction mechanism of structurally recombined double MOFs and PTFE-optimized CO2 RR reactor designs, providing technical support for the practical industrial application of the CO2 RR.

18.
Small ; 19(35): e2300804, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37183292

ABSTRACT

The rational design of the directional charge transfer channel represents an important strategy to finely tune the charge migration and separation in photocatalytic CO2 -to-fuel conversion. Despite the progress made in crafting high-performance photocatalysts, developing elegant photosystems with precisely modulated interfacial charge transfer feature remains a grand challenge. Here, a facile one-pot method is developed to achieve in situ self-assembly of Pd nanocrystals (NYs) on the transition metal chalcogenide (TMC) substrate with the aid of a non-conjugated insulating polymer, i.e., branched polyethylenimine (bPEI), for photoreduction of CO2 to syngas (CO/H2 ). The generic reducing capability of the abundant amine groups grafted on the molecular backbone of bPEI fosters the homogeneous growth of Pd NYs on the TMC framework. Intriguingly, the self-assembled TMCs@bPEI@Pd heterostructure with bi-directional spatial charge transport pathways exhibit significantly boosted photoactivity toward CO2 -to-syngas conversion under visible light irradiation, wherein bPEI serves as an efficient hole transfer mediator, and simultaneously Pd NYs act as an electron-withdrawing modulator for accelerating spatially vectorial charge separation. Furthermore, in-depth understanding of the in situ formed intermediates during the CO2 photoreduction process are exquisitely probed. This work provides a quintessential paradigm for in situ construction of multi-component heterojunction photosystem for solar-to-fuel energy conversion.

19.
Nanotechnology ; 34(24)2023 Mar 24.
Article in English | MEDLINE | ID: mdl-36881878

ABSTRACT

Metal halide perovskite quantum dots (QDs) have excellent optoelectronic properties; however, their poor stability under water or thermal conditions remains an obstacle to commercialization. Here, we used a carboxyl functional group (-COOH) to enhance the ability of a covalent organic framework (COF) to adsorb lead ions and grow CH3NH3PbBr3(MAPbBr3) QDsin situinto a mesoporous carboxyl-functionalized COF to construct MAPbBr3QDs@COF core-shell-like composites to improve the stability of perovskites. Owing to the protection of the COF, the as-prepared composites exhibited enhanced water stability, and the characteristic fluorescence was maintained for more than 15 d. These MAPbBr3QDs@COF composites can be used to fabricate white light-emitting diodes with a color comparable to natural white emission. This work demonstrates the importance of functional groups for thein situgrowth of perovskite QDs, and coating with a porous structure is an effective way to improve the stability of metal halide perovskites.

20.
Nanotechnology ; 34(32)2023 May 25.
Article in English | MEDLINE | ID: mdl-37080185

ABSTRACT

SnO2has attracted extensive research attentions as a promising anode material for sodium-ion batteries (SIBs) due to its high theoretical capacity. However, its application is largely hindered by sluggish sodium ion diffusion and drastic volume change during the conversion reaction and alloying process. Herein, ultra-fine SnO2nanocrystals (3-5 nm) anchored on reduced graphene oxide (rGO) is demonstrated as a promising anode material for SIBs. Ultra-fine SnO2nanocrystals are uniformly grown on rGO sheets by a facile one-step hydrothermal process. Nano-scaled SnO2grains tolerate volume expansion and provide shortened diffusion pathway for sodium ions, and meanwhile rGO acts as an excellent conductive matrix, thus endowing the composite electrode with excellent electrochemical performance. More importantly, the ratio of SnO2to rGO in the composite is optimized. The optimized sample delivers an initial charge capacity of 518 mAh g-1at a current density of 50 mA g-1, and 504 mAh g-1after 300 cycles at a current density of 100 mA g-1. Furthermore, a capacity of 287 mAh g-1can be maintained after 1000 cycles at a current density of 1000 mA g-1.

SELECTION OF CITATIONS
SEARCH DETAIL