Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
Add more filters

Publication year range
1.
Arch Microbiol ; 206(3): 120, 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38396230

ABSTRACT

Apple (Malus domestica Borkh) is one of the most consumed and nutritious fruits. Iran is one of the main producers of the apple in the world. Diplodia bulgarica is the major causal agent of apple tree decline in Iran. Biological control is a nature-friendly approach to plant disease management. Trichoderma zelobreve was isolated from apple trees infected with Diplodia bulgarica in West Azarbaijan province of Iran. The results showed that T. zelobreve strongly inhibited the colony growth of D. bulgarica. In vivo assay on detached branches of apple tree cv. Golden Delicious using T. zelobreve mycelial plug showed that canker length/stem length (CL/SL) and canker perimeter/stem perimeter (CP/SP) indices decreased by 76 and 69%, respectively, 21 days after inoculation. Additionally, wettable powder formulation (WPF) containing the antagonistic fungus "T. zelobreve" decreased CL and CP/SP by 75 and 67%, respectively, 6 months after inoculation. Moreover, canker progress curves and the area under the disease progress curve (AUDPC) supported these findings. The growth temperatures of the antagonist and pathogen were similar, indicating the adaptation of T. zelobreve for biocontrol of apple canker caused by D. bulgarica. The results also showed that T. zelobreve-based WPF stored at 25 °C assure excellent shelf life at least 4 months, allowing the bioproduct to be stored at room temperature, which is a great advantage and cost-effective option.


Subject(s)
Ascomycota , Malus , Trichoderma , Malus/microbiology , Fruit/microbiology
2.
Fish Shellfish Immunol ; 148: 109496, 2024 May.
Article in English | MEDLINE | ID: mdl-38461875

ABSTRACT

Using the unique structures found in natural materials to produce new antibacterial drugs is crucial. Actinobacteria is well-known for its ability to produce naturally occurring chemicals with a variety of structural features that can be used as weapons against infectious bacteria. In the present study, the Streptomyces coeruleorubidus metabolites were characterized and their efficacy in suppressing Streptococcus agalactiae growth was carried out both in vitro and in vivo. The metabolites of S. coeruleorubidus were purified and identified as octasiloxane-hexadecamethyl (OHM). In vivo antibacterial activity of OHM revealed an inhibitory minimum concentration value of 0.5 µg/ml against S. agalactiae and induced ultrastructural cell changes revealed by scanning electron microscope. The safe concentration of OHM was determined as 0.8 mg/L for Nile tilapia. Four in vivo treatments were treated with 0 and 0.8 mg/L OHM and with or without challenge by S. agalactiae (1 × 107 CFU/mL) named control, OHM, S. agalactiae, and S. agalactiae + OHM groups. The OHM treatment improved the survival of Nile tilapia by 33.33% than S. agalactiae challenge group. Waterborne OHM treatment significantly mitigated the deleterious effects of S. agalactiae on hematological, hepato-renal functions, stress indicators, and antioxidant balance. OHM significantly alleviated nitric oxide levels, complement 3, IgM, and lysozyme activity, downregulation of liver antioxidant genes expression in S. agalactiae group. Furthermore, the addition of OHM to challenged fish with S. agalactiae-significantly reversed dramatic negative regulation of inflammatory, apoptosis, and immune related gene expression (caspase-3, bax, pcna, tnf-α, ifn-γ, il-8 il-1ß, il-10, tgf-ß, and bcl-2 in the Nile tilapia spleen. Additionally, the damaged hepatic and splenic structure induced by bacterial infection was restored with OHM treatment. Finally, S. coeruleorubidus metabolites (mainly OHM) revealed in vitro and in vivo antibacterial activity and showed alleviated effects on the physiological status of S. agalactiae infected tilapia.


Subject(s)
Cichlids , Fish Diseases , Streptococcal Infections , Streptomyces , Animals , Cytokines/genetics , Streptococcus agalactiae/physiology , Antioxidants , Anti-Bacterial Agents/pharmacology , Oxidative Stress , Gene Expression , Apoptosis
3.
Ecotoxicol Environ Saf ; 273: 116159, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38417318

ABSTRACT

Screening the activity of the cytochrome P450 (CYP450) mixed function oxidase system in aquatic invertebrates received seldom applications in ecotoxicology due to low baseline enzymatic activities characteristic for these organisms. In this study, an existing in vivo spectrofluorometric assay method based on quantifying the cytochrome P450 mediated conversion of 7-ethocycoumarin (EtC) used as substrate to the product 7-hydroxycoumarin (HCm) called: ethoxycoumarin-O-deethylase (ECOD) activity, initially applicable on pooled samples of Daphnia magna, was optimized for use on individual organisms. Optimal assay conditions have been established for as small as 3- and 6 days old individuals, and the limits of spectrofluorometric detection of HCm excreted by daphnids in the incubation media were defined. The modified assay was tested by screening the modulation of ECOD activity in daphnids following 24 h exposure to ß-naphthoflavone (ß-NF, reference CYP450 inducer) and to prochloraz (PCZ), a potent CYP450 inhibitor. Maximal ECOD activity levels in daphnids were recorded following 2 hours of incubation to 200 nM EtC. The limit of spectrofluorometric detection of HCm in the incubation media was 6.25 nM, achieved by more than 80% of three days old daphnids and all six days old individuals. Exposure of daphnids to ß-NF demonstrated a bell-shaped ECOD activity induction potential, while PCZ elicited partial (60%) inhibition of ECOD activity. This optimized in vivo ECOD activity assay may serve as a cost-effective tool to study the responsiveness of Phase-I metabolism in D. magna to toxic pressure and its applicability to other aquatic invertebrates is also worth for consideration.


Subject(s)
Cytochrome P-450 Enzyme System , Daphnia magna , Humans , Animals , 7-Alkoxycoumarin O-Dealkylase , Cytochrome P-450 Enzyme System/metabolism , beta-Naphthoflavone/toxicity , Daphnia
4.
Bioorg Chem ; 141: 106874, 2023 12.
Article in English | MEDLINE | ID: mdl-37769524

ABSTRACT

New series of substituted 2-alkoxycyanopyridine derivatives were synthesized and evaluated for their in vitro and in vivo anticancer activities. Comparing the evaluated activities against cancer cell lines to the broad-spectrum anticancer doxorubicin, and the kinase inhibitor sorafenib, compounds 3a, 4b, 4c, 7a, and 8d demonstrated superior anticancer efficacy with elevated safety profiles and selectivity indices, particularly against MCF7 breast cancer. For exploration of their mechanism of action, assays for inhibition of EGFR, HER2 kinase, and DHFR were performed. The promising synthesized compounds exhibited potent dual kinase EGFR/HER2 inhibitory activity with IC50values of 0.248/0.156 µM for 4b and 0.138/0.092 µM for 4c. Additionally, with IC50 values of 0.138 and 0.193 M, respectively, 4b and 4c had the greatest DHFR inhibitory activity that was comparable to methotrexate. In the MCF7 breast cancer cell line, they caused arrest at the S phase of the cell cycle and exhibited apoptosis induction activity. With restored caspase-3 immunoexpression, the anti-breast cancer assay performed in vivo of 4b and 4c demonstrated a substantial decrease in tumor volume. Results from molecular modeling were in agreement with biological assays proving the importance of the 3-caynopyridine, two substituted phenyl rings attached to central pyridine ring, and propoxy side chain moieties for binding with the receptors. As 4c works by inhibiting both EGFR/HER2 kinase, DHFR enzymes, in addition to cellular apoptosis, it could be viewed as a model of compounds possessing a multi-targeting anticancer activity. Collectively, compounds 4b and 4c might represent prototypes for further development as anticancer molecules.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Humans , Female , Molecular Structure , Structure-Activity Relationship , ErbB Receptors , Drug Screening Assays, Antitumor , Antineoplastic Agents/chemistry , Apoptosis , Protein Kinase Inhibitors , Breast Neoplasms/drug therapy , Cell Proliferation , Cell Line, Tumor , Molecular Docking Simulation
5.
Mar Drugs ; 21(2)2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36827098

ABSTRACT

The industrial processing of fish for food purposes also generates a considerable number of by-products such as viscera, bones, scales, and skin. From a value-added perspective, fish by-products can act also as raw materials, especially because of their collagen content (particularly in fish skin). Interestingly, the potential of marine collagen for cosmetic applications is enormous and, remarkably, the extraction of this protein from fish skins has been established for different species. Using this approach, we investigated the integration of marine collagen (COLRp_I) extracted from the skin of the Greenland halibut as an active ingredient in a cosmetic hydrogel formulation. In this study, extracts of marine collagen at concentrations up to 10 mg/mL showed a non-cytotoxic effect when cultured with fibroblast cells for 3 days. In addition, marine collagen extract, when incorporated into a cosmetic hydrogel formulation, met criterion A of ISO 11930:2019 regarding the efficacy of the preservative system (challenge test). In addition, the cosmetic formulations based on marine collagen at dosages of 0.1, 0.25 and 0.5% were tested in a clinical study on the skin of the forearms of 23 healthy volunteers, showing a sightly hydration effect, suggesting its potential for beauty applications. Moreover, this work illustrates that the circular economy concept applied to the fish processing industry can represent important benefits, at innovation, environmental and economic levels.


Subject(s)
Cosmetics , Flounder , Animals , Greenland , Skin/metabolism , Collagen/metabolism , Fishes
6.
Int J Mol Sci ; 24(6)2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36982517

ABSTRACT

Microparticulate systems such as microparticles, microspheres, microcapsules or any particle in a micrometer scale (usually of 1-1000 µm) are widely used as drug delivery systems, because they offer higher therapeutic and diagnostic performance compared to conventional drug delivery forms. These systems can be manufactured with many raw materials, especially polymers, most of which have been effective in improving the physicochemical properties and biological activities of active compounds. This review will focus on the in vivo and in vitro application in the last decade (2012 to 2022) of different active pharmaceutical ingredients microencapsulated in polymeric or lipid matrices, the main formulation factors (excipients and techniques) and mostly their biological activities, with the aim of introducing and discussing the potential applicability of microparticulate systems in the pharmaceutical field.


Subject(s)
Drug Delivery Systems , Polymers , Drug Compounding/methods , Drug Delivery Systems/methods , Polymers/chemistry , Excipients , Capsules , Microspheres , Particle Size
7.
Molecules ; 28(17)2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37687143

ABSTRACT

The traditional use of Mirabilis jalapa L. roots to enhance male sexual performance prompted us to assess the in silico, in vitro, and in vivo aphrodisiac activities of its hydroethanolic extract using normal male rats. Spectroscopic characterization indicated the presence of ß-D-glucopyranoside, methyl-1,9-benzyl-2,6-dichloro-9H-purine, and Bis-(2-ethylhexyl)-phthalate; these compounds have a significant inhibitory effect on the phosphodiesterase-5 (PDE-5) enzyme in silico evaluation and minerals (including zinc, cadmium, and magnesium). Other phytochemical analyses revealed the presence of phenolic compounds and flavonoids. These phytochemicals and minerals may contribute to the aphrodisiac activities of the extract. Additionally, the in vivo study revealed that the administration of M. jalapa root extract (300 mg/kg) significantly enhanced (p < 0.01, p < 0.03) mount, intromission, and ejaculation frequencies while significantly (p < 0.05) decreasing the mount and intromission latencies, as well as the post-ejaculatory interval time, in comparison with the standard drugs sildenafil and ginseng, resulting in enhanced erection and sexual performance in the rats. Furthermore, the extract significantly (p < 0.05) increased penile reflexes and also elevated the levels of testosterone and luteinizing hormones. Extract (300 mg/kg) significantly (p < 0.05) inhibited the PDE-5 enzyme in an in vitro study. Concludingly, the comprehensive findings of this study suggest that a standardized herbal extract derived from M. jalapa roots alleviates erectile dysfunction and premature ejaculation in male rats. M. jalapa root extract proved to be an alternative treatment for erectile dysfunction and premature ejaculation.


Subject(s)
Aphrodisiacs , Erectile Dysfunction , Mirabilis , Premature Ejaculation , Male , Animals , Rats , Humans , Aphrodisiacs/pharmacology , Phytochemicals/pharmacology , Plant Extracts/pharmacology
8.
Drug Dev Res ; 82(6): 789-801, 2021 09.
Article in English | MEDLINE | ID: mdl-33398913

ABSTRACT

A series of N-arylalkanyl 2-naphthamides (Xa~e), which were predicted from virtual molecular docking on a built xanthine oxidase template as potential inhibitors, were synthesized. Their inhibitory activity against xanthine oxidase was assayed. Among these prepared, compounds Xb (IC50 13.6 µM), Xc (IC50 13.1 µM), and Xd (IC50 12.5 µM) showed comparable inhibitory activity to allopurinol (IC50 22.1 µM). The in vitro assay result correlated well with molecular docking scores, ΔG = -16.99, -17.66, and -17.13 Kcal/mol, respectively. On the potassium oxonate-induced hyperuricemic mice model, oral administration of Xc-Ac (40 mg/ Kg), the per-O-acetylated Xc, could reduce the blood uric acid level by 60% in comparison to the normal control group and is statistically significant (p < .01) while compared with the hyperuricemic mice group.


Subject(s)
Hyperuricemia , Xanthine Oxidase , Animals , Enzyme Inhibitors/pharmacology , Hyperuricemia/chemically induced , Hyperuricemia/drug therapy , Mice , Molecular Docking Simulation , Structure-Activity Relationship , Xanthine Oxidase/metabolism
9.
Cytotherapy ; 21(11): 1095-1111, 2019 11.
Article in English | MEDLINE | ID: mdl-31711733

ABSTRACT

Pluripotent stem cells offer the potential for an unlimited source for cell therapy products. However, there is concern regarding the tumorigenicity of these products in humans, mainly due to the possible unintended contamination of undifferentiated cells or transformed cells. Because of the complex nature of these new therapies and the lack of a globally accepted consensus on the strategy for tumorigenicity evaluation, a case-by-case approach is recommended for the risk assessment of each cell therapy product. In general, therapeutic products need to be qualified using available technologies, which ideally should be fully validated. In such circumstances, the developers of cell therapy products may have conducted various tumorigenicity tests and consulted with regulators in respective countries. Here, we critically review currently available in vivo and in vitro testing methods for tumorigenicity evaluation against expectations in international regulatory guidelines. We discuss the value of those approaches, in particular the limitations of in vivo methods, and comment on challenges and future directions. In addition, we note the need for an internationally harmonized procedure for tumorigenicity assessment of cell therapy products from both regulatory and technological perspectives.


Subject(s)
Carcinogenesis/pathology , Cell- and Tissue-Based Therapy/adverse effects , Cell- and Tissue-Based Therapy/standards , Practice Guidelines as Topic , Animals , Cell- and Tissue-Based Therapy/methods , Consensus , Health Services Needs and Demand , Humans , In Vitro Techniques , Mutagenicity Tests/methods , Mutagenicity Tests/standards , Pluripotent Stem Cells/physiology , Practice Guidelines as Topic/standards
10.
Mol Biol Rep ; 46(6): 6501-6512, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31583564

ABSTRACT

Enteropathogenic Escherichia coli (EPEC) is one of the resistance bacteria towards antibiotics and have been raising problem during treatments. Therefore, a new antibiotic candidate is required. Plantaricin E and F recombinant have been successfully produced by a GRAS host Lactococcus lactis. This study was aimed to evaluate the efficacy and toxicity of plantaricin E and F recombinant against EPEC K1.1 infection by in vivo assay. The production of plantaricin E and F recombinants from Lactococcus lactis was conducted and encapsulated. The in vivo study was carried out by inoculating the mice perorally with EPEC K1.1 for 7 days then treated with 100, 250, and 500 mg/kg body weight/day of recombinant plantaricin E and F for another 7 days. The toxicity assay were observed in ddY mice using various concentrations of treatment (50, 100, 1000, and 5000 mg/kg/body weight) doses perorally for 48 h. The result showed that the plantaricin E and F recombinant were successfully produced in Lactococcus lactis expression host with 3.7 kDa and 3.8 kDa in size. The efficacy study revealed the optimal doses of plantaricin E and F recombinant against EPEC K1.1 infection was 250 mg/kgBW for plantaricin E and 500 mg/kgBW for plantaricin F. The plantarisin E and F recombinant treatment showed improvement in leukocyte, hematocrit, and hemoglobin levels as well in decreasing malondialdehyde (MDA) level. Observation of the intestine histopathology showed small amounts of mononuclear inflammatory cell infiltration than the other groups of treatment. The acute toxicity assay showed that there was no mortality observed during the assay, even after 5000 mg/kg body weight of plantarisin E and F recombinant treatment (LD50 > 5000 mg/KgBW). The hematological and biochemical observations showed normal levels in leukocytes, erythrocytes, hematocrit, hemoglobin, platelets, urea, creatinine, and alanine transaminase aspartate transaminase (SGOT and SGPT) while histopathological observation shows a picture of normal liver and kidney cells. This study confirmed the application of bacteriocin for further academic and industrial purposes as a non-toxic substance for food preservative and antibiotic candidate.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Antioxidants/administration & dosage , Bacteriocins/administration & dosage , Enteropathogenic Escherichia coli/drug effects , Escherichia coli Infections/drug therapy , Lactococcus lactis/metabolism , Administration, Oral , Animals , Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Bacteriocins/genetics , Bacteriocins/pharmacology , Capsules , Disease Models, Animal , Escherichia coli Infections/metabolism , Food Microbiology , HeLa Cells , Humans , Lactococcus lactis/genetics , Male , Malondialdehyde/metabolism , Mice , Recombinant Proteins/metabolism , Recombinant Proteins/pharmacology
11.
Article in English | MEDLINE | ID: mdl-30224532

ABSTRACT

In a focused exploration, we designed, synthesized, and biologically evaluated chiral conjugated new chloroquine (CQ) analogues with substituted piperazines as antimalarial agents. In vitro as well as in vivo studies revealed that compound 7c showed potent activity (in vitro 50% inhibitory concentration, 56.98 nM for strain 3D7 and 97.76 nM for strain K1; selectivity index in vivo [up to at a dose of 12.5 mg/kg of body weight], 3,510) as a new lead antimalarial agent. Other compounds (compounds 6b, 6d, 7d, 7h, 8c, 8d, 9a, and 9c) also showed moderate activity against a CQ-sensitive strain (3D7) and superior activity against a CQ-resistant strain (K1) of Plasmodium falciparum Furthermore, we carried out docking and three-dimensional quantitative structure-activity relationship (3D-QSAR) studies of all in-house data sets (168 molecules) of chiral CQ analogues to explain the structure-activity relationships (SAR). Our new findings specify the significance of the H-bond interaction with the side chain of heme for biological activity. In addition, the 3D-QSAR study against the 3D7 strain indicated the favorable and unfavorable sites of CQ analogues for incorporating steric, hydrophobic, and electropositive groups to improve the antimalarial activity.


Subject(s)
Antimalarials/chemical synthesis , Chloroquine/analogs & derivatives , Heme/chemistry , Malaria/drug therapy , Piperazines/chemistry , Plasmodium falciparum/drug effects , Animals , Antimalarials/pharmacology , Chlorocebus aethiops , Chloroquine/chemical synthesis , Chloroquine/pharmacology , Drug Design , Drug Resistance/drug effects , Erythrocytes/drug effects , Erythrocytes/parasitology , Hemeproteins/antagonists & inhibitors , Hemeproteins/biosynthesis , Humans , Hydrophobic and Hydrophilic Interactions , Inhibitory Concentration 50 , Malaria/mortality , Malaria/parasitology , Mice , Molecular Docking Simulation , Parasitic Sensitivity Tests , Plasmodium falciparum/growth & development , Plasmodium falciparum/metabolism , Plasmodium yoelii/drug effects , Plasmodium yoelii/growth & development , Plasmodium yoelii/metabolism , Static Electricity , Stereoisomerism , Structure-Activity Relationship , Survival Analysis , Vero Cells
12.
Bioorg Med Chem ; 26(17): 4952-4962, 2018 09 15.
Article in English | MEDLINE | ID: mdl-30190181

ABSTRACT

Alzheimer's disease (AD) is the most common form of dementia. Inhibition of BChE might be a useful therapeutic target for AD. A new series of Carbazole-Benzyl Pyridine derivatives were designed synthesized and evaluated as butyrylcholinesterase (BChE) inhibitors. In vitro assay revealed that all of the derivatives had selective and potent anti- BChE activities. 3-((9H-Carbazol-9-yl)methyl)-1-(4-chlorobenzyl)pyridin-1-ium chloride (compound 8f) had the most potent anti-BChE activity (IC50 value = 0.073 µM), the highest BChE selectivity and mixed-type inhibition. Docking study revealed that 8f interacted with the peripheral site, the choline binding site, catalytic site and the acyl pocket of BChE. Physicochemical properties were accurate to Lipinski's rule. In addition, compound 8f demonstrated neuroprotective activity at 10 µM. This compound could also inhibit AChE-induced and self-induced Aß peptide aggregation at concentration of 100 µM and 10 µM respectively. The in-vivo study showed that compound 8f in 10 mg/kg increased the time spent in target quadrant in the probe day and decreased mean training period scape latency in rats. All results suggest that new sets of potent selective inhibitors of BChE have a therapeutic potential for the treatment of AD.


Subject(s)
Butyrylcholinesterase/drug effects , Carbazoles/chemistry , Carbazoles/pharmacology , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/pharmacology , Drug Design , Acetylcholinesterase/drug effects , Alzheimer Disease/drug therapy , Animals , Carbazoles/chemical synthesis , Carbazoles/therapeutic use , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/therapeutic use , Humans , Inhibitory Concentration 50 , Kinetics , Molecular Docking Simulation , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacology , PC12 Cells , Piperidines/chemistry , Rats
13.
Bioorg Med Chem ; 25(14): 3736-3745, 2017 07 15.
Article in English | MEDLINE | ID: mdl-28533113

ABSTRACT

Serine racemase (SRR) is an enzyme that produces d-serine from l-serine. d-Serine acts as an endogenous coagonist of NMDA-type glutamate receptors (NMDARs), which regulate many physiological functions. Over-activation of NMDARs induces excitotoxicity, which is observed in many neurodegenerative disorders and epilepsy states. In our previous works on the generation of SRR gene knockout (Srr-KO) mice and its protective effects against NMDA- and Aß peptide-induced neurodegeneration, we hypothesized that the regulation of NMDARs' over-activation by inhibition of SRR activity is one such therapeutic strategy to combat these disease states. In the previous study, we performed in silico screening to identify four compounds with inhibitory activities against recombinant SRR. Here, we synthesized 21 derivatives of candidate 1, one of four hit compounds, and performed screening by in vitro evaluations. The derivative 13J showed a significantly lower IC50 value in vitro, and suppressed neuronal over-activation in vivo.


Subject(s)
Acrylamides/chemistry , Enzyme Inhibitors/chemistry , Protective Agents/chemistry , Racemases and Epimerases/antagonists & inhibitors , Thiourea/analogs & derivatives , Acrylamides/administration & dosage , Acrylamides/chemical synthesis , Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/metabolism , Animals , Binding Sites , Brain/drug effects , Brain/metabolism , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Humans , Hydrogen Bonding , Mice , Mice, Knockout , Mice, Transgenic , Molecular Docking Simulation , Optical Imaging , Protective Agents/chemical synthesis , Protective Agents/pharmacology , Protein Structure, Tertiary , Racemases and Epimerases/genetics , Racemases and Epimerases/metabolism , Receptors, N-Methyl-D-Aspartate/chemistry , Receptors, N-Methyl-D-Aspartate/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Thiourea/administration & dosage , Thiourea/chemical synthesis , Thiourea/chemistry
14.
Exp Parasitol ; 183: 56-63, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29074138

ABSTRACT

Human schistosomiasis is an important neglected tropical disease caused by blood flukes of the genus Schistosoma and is responsible for more than 280,000 deaths annually. Treatment for this disease relies currently on a single drug, praziquantel (PZQ). Concerns regarding PZQ resistance and insensitivity of juvenile schistosomes have increased the interest in resorting to medicinal plants for alternative drug therapies. This study aimed to perform an in vivo schistosomicidal activity evaluation of crude hexanic (HE) and ethanolic (EE) extracts obtained from Phyllanthus amarus in mice infected with Schistosoma mansoni (BH strain). Mice were treated orally with a single dose of 100 or 250 mg/kg, on two different infection periods, 30 and 45 days post-infection (dpi). Parameters such as worm recovery, faecal egg count, intestinal tissue egg count and liver histopathology were evaluated. Treatment against young adult (30 dpi) and adult (45 dpi) worms were more effective compared to the control group treated with PZQ. At a concentration of 250 mg/kg (30 dpi) EE showed a 54.4% female reduction and a 61.2% total worm reduction whilst at a concentration of 100 mg/kg (45 dpi) HE showed a 40.6% female worm reduction and a 45.3% total worm reduction. Histopathological examination showed a granuloma decrease in both number and size for groups treated with 250 mg/kg of HE (45 dpi) or EE (30 or 45 dpi). From these results, it can be concluded that both hexanic and ethanolic extracts have antischistosomal activities, however, act differently according to the parasites age. The schistosomicidal activity results in groups treated 30 days post infection is extremely important since praziquantel does not show activity against the juvenile forms of Schistosoma.


Subject(s)
Anthelmintics/pharmacology , Phyllanthus/chemistry , Plant Extracts/pharmacology , Schistosoma mansoni/drug effects , Schistosomiasis mansoni/drug therapy , Animals , Anthelmintics/therapeutic use , Biomphalaria , Colon, Ascending/parasitology , Ethanol , Feces/parasitology , Female , Gas Chromatography-Mass Spectrometry , Hexanes , Liver/pathology , Mice , Parasite Egg Count , Plant Extracts/therapeutic use , Praziquantel/pharmacology , Praziquantel/therapeutic use , Schistosomiasis mansoni/parasitology , Solvents
15.
Article in English | MEDLINE | ID: mdl-27459681

ABSTRACT

In this study, we assessed the chronic effects of the two antimicrobial substances triclocarban (TCC) and triclosan (TCS) on reproduction of a mollusk species by using the reproduction test with the New Zealand mudsnail Potamopyrgus antipodarum. Snails coming from a laboratory culture were exposed for 28 days to nominal concentrations ranging from 0.1 up to 10 µg/L for both chemicals (measured 0.082-8.85 µg TCC/L; 0.068-6.26 µg TCS/L). At the end of the experiment, snails were dissected and embryos in the brood pouch were counted to assess the individualized reproductive success of adult snails. Exposure to TCC resulted in an inverted u-shaped concentration-response relationship, with a stimulation of reproduction at low concentrations followed by an inhibition at higher concentrations. The no observed effect concentration (NOEC) and the lowest observed effect concentration (LOEC) were 0.082 and 0.287 µg/L, respectively. TCS caused significantly increased embryo numbers at all tested concentrations, except in the group of 0.170 µg/L. Therefore, the NOEC for TCS was 0.170 µg/L and the LOEC was 0.660 µg/L. These results indicate that TCC and TCS may cause reproductive effects at environmentally relevant concentrations indicating a potential risk for aquatic organisms in the environment.


Subject(s)
Anti-Infective Agents/toxicity , Carbanilides/toxicity , Reproduction/drug effects , Snails/drug effects , Triclosan/toxicity , Animals , Dose-Response Relationship, Drug , Female , New Zealand , No-Observed-Adverse-Effect Level , Water Pollutants, Chemical/toxicity
16.
Med Chem ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38757318

ABSTRACT

BACKGROUND: Chagas disease, a condition caused by Trypanosoma cruzi, is an endemic disease in Latin American countries that affects approximately eight million people worldwide. It is a continuing public health problem. As nifurtimox and benznidazole are the two pharmacological treatments currently used to treat it, the present research proposes new therapeutic alternatives. Previous studies conducted on naphthoquinone derivatives have found interesting trypanocidal effects on epimastigotes, with the molecules 2-phenoxy-1,4-naphthoquinone (IC50= 50 nM and SI < 250) and 2-(3-nitrophenoxy)-naphthalene-1,4-dione (IC50= 20 nM y SI=625) presenting the best biological activity. METHOD: The present study evaluated the efficacy of in vitro, ex vivo and in vivo models of two aryloxyquinones, 2-phenoxy-1,4-naphthoquinone (1) and 2-(3-nitrophenoxy)-naphthalene-1,4- dione (2), against two Mexican T. cruzi strains in both their epimastigote and blood Trypomastigote stage. Both compounds were evaluated against T. cruzi using a mouse model (CD1) infected with Mexican isolates of T. cruzi, nifurtimox and benznidazole used as control drugs. Finally, the cytotoxicity of the two compounds against the J774.2 mouse macrophage cell line was also determined. RESULT: The in vitro and in vivo results obtained indicated that both quinones were more active than the reference drugs. Compound 1 presents in vivo activity, showing up to 40% parasite reduction after 8 h of administration, a finding which is 1.25 times more effective than the results obtained using nifurtimox. CONCLUSION: These are encouraging results for proposing new naphthoquinone derivatives with potential anti-T. cruzi activity.

17.
J Fungi (Basel) ; 10(4)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38667924

ABSTRACT

The Candida auris species is a multidrug-resistant yeast capable of causing systemic and lethal infections. Its virulence and increase in outbreaks are a global concern, especially in hospitals where outbreaks are more recurrent. In many cases, monotherapy is not effective, and drug combinations are opted for. However, resistance to antifungals has increased over the years. In view of this, nanoemulsions (NEs) may represent a nanotechnology strategy in the development of new therapeutic alternatives. Therefore, this study developed a co-encapsulated nanoemulsion with amphotericin B (AmB) and micafungin (MICA) (NEMA) for the control of infections caused by C. auris. NEs were developed in previous studies. Briefly, the NEs were composed of a mixture of 10% sunflower oil and cholesterol as the oil phase (5:1), 10% Polyoxyethylene (20) cetyl ether (Brij® 58) and soy phosphatidylcholine as surfactant/co-surfactant (2:1), and 80% PBS as the aqueous phase. The in vivo assay used BALB/c mice weighing between 25 and 28 g that were immunosuppressed (CEUA/FCF/CAr n° 29/2021) and infected with Candida auris CDC B11903. The in vivo results show the surprising potentiate of the antifungal activity of the co-encapsulated drugs in NE, preventing yeast from causing infection in the lung and thymus. Biochemical assays showed a higher concentration of liver and kidney enzymes under treatment with AmB and MICAmB. In conclusion, this combination of drugs to combat the infection caused by C. auris can be considered an efficient therapeutic option, and nanoemulsions contribute to therapeutic potentiate, proving to be a promising new alternative.

18.
Biomedicines ; 11(9)2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37760782

ABSTRACT

Schistosomiasis, a potentially fatal chronic disease whose etiological agents are blood trematode worms of the genus Schistosoma spp., is one of the most prevalent and debilitating neglected diseases. The treatment of schistosomiasis depends exclusively on praziquantel (PZQ), a drug that has been used since the 1970s and that already has reports of reduced therapeutic efficacy, related with the development of Schistosoma-resistant or -tolerant strains. Therefore, the search for new therapeutic alternatives is an urgent need. Plumbagin (PLUM), a naphthoquinone isolated from the roots of plants of the genus Plumbago, has aroused interest in research due to its antiparasitic properties against protozoa and helminths. Here, we evaluated the in vivo schistosomicidal potential of PLUM against Schistosoma mansoni and the in silico pharmacokinetic parameters. ADMET parameters and oral bioavailability were evaluated using the PkCSM and SwissADME platforms, respectively. The study was carried out with five groups of infected mice and divided as follows: an untreated control group, a control group treated with PZQ, and three groups treated orally with 8, 16, or 32 mg/kg of PLUM. After treatment, the Kato-Katz technique was performed to evaluate a quantity of eggs in the feces (EPG). The animals were euthanized for worm recovery, intestine samples were collected to evaluate the oviposition pattern, the load of eggs was determined on the hepatic and intestinal tissues and for the histopathological and histomorphometric evaluation of tissue and hepatic granulomas. PLUM reduced EPG by 65.27, 70.52, and 82.49%, reduced the total worm load by 46.7, 55.25, and 72.4%, and the female worm load by 44.01, 52.76, and 71.16%, for doses of 8, 16, and 32 mg/kg, respectively. PLUM also significantly reduced the number of immature eggs and increased the number of dead eggs in the oogram. A reduction of 36.11, 46.46, and 64.14% in eggs in the hepatic tissue, and 57.22, 65.18, and 80.5% in the intestinal tissue were also observed at doses of 8, 16, and 32 mg/kg, respectively. At all doses, PLUM demonstrated an effect on the histopathological and histomorphometric parameters of the hepatic granuloma, with a reduction of 41.11, 48.47, and 70.55% in the numerical density of the granulomas and 49.56, 57.63, and 71.21% in the volume, respectively. PLUM presented itself as a promising in vivo antiparasitic candidate against S. mansoni, acting not only on parasitological parameters but also on hepatic granuloma. Furthermore, in silico, PLUM showed good predictive pharmacokinetic profiles by ADMET.

19.
Vaccine ; 41(37): 5383-5391, 2023 08 23.
Article in English | MEDLINE | ID: mdl-37468389

ABSTRACT

The viral safety of biological products is ensured by tests throughout the production chain, and, for certain products, by steps in the manufacturing process enabling the elimination or inactivation of viruses. Current testing programs include sample inoculation in animals and embryonic eggs. Following the 3Rs principles of replacement, reduction, and refinement of animal-use methods, such techniques are intended to be replaced not only for ethical reasons but also because of their inherent technical limitations, their long turnaround times, and their limits in virus detection. Therefore, we have compared the limit and range of sensitivity of in vivo tests used for viral testing of cells with a transcriptomic assay based on Next Generation Sequencing (NGS). Cell cultures were infected with a panel of nine (9) viruses, among them only five (5) were detected, with variable sensitivity, by in vivo tests. The transcriptomic assay was able to detect one (1) infected cell among 103 to 107 non-infected cells for all viruses assessed, including those not detected by the conventional in vivo tests. Here we show that NGS extends the breath of detection of viral contaminants compared to traditional testing. Collectively, these results support the replacement of the conventional in vivo tests by an NGS-based transcriptomic assay for virus safety testing of cell substrates.


Subject(s)
Biological Products , Viruses , Animals , Transcriptome , High-Throughput Nucleotide Sequencing , Viruses/genetics , Cell Culture Techniques
20.
Nanotheranostics ; 7(3): 281-298, 2023.
Article in English | MEDLINE | ID: mdl-37064612

ABSTRACT

The fluorescent imaging and drug delivery utilizing carbon dots nanomaterials (CDs) have attracted tremendously due to their unique optical ability and outstanding biocompatibility. Herein, we reported a new design of chalcone-loaded carbon dots (Chalcone-APBA-CDs) to serve chalcone transport onto cancer cells and enhance the CDs bioimaging and antitumor activity. The boronic acid was directly introduced to carbon dots (CDs) via pyrolysis process to drive CDs specifically to the cancer cell, and chalcone was mediated on CDs by ultrasonication to perform facile release of the drug delivery model. The successfully synthesized Chalcone-APBA-CDs were proved by their chemical structure, fluorescent activities, in vitro and in vivo analyses, and drug release systems using different pH. In addition, flow cytometry and confocal fluorescent imaging proved CDs' cellular uptake and imaging performance. In vitro analyses further proved that the Chalcone-APBA-CDs exhibited a higher toxicity value than bare CDs and efficiently inhibited the proliferation of the HeLa cells depending on their dose-response. Finally, the performance of Chalcone-APBA-CDs on cancer healing capability was examined in vivo with fibrosarcoma cancer-bearing mice, which showed a remarkable ability to reduce the tumor volume compared with saline (control). This result strongly suggested that the Chalcone-APBA-CDs appear promising simultaneously as cancer cell imaging and drug delivery.


Subject(s)
Chalcones , Nanostructures , Humans , Animals , Mice , HeLa Cells , Carbon/chemistry , Carbon/pharmacology , Drug Delivery Systems/methods
SELECTION OF CITATIONS
SEARCH DETAIL