Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 606
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 119(15): e2113870119, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35377818

ABSTRACT

Mutualisms are foundational components of ecosystems with the capacity to generate biodiversity through adaptation and coevolution and give rise to essential services such as pollination and seed dispersal. To understand how mutualistic interactions shape communities and ecosystems, we must identify the mechanisms that underlie their functioning. One mechanism that may drive mutualisms to vary in space and time is the unique behavioral types, or personalities, of the individuals involved. Here, our goal was to examine interindividual variation in the seed dispersal mutualism and identify the role that different personalities play. In a field experiment, we observed individual deer mice (Peromyscus maniculatus) with known personality traits predating and dispersing seeds in a natural environment and classified all observed interactions made by individuals as either positive or negative. We then scored mice on a continuum from antagonistic to mutualistic and found that within a population of scatter hoarders, some individuals are more mutualistic than others and that one factor driving this distinction is animal personality. Through this empirical work, we provide a conceptual advancement to the study of mutualism by integrating it with the study of intraspecific behavioral variation. These findings indicate that animal personality is a previously overlooked mechanism generating context dependence in plant­animal interactions and suggest that behavioral diversity may have important consequences for the functioning of mutualisms.


Subject(s)
Peromyscus , Seed Dispersal , Animals , Ecosystem , Symbiosis
2.
Ecol Lett ; 27(5): e14435, 2024 May.
Article in English | MEDLINE | ID: mdl-38735857

ABSTRACT

A long-standing debate exists among ecologists as to how diversity regulates infectious diseases (i.e., the nature of diversity-disease relationships); a dilution effect refers to when increasing host diversity inhibits infectious diseases (i.e., negative diversity-disease relationships). However, the generality, strength, and potential mechanisms underlying negative diversity-disease relationships in natural ecosystems remain unclear. To this end, we conducted a large-scale survey of 63 grassland sites across China to explore diversity-disease relationships. We found widespread negative diversity-disease relationships that were temperature-dependent; non-random diversity loss played a fundamental role in driving these patterns. Our study provides field evidence for the generality and temperature dependence of negative diversity-disease relationships in grasslands, becoming stronger in colder regions, while also highlighting the role of non-random diversity loss as a mechanism. These findings have important implications for community ecology, disease ecology, and epidemic control.


Subject(s)
Biodiversity , Grassland , Plant Diseases , Temperature , China , Plant Diseases/microbiology , Fungi/physiology , Plant Leaves/microbiology , Poaceae/microbiology , Poaceae/physiology
3.
Ecol Lett ; 27(1): e14368, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38247047

ABSTRACT

Determining how and why organisms interact is fundamental to understanding ecosystem responses to future environmental change. To assess the impact on plant-pollinator interactions, recent studies have examined how the effects of environmental change on individual interactions accumulate to generate species-level responses. Here, we review recent developments in using plant-pollinator networks of interacting individuals along with their functional traits, where individuals are nested within species nodes. We highlight how these individual-level, trait-based networks connect intraspecific trait variation (as frequency distributions of multiple traits) with dynamic responses within plant-pollinator communities. This approach can better explain interaction plasticity, and changes to interaction probabilities and network structure over spatiotemporal or other environmental gradients. We argue that only through appreciating such trait-based interaction plasticity can we accurately forecast the potential vulnerability of interactions to future environmental change. We follow this with general guidance on how future studies can collect and analyse high-resolution interaction and trait data, with the hope of improving predictions of future plant-pollinator network responses for targeted and effective conservation.


Subject(s)
Ecosystem , Pollination , Humans , Pollination/physiology , Plants , Phenotype
4.
Am Nat ; 204(1): 1-14, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38857344

ABSTRACT

AbstractIntraspecific trait variation has been increasingly recognized as an important factor in determining species interactions and diversity. Eco-evolutionary models have studied the distribution of trait values within a population that changes over the generations as a result of selection and heritability. Nonheritable traits that can change within the lifetime, such as behavior, can cause trait-mediated indirect effects, often studied by modeling the dynamics of a homogeneous trait. Complementary to these approaches, we study the distribution of traits within a population and its dynamics on short timescales due to ecological processes. We consider several mechanisms by which the trait distribution can shift dynamically: phenotypic plasticity within each individual, differential growth among individuals, and preferential consumption by the predator. Through a simple predator-prey model that explicitly tracks the trait distribution within the prey, we identify the density and trait effects from the predator. We show that the dynamic shift of the trait distribution can lead to the modification of interaction strength between species and result in otherwise unexpected consequences. A particular example is the emergent promotion of the prey by the predator, where the introduction of the predator causes the prey population to increase rather than decrease.


Subject(s)
Food Chain , Models, Biological , Population Density , Predatory Behavior , Animals , Phenotype , Biological Evolution , Population Dynamics
5.
Proc Biol Sci ; 291(2030): 20240587, 2024 Jan.
Article in English | MEDLINE | ID: mdl-39257340

ABSTRACT

Adaptation of reef-building corals to global warming depends upon standing heritable variation in tolerance traits upon which selection can act. Yet limited knowledge exists on heat-tolerance variation among conspecific individuals separated by metres to hundreds of kilometres. Here, we performed standardized acute heat-stress assays to quantify the thermal tolerance traits of 709 colonies of Acropora spathulata from 13 reefs spanning 1060 km (9.5° latitude) of the Great Barrier Reef. Thermal thresholds for photochemical efficiency and chlorophyll retention varied considerably among individual colonies both among reefs (approximately 6°C) and within reefs (approximately 3°C). Although tolerance rankings of colonies varied between traits, the most heat-tolerant corals (i.e. top 25% of each trait) were found at virtually all reefs, indicating widespread phenotypic variation. Reef-scale environmental predictors explained 12-62% of trait variation. Corals exposed to high thermal averages and recent thermal stress exhibited the greatest photochemical performance, probably reflecting local adaptation and stress pre-acclimatization, and the lowest chlorophyll retention suggesting stress pre-sensitization. Importantly, heat tolerance relative to local summer temperatures was the greatest on higher latitude reefs suggestive of higher adaptive potential. These results can be used to identify naturally tolerant coral populations and individuals for conservation and restoration applications.


Subject(s)
Anthozoa , Coral Reefs , Animals , Anthozoa/physiology , Chlorophyll/metabolism , Acclimatization , Hot Temperature , Thermotolerance , Global Warming , Adaptation, Physiological , Australia
6.
Proc Biol Sci ; 291(2017): 20232687, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38378151

ABSTRACT

Understanding the distribution of herbivore damage among leaves and individual plants is a central goal of plant-herbivore biology. Commonly observed unequal patterns of herbivore damage have conventionally been attributed to the heterogeneity in plant quality or herbivore behaviour or distribution. Meanwhile, the potential role of stochastic processes in structuring plant-herbivore interactions has been overlooked. Here, we show that based on simple first principle expectations from metabolic theory, random sampling of different sizes of herbivores from a regional pool is sufficient to explain patterns of variation in herbivore damage. This is despite making the neutral assumption that herbivory is caused by randomly feeding herbivores on identical and passive plants. We then compared its predictions against 765 datasets of herbivory on 496 species across 116° of latitude from the Herbivory Variability Network. Using only one free parameter, the estimated attack rate, our neutral model approximates the observed frequency distribution of herbivore damage among plants and especially among leaves very well. Our results suggest that neutral stochastic processes play a large and underappreciated role in natural variation in herbivory and may explain the low predictability of herbivory patterns. We argue that such prominence warrants its consideration as a powerful force in plant-herbivore interactions.


Subject(s)
Herbivory , Plant Leaves , Plants
7.
New Phytol ; 244(1): 249-264, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39081013

ABSTRACT

Diversification of plant chemical phenotypes is typically associated with spatially and temporally variable plant-insect interactions. Floral scent is often assumed to be the target of pollinator-mediated selection, whereas foliar compounds are considered targets of antagonist-mediated selection. However, floral and vegetative phytochemicals can be biosynthetically linked and may thus evolve as integrated phenotypes. Utilizing a common garden of 28 populations of the perennial herb Arabis alpina (Brassicaceae), we investigated integration within and among floral scent compounds and foliar defense compounds (both volatile compounds and tissue-bound glucosinolates). Within floral scent volatiles, foliar volatile compounds, and glucosinolates, phytochemicals were often positively correlated, and correlations were stronger within these groups than between them. Thus, we found no evidence of integration between compound groups indicating that these are free to evolve independently. Relative to self-compatible populations, self-incompatible populations experienced stronger correlations between floral scent compounds, and a trend toward lower integration between floral scent and foliar volatiles. Our study serves as a rare test of integration of multiple, physiologically related plant traits that each are potential targets of insect-mediated selection. Our results suggest that independent evolutionary forces are likely to diversify different axes of plant chemistry without major constraints.


Subject(s)
Brassicaceae , Flowers , Phytochemicals , Plant Leaves , Volatile Organic Compounds , Flowers/physiology , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/analysis , Phytochemicals/analysis , Brassicaceae/physiology , Plant Leaves/physiology , Plant Leaves/chemistry , Odorants/analysis , Glucosinolates/metabolism , Phenotype
8.
New Phytol ; 243(3): 922-935, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38859570

ABSTRACT

Understanding how widespread species adapt to variation in abiotic conditions across their ranges is fundamental to ecology. Insight may come from studying how among-population variation (APV) in the common garden corresponds with the environmental conditions of source populations. However, there are no such studies comparing native vs non-native populations across multiple life stages. We examined APV in the performance and functional traits of 59 Conyza canadensis populations, in response to drought, across large aridity gradients in the native (North America) and non-native (Eurasia) ranges in three experiments. Our treatment (dry vs wet) was applied at the recruitment, juvenile, and adult life stages. We found contrasting patterns of APV in drought responses between the two ranges. In the native range, plant performance was less reduced by drought in populations from xeric than mesic habitats, but such relationship was not apparent for non-native populations. These range-specific patterns were consistent across the life stages. The weak adaptive responses of non-native populations indicate that they can become highly abundant even without complete local adaptation to abiotic environments and suggest that long-established invaders may still be evolving to the abiotic environment. These findings may explain lag times in invasions and raise concern about future expansions.


Subject(s)
Droughts , Introduced Species , Biological Variation, Population , Adaptation, Physiological , Ecosystem , Life Cycle Stages , Water
9.
New Phytol ; 243(2): 620-635, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38812269

ABSTRACT

In natural systems, different plant species have been shown to modulate specific nitrogen (N) cycling processes so as to meet their N demand, thereby potentially influencing their own niche. This phenomenon might go beyond plant interactions with symbiotic microorganisms and affect the much less explored plant interactions with free-living microorganisms involved in soil N cycling, such as nitrifiers and denitrifiers. Here, we investigated variability in the modulation of soil nitrifying and denitrifying enzyme activities (NEA and DEA, respectively), and their ratio (NEA : DEA), across 193 Arabidopsis thaliana accessions. We studied the genetic and environmental determinants of such plant-soil interactions, and effects on plant biomass production in the next generation. We found that NEA, DEA, and NEA : DEA varied c. 30-, 15- and 60-fold, respectively, among A. thaliana genotypes and were related to genes linked with stress response, flowering, and nitrate nutrition, as well as to soil parameters at the geographic origin of the analysed genotypes. Moreover, plant-mediated N cycling activities correlated with the aboveground biomass of next-generation plants in home vs away nonautoclaved soil, suggesting a transgenerational impact of soil biotic conditioning on plant performance. Altogether, these findings suggest that nutrient-based plant niche construction may be much more widespread than previously thought.


Subject(s)
Arabidopsis , Biomass , Nitrogen Cycle , Soil Microbiology , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/microbiology , Nitrogen/metabolism , Soil/chemistry , Genotype , Nitrification , Denitrification , Ecosystem
10.
New Phytol ; 241(1): 461-470, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37858964

ABSTRACT

Seed dispersal mechanisms play a crucial role in driving evolutionary changes in seed and fruit traits. While previous studies have primarily focussed on the mean or maximum values of these traits, there is also significant intraspecific variation in them. Therefore, it is pertinent to investigate whether dispersal mechanisms can explain intraspecific variations in these traits. Taking seed size as a case study, we compiled a global dataset comprising 3424 records of intraspecific variation in seed size (IVSS), belonging to 691 plant species and 131 families. We provided the first comprehensive quantification of dispersal mechanism effects on IVSS. Biotic-dispersed species exhibited a larger IVSS than abiotic-dispersed species. Synzoochory species had a larger IVSS than endozoochory, epizoochory, and myrmecochory species. Vertebrate-dispersed species exhibited a larger IVSS than invertebrate-dispersed species, and species dispersed by birds exhibited a larger IVSS than mammal-dispersed species. Additionally, a clear negative correlation was detected between IVSS and disperser body mass. Our results prove that the IVSS is associated with the seed dispersal mechanism. This study advances our understanding of the dispersal mechanisms' crucial role in seed size evolution, encompassing not only the mean value but also the variation.


Subject(s)
Seed Dispersal , Humans , Animals , Seeds , Fruit , Birds , Plants , Mammals
11.
Mol Ecol ; 33(7): e17306, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38414303

ABSTRACT

Variation in how individuals interact with food resources can directly impact, and be affected by, their microbial interactions due to the potential for transmission. The degree to which this transmission occurs, however, may depend on the structure of forager networks, which determine the community-scale transmission opportunities. In particular, how the community-scale opportunity for transfer balances individual-scale barriers to transmission is unclear. Examining the bee-flower and bee-microbial interactions of over 1000 individual bees, we tested (1) the degree to which individual floral visits predicted microbiome composition and (2) whether plant-bee networks with increased opportunity for microbial transmission homogenized the microbiomes of bees within that network. The pollen community composition carried by bees was associated with microbiome composition at some sites, suggesting that microbial transmission at flowers occurred. Contrary to our predictions, however, microbiome variability did not differ based on transfer opportunity: bee microbiomes in asymmetric networks with high opportunity for microbial transfer were similarly variable compared to microbiomes in networks with more evenly distributed links. These findings suggest that microbial transmission at flowers is frequent enough to be observed at the community level, but that community network structure did not substantially change the dynamics of this transmission, perhaps due to filtering processes in host guts.


Subject(s)
Gastrointestinal Microbiome , Plants , Humans , Bees/genetics , Animals , Pollen/genetics , Flowers , Pollination
12.
J Anat ; 244(5): 722-738, 2024 May.
Article in English | MEDLINE | ID: mdl-38214368

ABSTRACT

The semicircular canals of the inner ear are involved in balance and velocity control. Being crucial to ensure efficient mobility, their morphology exhibits an evolutionary conservatism attributed to stabilizing selection. Release of selection in slow-moving animals has been argued to lead to morphological divergence and increased inter-individual variation. In its natural habitat, the house mouse Mus musculus moves in a tridimensional space where efficient balance is required. In contrast, laboratory mice in standard cages are severely restricted in their ability to move, which possibly reduces selection on the inner ear morphology. This effect was tested by comparing four groups of mice: several populations of wild mice trapped in commensal habitats in France; their second-generation laboratory offspring, to assess plastic effects related to breeding conditions; a standard laboratory strain (Swiss) that evolved for many generations in a regime of mobility reduction; and hybrids between wild offspring and Swiss mice. The morphology of the semicircular canals was quantified using a set of 3D landmarks and semi-landmarks analyzed using geometric morphometric protocols. Levels of inter-population, inter-individual (disparity) and intra-individual (asymmetry) variation were compared. All wild mice shared a similar inner ear morphology, in contrast to the important divergence of the Swiss strain. The release of selection in the laboratory strain obviously allowed for an important and rapid drift in the otherwise conserved structure. Shared traits between the inner ear of the lab strain and domestic pigs suggested a common response to mobility reduction in captivity. The lab-bred offspring of wild mice also differed from their wild relatives, suggesting plastic response related to maternal locomotory behavior, since inner ear morphology matures before birth in mammals. The signature observed in lab-bred wild mice and the lab strain was however not congruent, suggesting that plasticity did not participate to the divergence of the laboratory strain. However, contrary to the expectation, wild mice displayed slightly higher levels of inter-individual variation than laboratory mice, possibly due to the higher levels of genetic variance within and among wild populations compared to the lab strain. Differences in fluctuating asymmetry levels were detected, with the laboratory strain occasionally displaying higher asymmetry scores than its wild relatives. This suggests that there may indeed be a release of selection and/or a decrease in developmental stability in the laboratory strain.


Subject(s)
Biological Evolution , Semicircular Canals , Animals , Mice , Semicircular Canals/anatomy & histology , Mammals , France
13.
Glob Chang Biol ; 30(10): e17529, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39400458

ABSTRACT

Leaf respiratory carbon loss decreases independent of temperature as the night progresses. Detailed nighttime measurements needed to quantify cumulative respiratory carbon loss at night are challenging under both lab and field conditions. We provide a simple yet accurate approach to represent variation in nighttime temperature-independent leaf respiratory CO2 efflux in environments with both stable and fluctuating temperatures, which requires no detailed measurements throughout the night. We demonstrate that the inter- and intraspecific variation in the cumulative leaf respiratory CO2 efflux at constant temperature, at any length of night, scales linearly with the inter- and intraspecific variation in initial measurement of leaf respiratory CO2 efflux at the same temperature at the beginning of the night. This approach informs large-scale predictions of cumulative leaf respiratory CO2 efflux, which is needed to understand plant carbon economy in global change studies as well as in global modeling and eddy covariance monitoring of the land-atmosphere exchange of CO2.


Subject(s)
Carbon Dioxide , Plant Leaves , Temperature , Carbon Dioxide/metabolism , Carbon Dioxide/analysis , Plant Leaves/metabolism , Climate Change
14.
J Evol Biol ; 2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38460029

ABSTRACT

Intraspecific processes impact macroevolutionary patterns through individual variation, selection, and ecological specialisation. According to the niche variation hypothesis, the broader ecological niche of gen- eralist species results in an increased morphological variation among individuals, either because they are constituted of diversified specialised individuals each exploiting a fraction of the species' niche, or because they are constituted of true generalist individuals that experience relaxed selection. To test this hypoth- esis, we surveyed the individual floral morphology of species of Antillean Gesneriaceae, a group that has transitioned between specialisation for hummingbird pollination and generalisation multiple times throughout its evolutionary history. We characterised the profiles of corollas using geometric morpho- metrics and compared the intraspecific shape variance of specialists and generalists in a phylogenetic context. We used three approaches that differently accounted for the high dimensionality of morphologi- cal traits, the ancestral reconstruction of pollination syndromes over time, and the error associated with the estimation of the intraspecific variance. Our findings provide partial support for the niche variation hypothesis. If considering the whole shape in the analysis corroborated this idea, decomposing the shape into principal components indicated that not all aspects of the corolla exhibit the same pattern of vari- ation. Specifically, pollination generalists tend to display greater intraspecific variation than specialists in terms of tubularity, but not of curvature. Accounting for the error in the variance estimation also reduced the support for the hypothesis, suggesting that larger sample sizes may be required to reach stronger conclusions. This study emphasises the reciprocal influence between plants and their pollinators on floral morphology at different biodiversity scales, and suggests that ecological strategies of species can affect patterns of morphological variation at macroevolutionary scales.

15.
Syst Biol ; 72(6): 1433-1442, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-37542735

ABSTRACT

Extinction is a dominant force shaping patterns of biodiversity through time; however its role as a catalyst of speciation through its interaction with intraspecific variation has been overlooked. Here, we synthesize ideas alluded to by Darwin and others into the model of "speciation-by-extinction" in which speciation results from the extinction of intermediate populations within a single geographically variable species. We explore the properties and distinguishing features of speciation-by-extinction with respect to other established speciation models. We demonstrate its plausibility by showing that the experimental extinction of populations within variable species can result in speciation. The prerequisites for speciation-by-extinction, geographically structured intraspecific variation and local extinction, are ubiquitous in nature. We propose that speciation-by-extinction may be a prevalent, but underappreciated, speciation mechanism.


Subject(s)
Extinction, Biological , Genetic Speciation , Phylogeny , Biodiversity
16.
Ann Bot ; 2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39340339

ABSTRACT

BACKGROUND AND AIMS: Thallium (Tl) is extremely toxic to all lifeforms and an emerging pollutant. Plants in the Brassicaceae family, including edible crops, have an enhanced capacity for Tl accumulation, even from soils with low thallium concentration. The most extreme Tl hyperaccumulator is Biscutella laevigata, capable of attaining >32,000 µg Tl g-1 DW in its leaves. METHODS: Biscutella laevigata from a non-metallicolous accession (Feltre, Italy) and a metallicolous accession (Les Malines, France) were subjected to a dosing experiment in hydroponics (0, 5, 30 µM Tl), followed by synchrotron-based µXRF analysis to elucidate tissue and cellular-level Tl distribution. KEY RESULTS: Flow cytometric data on the two used accessions showed the Feltre accession has a genome size twice of that of the Les Malines accession (256 and 125 pg/2C respectively), suggesting they are phylogenetically distant populations. The Feltre accession does not accumulate Tl (125 µg Tl g-1 DW on average in leaves) at the 5 µM Tl dose level, whereas the Les Malines accession had a mean of 1750 µg Tl g-1 DW, with peaks of 24,130 µg Tl g-1 DW at the 30 µM Tl dose level. At 30 µM Tl the non-metallicolous accession did not grow, and at 5 µM Tl showed reduced biomasss compared to the metallicolous one. In Les Malines accession, the synchrotron-based µXRF analysis revealed that Tl is localised in the vacuoles of epidermal cells, especially underneath trichomes and in trichome basal cells. Thallium also occurs in solid crystalline deposits (3-5 µm in size, ~40 wt% Tl) that are mainly found in foliar margins and under trichome bases. CONCLUSIONS: Biscutella laevigata is an attractive model for studying Tl hypertolerance and hyperaccumulation on account of the extreme expression of this trait, and its marked intraspecific variability.

17.
Ann Bot ; 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39078941

ABSTRACT

BACKGROUND AND AIMS: The sessile-flowered Trillium species from western North America have been challenging to distinguish morphologically due to overlapping characters and intraspecific variation. Molecular phylogenetic analyses, currently inconclusive for this group, have not sampled multiple populations of the different species to account for this. Here, we query the diversity of floral volatile composition to understand its bearings on the taxonomy, distribution and evolution of this group. METHODS: We explored taxonomic and geographic patterns in average floral volatile composition (105 different compounds) among 42 wild populations of four sessile-flowered Trillium species and the outgroup, Pseudotrillium, in California, Oregon and Washington by means of parsimony-constrained phylogenetic analyses. To assess the influence of character construction, we coded compound abundance in three different ways for the phylogenetic analyses and compared the results with those of statistical analyses using the same dataset and previously published statistical analyses. KEY RESULTS: Different codings of floral volatile composition generated different phylogenetic topologies with different levels of resolution. The different phylogenies provide similar answers to taxonomic questions but support different evolutionary histories. Monophyly of most populations of each taxon suggests that floral scent composition bears phylogenetic signal in the western sessile-flowered Trillium. Lack of correlation between the distribution of populations and their position in scent-based phylogenies does not support a geographic signal in floral scent composition. CONCLUSIONS: Floral scent composition is a valuable data source for generating phylogenetic hypotheses. The way scent composition is coded into characters is important. The phylogenetic patterns supported by floral volatile compounds are incongruent with previously reported phylogenies of the western sessile-flowered Trillium obtained using molecular or morphological data. Combining floral scent data with gene sequence data and detailed morphological data from multiple populations of each species in future studies is needed for understanding the evolutionary history of western sessile-flowered Trillium.

18.
J Anim Ecol ; 93(4): 488-500, 2024 04.
Article in English | MEDLINE | ID: mdl-38459628

ABSTRACT

As animal home range size (HRS) provides valuable information for species conservation, it is important to understand the driving factors of HRS variation. It is widely known that differences in species traits (e.g. body mass) are major contributors to variation in mammal HRS. However, most studies examining how environmental variation explains mammal HRS variation have been limited to a few species, or only included a single (mean) HRS estimate for the majority of species, neglecting intraspecific HRS variation. Additionally, most studies examining environmental drivers of HRS variation included only terrestrial species, neglecting marine species. Using a novel dataset of 2800 HRS estimates from 586 terrestrial and 27 marine mammal species, we quantified the relationships between HRS and environmental variables, accounting for species traits. Our results indicate that terrestrial mammal HRS was on average 5.3 times larger in areas with low human disturbance (human footprint index [HFI] = 0), compared to areas with maximum human disturbance (HFI = 50). Similarly, HRS was on average 5.4 times larger in areas with low annual mean productivity (NDVI = 0), compared to areas with high productivity (NDVI = 1). In addition, HRS increased by a factor of 1.9 on average from low to high seasonality in productivity (standard deviation (SD) of monthly NDVI from 0 to 0.36). Of these environmental variables, human disturbance and annual mean productivity explained a larger proportion of HRS variance than seasonality in productivity. Marine mammal HRS decreased, on average, by a factor of 3.7 per 10°C decline in annual mean sea surface temperature (SST), and increased by a factor of 1.5 per 1°C increase in SST seasonality (SD of monthly values). Annual mean SST explained more variance in HRS than SST seasonality. Due to the small sample size, caution should be taken when interpreting the marine mammal results. Our results indicate that environmental variation is relevant for HRS and that future environmental changes might alter the HRS of individuals, with potential consequences for ecosystem functioning and the effectiveness of conservation actions.


Subject(s)
Ecosystem , Homing Behavior , Animals , Mammals , Temperature
19.
J Anim Ecol ; 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39354661

ABSTRACT

Natural populations are composed of individuals that vary in their morphological traits, timing and interactions. The distribution of a trait can be described by several dimensions, or mathematical moments-mean, variance, skew and kurtosis. Shifts in the distribution of a trait across these moments in response to environmental variation can help to reveal which trait values are gained or lost, and consequently how trait filtering processes are altering populations. To examine the role and drivers of intraspecific variation within a trait filtering framework, we investigate variation in body size among five wild bumblebee species in the Colorado Rocky Mountains. First, we examine the relationships between environmental factors (climate and floral food resources) and body size distributions across bumblebee social castes to identify demographic responses to environmental variation. Next, we examine changes in the moments of trait distributions to reveal potential mechanisms behind intraspecific shifts in body size. Finally, we examine how intraspecific body size variation is related to diet breadth and phenology. We found that climate conditions have a strong effect on observed body size variation across all distributional moments, but the filtering mechanism varies by social caste. For example, with earlier spring snowmelt queens declined in mean size and became negatively skewed and more kurtotic. This suggests a skewed filter admitting a greater frequency of small individuals. With greater availability of floral food resources, queens increased in mean size, but workers and males decreased in size. Observed shifts in body size variation also correspond with variation in diet breadth and phenology. Populations with larger average body size were associated with more generalized foraging in workers of short-tongued species and increased specialization in longer-tongued workers. Altered phenological timing was associated with species- and caste-specific shifts in skew. Across an assemblage of wild bumblebees, we find complex patterns of trait variation that may not have been captured if we had simply considered mean and variance. The four-moment approach we employ here provides holistic insight into intraspecific trait variation, which may otherwise be overlooked and reveals potential underlying filtering processes driving such variation within populations.

20.
J Anim Ecol ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773788

ABSTRACT

Testing for intraspecific variation for host tolerance or resistance in wild populations is important for informing conservation decisions about captive breeding, translocation, and disease treatment. Here, we test the importance of tolerance and resistance in multiple populations of boreal toads (Anaxyrus boreas boreas) against Batrachochytrium dendrobatidis (Bd), the amphibian fungal pathogen responsible for the greatest host biodiversity loss due to disease. Boreal toads have severely declined in Colorado (CO) due to Bd, but toad populations challenged with Bd in western Wyoming (WY) appear to be less affected. We used a common garden infection experiment to expose post-metamorphic toads sourced from four populations (2 in CO and 2 in WY) to Bd and monitored changes in mass, pathogen burden and survival for 8 weeks. We used a multi-state modelling approach to estimate weekly survival and transition probabilities between infected and cleared states, reflecting a dynamic infection process that traditional approaches fail to capture. We found that WY boreal toads are more tolerant to Bd infection with higher survival probabilities than those in CO when infected with identical pathogen burdens. WY toads also appeared more resistant to Bd with a higher probability of infection clearance and an average of 5 days longer to reach peak infection burdens. Our results demonstrate strong intraspecific differences in tolerance and resistance that likely contribute to why population declines vary regionally across this species. Our multi-state framework allowed us to gain inference on typically hidden disease processes when testing for host tolerance or resistance. Our findings demonstrate that describing an entire host species as 'tolerant' or 'resistant' (or lack thereof) is unwise without testing for intraspecific variation.

SELECTION OF CITATIONS
SEARCH DETAIL