Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 216
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Annu Rev Biochem ; 84: 131-64, 2015.
Article in English | MEDLINE | ID: mdl-25747401

ABSTRACT

Lamins are intermediate filament proteins that form a scaffold, termed nuclear lamina, at the nuclear periphery. A small fraction of lamins also localize throughout the nucleoplasm. Lamins bind to a growing number of nuclear protein complexes and are implicated in both nuclear and cytoskeletal organization, mechanical stability, chromatin organization, gene regulation, genome stability, differentiation, and tissue-specific functions. The lamin-based complexes and their specific functions also provide insights into possible disease mechanisms for human laminopathies, ranging from muscular dystrophy to accelerated aging, as observed in Hutchinson-Gilford progeria and atypical Werner syndromes.


Subject(s)
Cell Nucleus/metabolism , Lamins/metabolism , Animals , Cell Nucleus/chemistry , Cell Nucleus/genetics , Chromatin/chemistry , Chromatin/metabolism , Gene Expression Regulation , Humans , Lamins/chemistry , Lamins/genetics , Progeria/pathology
2.
Trends Biochem Sci ; 46(10): 832-847, 2021 10.
Article in English | MEDLINE | ID: mdl-34148760

ABSTRACT

Nuclear lamins are ancient type V intermediate filaments with diverse functions that include maintaining nuclear shape, mechanosignaling, tethering and stabilizing chromatin, regulating gene expression, and contributing to cell cycle progression. Despite these numerous roles, an outstanding question has been how lamins are regulated. Accumulating work indicates that a range of lamin post-translational modifications (PTMs) control their functions both in homeostatic cells and in disease states such as progeria, muscular dystrophy, and viral infection. Here, we review the current knowledge of the diverse types of PTMs that regulate lamins in a site-specific manner. We highlight methods that can be used to characterize lamin PTMs whose functions are currently unknown and provide a perspective on the future of the lamin PTM field.


Subject(s)
Lamins , Protein Processing, Post-Translational , Cell Nucleus/metabolism , Chromatin/metabolism , Humans , Lamins/genetics , Lamins/metabolism
3.
Proc Natl Acad Sci U S A ; 119(17): e2121816119, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35439057

ABSTRACT

The ability of a cell to regulate its mechanical properties is central to its function. Emerging evidence suggests that interactions between the cell nucleus and cytoskeleton influence cell mechanics through poorly understood mechanisms. Here we conduct quantitative confocal imaging to show that the loss of A-type lamins tends to increase nuclear and cellular volume while the loss of B-type lamins behaves in the opposite manner. We use fluorescence recovery after photobleaching, atomic force microscopy, optical tweezer microrheology, and traction force microscopy to demonstrate that A-type lamins engage with both F-actin and vimentin intermediate filaments (VIFs) through the linker of nucleoskeleton and cytoskeleton (LINC) complexes to modulate cortical and cytoplasmic stiffness as well as cellular contractility in mouse embryonic fibroblasts (MEFs). In contrast, we show that B-type lamins predominantly interact with VIFs through LINC complexes to regulate cytoplasmic stiffness and contractility. We then propose a physical model mediated by the lamin­LINC complex that explains these distinct mechanical phenotypes (mechanophenotypes). To verify this model, we use dominant negative constructs and RNA interference to disrupt the LINC complexes that facilitate the interaction of the nucleus with the F-actin and VIF cytoskeletons and show that the loss of these elements results in mechanophenotypes like those observed in MEFs that lack A- or B-type lamin isoforms. Finally, we demonstrate that the loss of each lamin isoform softens the cell nucleus and enhances constricted cell migration but in turn increases migration-induced DNA damage. Together, our findings uncover distinctive roles for each of the four major lamin isoforms in maintaining nucleocytoskeletal interactions and cellular mechanics.


Subject(s)
Fibroblasts , Nuclear Lamina , Animals , Cell Nucleus/metabolism , Cytoskeleton/metabolism , Fibroblasts/metabolism , Lamin Type A/genetics , Lamin Type A/metabolism , Lamin Type B/genetics , Lamin Type B/metabolism , Mice , Nuclear Lamina/metabolism , Nuclear Matrix/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism
4.
Circulation ; 147(23): 1734-1744, 2023 06 06.
Article in English | MEDLINE | ID: mdl-36919608

ABSTRACT

BACKGROUND: Hutchinson-Gilford progeria syndrome (HGPS) is an ultrarare, fatal, premature aging disease caused by a toxic protein called progerin. Circulating progerin has not been previously detected, precluding research using readily available biological samples. This study aimed to develop a plasma progerin assay to evaluate progerin's quantity, response to progerin-targeted therapy, and relationship to patient survival. METHODS: Biological samples were collected by The Progeria Research Foundation Cell and Tissue Bank from a non-HGPS cohort cross-sectionally and a HGPS cohort longitudinally. HGPS donations occurred at baseline and intermittently while treated with farnesylation inhibitors lonafarnib±pravastatin and zoledronate, within 3 sequential open-label clinical trials at Boston Children's Hospital totaling >10 years of treatment. An ultrasensitive single-molecule counting progerin immunoassay was developed with prespecified performance parameters. Intra- and interpatient group statistics were descriptive. The relationship between progerin and survival was assessed by using joint modeling with time-dependent slopes parameterization. RESULTS: The assay's dynamic detection range was 59 to 30 000 pg/mL (R2=0.9987). There was no lamin A cross-reactivity. Mean plasma progerin in non-HGPS participants (n=69; 39 male, 30 female; age, 0.2-71.3 years) was 351±251 pg/mL, and in drug-naive participants with HGPS (n=74; 37 female, 37 male; age, 2.1-17.5 years) was 33 261±12 346 pg/mL, reflecting a 95-fold increase in affected children (P<0.0001). Progerin levels did not differ by sex (P=0.99). Lonafarnib treatment resulted in an average per-visit progerin decrease from baseline of between 35% to 62% (all P<0.005); effects were not augmented by adding pravastatin and zoledronate. Progerin levels fell within 4 months of therapy and remained lower for up to 10 years. The magnitude of progerin decrease positively associated with patient survival (P<0.0001; ie, 15 000 pg/mL decrease yields a 63.9% decreased risk of death). For any given decrease in progerin, life expectancy incrementally increased with longer treatment duration. CONCLUSIONS: A sensitive, quantitative immunoassay for progerin was developed and used to demonstrate high progerin levels in HGPS plasma that decreased with lonafarnib therapy. The extent of improved survival was associated with both the magnitude of progerin decrease and duration at lower levels. Thus, plasma progerin is a biomarker for HGPS whose reduction enables short- and long-term assessment of progerin-targeted treatment efficacy. REGISTRATION: URL: https://www. CLINICALTRIALS: gov. Unique identifiers: NCT00879034 and NCT00916747.


Subject(s)
Progeria , Child , Humans , Male , Female , Infant , Child, Preschool , Adolescent , Young Adult , Adult , Middle Aged , Aged , Progeria/diagnosis , Progeria/drug therapy , Progeria/metabolism , Zoledronic Acid/therapeutic use , Pravastatin/therapeutic use , Piperidines/therapeutic use , Lamin Type A/metabolism
5.
FASEB J ; 37(8): e23116, 2023 08.
Article in English | MEDLINE | ID: mdl-37498235

ABSTRACT

Laminopathies are a group of rare genetic disorders with heterogeneous clinical phenotypes such as premature aging, cardiomyopathy, lipodystrophy, muscular dystrophy, microcephaly, epilepsy, and so on. The cellular phenomena associated with laminopathy invariably show disruption of nucleoskeleton of lamina due to deregulated expression, localization, function, and interaction of mutant lamin proteins. Impaired spatial and temporal tethering of lamin proteins to the lamina or nucleoplasmic aggregation of lamins are the primary molecular events that can trigger nuclear proteotoxicity by modulating differential protein-protein interactions, sequestering quality control proteins, and initiating a cascade of abnormal post-translational modifications. Clearly, laminopathic cells exhibit moderate to high nuclear proteotoxicity, raising the question of whether an imbalance in nuclear proteostasis is involved in laminopathic diseases, particularly in diseases of early aging such as HGPS and laminopathy-associated premature aging. Here, we review nuclear proteostasis and its deregulation in the context of lamin proteins and laminopathies.


Subject(s)
Aging, Premature , Laminopathies , Humans , Aging, Premature/genetics , Aging, Premature/metabolism , Proteostasis , Cell Nucleus/metabolism , Lamins/genetics , Lamins/metabolism , Laminopathies/metabolism , Lamin Type A/genetics , Lamin Type A/metabolism , Mutation , Nuclear Lamina/genetics , Nuclear Lamina/metabolism
6.
Mol Biol Rep ; 51(1): 898, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39115711

ABSTRACT

BACKGROUND: The nuclear envelope (NE), which is composed of the outer and inner nuclear membranes, the nuclear pore complex and the nuclear lamina, regulates a plethora of cellular processes, including those that restrict cancer development (genomic stability, cell cycle regulation, and cell migration). Thus, impaired NE is functionally related to tumorigenesis, and monitoring of NE alterations is used to diagnose cancer. However, the chronology of NE changes occurring during cancer evolution and the connection between them remained to be precisely defined, due to the lack of appropriate cell models. METHODS: The expression and subcellular localization of NE proteins (lamins A/C and B1 and the inner nuclear membrane proteins emerin and ß-dystroglycan [ß-DG]) during prostate cancer progression were analyzed, using confocal microscopy and western blot assays, and a prostate cancer cell system comprising RWPE-1 epithelial prostate cells and several prostate cancer cell lines with different invasiveness. RESULTS: Deformed nuclei and the mislocalization and low expression of lamin A/C, lamin B1, and emerin became more prominent as the invasiveness of the prostate cancer lines increased. Suppression of lamin A/C expression was an early event during prostate cancer evolution, while a more extensive deregulation of NE proteins, including ß-DG, occurred in metastatic prostate cells. CONCLUSIONS: The RWPE-1 cell line-based system was found to be suitable for the correlation of NE impairment with prostate cancer invasiveness and determination of the chronology of NE alterations during prostate carcinogenesis. Further study of this cell system would help to identify biomarkers for prostate cancer prognosis and diagnosis.


Subject(s)
Lamin Type A , Lamin Type B , Membrane Proteins , Nuclear Envelope , Nuclear Proteins , Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Prostatic Neoplasms/genetics , Nuclear Envelope/metabolism , Cell Line, Tumor , Membrane Proteins/metabolism , Lamin Type B/metabolism , Lamin Type A/metabolism , Lamin Type A/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Dystroglycans/metabolism , Gene Expression Regulation, Neoplastic , Cell Nucleus/metabolism
7.
Adv Exp Med Biol ; 1441: 341-364, 2024.
Article in English | MEDLINE | ID: mdl-38884720

ABSTRACT

Epigenetics is the study of heritable changes to the genome and gene expression patterns that are not caused by direct changes to the DNA sequence. Examples of these changes include posttranslational modifications to DNA-bound histone proteins, DNA methylation, and remodeling of nuclear architecture. Collectively, epigenetic changes provide a layer of regulation that affects transcriptional activity of genes while leaving DNA sequences unaltered. Sequence variants or mutations affecting enzymes responsible for modifying or sensing epigenetic marks have been identified in patients with congenital heart disease (CHD), and small-molecule inhibitors of epigenetic complexes have shown promise as therapies for adult heart diseases. Additionally, transgenic mice harboring mutations or deletions of genes encoding epigenetic enzymes recapitulate aspects of human cardiac disease. Taken together, these findings suggest that the evolving field of epigenetics will inform our understanding of congenital and adult cardiac disease and offer new therapeutic opportunities.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Humans , Animals , DNA Methylation/genetics , Heart Defects, Congenital/genetics , Histones/metabolism , Histones/genetics , Protein Processing, Post-Translational , Mice , Heart Diseases/genetics , Heart Diseases/metabolism , Mutation
8.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Article in English | MEDLINE | ID: mdl-34161290

ABSTRACT

Defects or deficiencies in nuclear lamins cause pathology in many cell types, and recent studies have implicated nuclear membrane (NM) ruptures as a cause of cell toxicity. We previously observed NM ruptures and progressive cell death in the developing brain of lamin B1-deficient mouse embryos. We also observed frequent NM ruptures and DNA damage in nuclear lamin-deficient fibroblasts. Factors modulating susceptibility to NM ruptures remain unclear, but we noted low levels of LAP2ß, a chromatin-binding inner NM protein, in fibroblasts with NM ruptures. Here, we explored the apparent link between LAP2ß and NM ruptures in nuclear lamin-deficient neurons and fibroblasts, and we tested whether manipulating LAP2ß expression levels would alter NM rupture frequency. In cortical plate neurons of lamin B1-deficient embryos, we observed a strong correlation between low LAP2ß levels and NM ruptures. We also found low LAP2ß levels and frequent NM ruptures in neurons of cultured Lmnb1-/- neurospheres. Reducing LAP2ß expression in Lmnb1-/- neurons with an siRNA markedly increased the NM rupture frequency (without affecting NM rupture duration), whereas increased LAP2ß expression eliminated NM ruptures and reduced DNA damage. Consistent findings were observed in nuclear lamin-deficient fibroblasts. Reduced LAP2ß expression increased NM ruptures, whereas increased LAP2ß expression virtually abolished NM ruptures. Increased LAP2ß expression nearly abolished NM ruptures in cells subjected to mechanical stress (an intervention that increases NM ruptures). Our studies showed that increasing LAP2ß expression bolsters NM integrity in nuclear lamin-deficient cells and markedly reduces NM rupture frequency.


Subject(s)
DNA-Binding Proteins/metabolism , Fibroblasts/metabolism , Lamin Type B/deficiency , Membrane Proteins/metabolism , Neurons/metabolism , Nuclear Envelope/metabolism , Animals , Cell Death , Cell Differentiation , Cerebral Cortex/pathology , DNA Damage , Embryo, Mammalian/metabolism , Lamin Type A/deficiency , Lamin Type A/metabolism , Lamin Type B/metabolism , Mice, Knockout , Organ Specificity
9.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732148

ABSTRACT

Mutations in the LMNA gene-encoding A-type lamins can cause Limb-Girdle muscular dystrophy Type 1B (LGMD1B). This disease presents with weakness and wasting of the proximal skeletal muscles and has a variable age of onset and disease severity. This variability has been attributed to genetic background differences among individuals; however, such variants have not been well characterized. To identify such variants, we investigated a multigeneration family in which affected individuals are diagnosed with LGMD1B. The primary genetic cause of LGMD1B in this family is a dominant mutation that activates a cryptic splice site, leading to a five-nucleotide deletion in the mature mRNA. This results in a frame shift and a premature stop in translation. Skeletal muscle biopsies from the family members showed dystrophic features of variable severity, with the muscle fibers of some family members possessing cores, regions of sarcomeric disruption, and a paucity of mitochondria, not commonly associated with LGMD1B. Using whole genome sequencing (WGS), we identified 21 DNA sequence variants that segregate with the family members possessing more profound dystrophic features and muscle cores. These include a relatively common variant in coiled-coil domain containing protein 78 (CCDC78). This variant was given priority because another mutation in CCDC78 causes autosomal dominant centronuclear myopathy-4, which causes cores in addition to centrally positioned nuclei. Therefore, we analyzed muscle biopsies from family members and discovered that those with both the LMNA mutation and the CCDC78 variant contain muscle cores that accumulated both CCDC78 and RyR1. Muscle cores containing mislocalized CCDC78 and RyR1 were absent in the less profoundly affected family members possessing only the LMNA mutation. Taken together, our findings suggest that a relatively common variant in CCDC78 can impart profound muscle pathology in combination with a LMNA mutation and accounts for variability in skeletal muscle disease phenotypes.


Subject(s)
Lamin Type A , Microtubule-Associated Proteins , Muscle Proteins , Muscle, Skeletal , Adult , Female , Humans , Male , Middle Aged , Lamin Type A/genetics , Muscle Proteins/genetics , Muscle, Skeletal/pathology , Muscle, Skeletal/metabolism , Muscular Dystrophies, Limb-Girdle/genetics , Muscular Dystrophies, Limb-Girdle/pathology , Mutation , Pedigree , Microtubule-Associated Proteins/genetics
10.
Trends Biochem Sci ; 44(7): 561-564, 2019 07.
Article in English | MEDLINE | ID: mdl-31036409

ABSTRACT

Hutchinson-Gilford progeria syndrome (HGPS) is an ultrarare and fatal disease with features of premature aging and cardiovascular diseases (atherosclerosis, myocardial infarction, and stroke). Several landmark studies in 2018-2019 have revealed novel mechanisms underlying cardiovascular pathologies in HGPS, and implicate future potential therapies for HGPS, and possibly physiological aging.


Subject(s)
Cardiovascular Diseases/complications , Cardiovascular Diseases/drug therapy , Piperidines/therapeutic use , Progeria/complications , Progeria/drug therapy , Pyridines/therapeutic use , Cardiovascular Diseases/pathology , Humans , Progeria/pathology
11.
Am J Physiol Cell Physiol ; 324(6): C1223-C1235, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37125775

ABSTRACT

Dilated cardiomyopathy caused by mutations in LMNA, encoding A-type lamins (i.e., LMNA cardiomyopathy), is characterized by a left ventricle enlargement and ultimately results in poor cardiac contractility associated with conduction defects. Despite current strategies to aggressively manage the symptoms, the disorder remains a common cause of sudden death and heart failure with decreased ejection fraction. Patient care includes cardioverter defibrillator implantation but the last therapeutic option remains cardiac transplantation. A-type lamins are intermediate filaments and are the main components of the nuclear lamina, a meshwork underlying the inner nuclear membrane, which plays an essential role in both maintaining the nuclear structure and organizing the cytoskeletal structures within the cell. Cytoskeletal proteins function as scaffold to resist external mechanical stress. An increasing amount of evidence demonstrates that LMNA mutations can lead to disturbances in several structural and cytoskeletal components of the cell such as microtubules, actin cytoskeleton, and intermediate filaments. Collectively, this review focuses on the significance of these cytoskeletal modulators and emphasizes their potential therapeutic role in LMNA cardiomyopathy. Indeed, molecular tuning of cytoskeletal dynamics has been successfully used in preclinical models and provides adequate grounds for a therapeutic approach for patients with LMNA cardiomyopathy.


Subject(s)
Cardiomyopathies , Lamin Type A , Humans , Lamin Type A/genetics , Lamin Type A/metabolism , Cardiomyopathies/genetics , Cardiomyopathies/therapy , Cardiomyopathies/metabolism , Cytoskeleton/genetics , Cytoskeleton/metabolism , Microtubules/metabolism , Mutation/genetics
12.
Annu Rev Genomics Hum Genet ; 21: 263-288, 2020 08 31.
Article in English | MEDLINE | ID: mdl-32428417

ABSTRACT

In recent years, our perspective on the cell nucleus has evolved from the view that it is a passive but permeable storage organelle housing the cell's genetic material to an understanding that it is in fact a highly organized, integrative, and dynamic regulatory hub. In particular, the subcompartment at the nuclear periphery, comprising the nuclear envelope and the underlying lamina, is now known to be a critical nexus in the regulation of chromatin organization, transcriptional output, biochemical and mechanosignaling pathways, and, more recently, cytoskeletal organization. We review the various functional roles of the nuclear periphery and their deregulation in diseases of the nuclear envelope, specifically the laminopathies, which, despite their rarity, provide insights into contemporary health-care issues.


Subject(s)
Cell Nucleus/genetics , Chromatin/chemistry , Chromatin/genetics , Laminopathies/pathology , Animals , Humans , Laminopathies/genetics
13.
J Cell Sci ; 134(6)2021 03 22.
Article in English | MEDLINE | ID: mdl-33536248

ABSTRACT

The LMNA gene encodes the A-type lamins, which polymerize into ∼3.5-nm-thick filaments and, together with B-type lamins and associated proteins, form the nuclear lamina. Mutations in LMNA cause a wide variety of pathologies. In this study, we analyzed the nuclear lamina of embryonic fibroblasts from LmnaH222P/H222P mice, which develop cardiomyopathy and muscular dystrophy. Although the organization of the lamina appeared unaltered, there were changes in chromatin and B-type lamin expression. An increase in nuclear size and consequently a relative reduction in heterochromatin near the lamina allowed for a higher resolution structural analysis of lamin filaments using cryo-electron tomography. This was most apparent when visualizing lamin filaments in situ and using a nuclear extraction protocol. Averaging of individual segments of filaments in LmnaH222P/H222P mouse fibroblasts resolved two polymers that constitute the mature filaments. Our findings provide better views of the organization of lamin filaments and the effect of a striated muscle disease-causing mutation on nuclear structure.


Subject(s)
Lamin Type A , Muscle, Striated , Animals , Cytoskeleton , Lamin Type A/genetics , Lamin Type B/genetics , Mice , Mutation/genetics , Nuclear Lamina
14.
J Virol ; 96(24): e0142922, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36448808

ABSTRACT

We investigated whether A-type lamins (lamin A/C) and lamin B receptor (LBR) are redundant during herpes simplex virus 1 (HSV-1) infection in HeLa cells expressing lamin A/C and LBR. Lamin A/C and LBR double knockout (KO) in HSV-1-infected HeLa cells significantly impaired expressions of HSV-1 early and late genes, maturation of replication compartments, marginalization of host chromatin to the nuclear periphery, enlargement of host cell nuclei, and viral DNA replication. Phenotypes of HSV-1-infected HeLa cells were restored by the ectopic expression of lamin A/C or LBR in lamin A/C and LBR double KO cells. Of note, lamin A/C single KO, but not LBR single KO, promoted the aberrant accumulation of virus particles outside the inner nuclear membrane (INM) and viral replication, as well as decreasing the frequency of virus particles inside the INM without affecting viral gene expression and DNA replication, time-spatial organization of replication compartments and host chromatin, and nuclear enlargement. These results indicated that lamin A/C and LBR had redundant and specific roles during HSV-1 infection. Thus, lamin A/C and LBR redundantly regulated the dynamics of the nuclear architecture, including the time-spatial organization of replication compartments and host chromatin, as well as promoting nuclear enlargement for efficient HSV-1 gene expression and DNA replication. In contrast, lamin A/C inhibited HSV-1 nuclear export through the INM during viral nuclear egress, which is a unique property of lamin A/C. IMPORTANCE This study demonstrated that lamin A/C and LBR had redundant functions associated with HSV-1 gene expression and DNA replication by regulating the dynamics of the nuclear architecture during HSV-1 infection. This is the first report to demonstrate the redundant roles of lamin A/C and LBR as well as the involvement of LBR in the regulation of these viral and cellular features in HSV-1-infected cells. These findings provide evidence for the specific property of lamin A/C to inhibit HSV-1 nuclear egress, which has long been considered but without direct proof.


Subject(s)
Herpes Simplex , Herpesvirus 1, Human , Lamins , Humans , Chromatin/metabolism , DNA Replication , DNA, Viral/genetics , DNA, Viral/metabolism , HeLa Cells , Herpes Simplex/genetics , Herpes Simplex/metabolism , Herpesvirus 1, Human/physiology , Lamin Type A/genetics , Lamin Type A/metabolism , Lamins/genetics , Lamins/metabolism , Virus Replication , Lamin B Receptor
15.
Am J Med Genet A ; 191(9): 2274-2289, 2023 09.
Article in English | MEDLINE | ID: mdl-37387251

ABSTRACT

Atypical progeroid syndromes (APS) are premature aging syndromes caused by pathogenic LMNA missense variants, associated with unaltered expression levels of lamins A and C, without accumulation of wild-type or deleted prelamin A isoforms, as observed in Hutchinson-Gilford progeria syndrome (HGPS) or HGPS-like syndromes. A specific LMNA missense variant, (p.Thr528Met), was previously identified in a compound heterozygous state in patients affected by APS and severe familial partial lipodystrophy, whereas heterozygosity was recently identified in patients affected by Type 2 familial partial lipodystrophy. Here, we report four unrelated boys harboring homozygosity for the p.Thr528Met, variant who presented with strikingly homogeneous APS clinical features, including osteolysis of mandibles, distal clavicles and phalanges, congenital muscular dystrophy with elevated creatine kinase levels, and major skeletal deformities. Immunofluorescence analyses of patient-derived primary fibroblasts showed a high percentage of dysmorphic nuclei with nuclear blebs and typical honeycomb patterns devoid of lamin B1. Interestingly, in some protrusions emerin or LAP2α formed aberrant aggregates, suggesting pathophysiology-associated clues. These four cases further confirm that a specific LMNA variant can lead to the development of strikingly homogeneous clinical phenotypes, in these particular cases a premature aging phenotype with major musculoskeletal involvement linked to the homozygous p.Thr528Met variant.


Subject(s)
Aging, Premature , Dysostoses , Lipodystrophy, Familial Partial , Muscular Dystrophies , Progeria , Humans , Syndrome , Lipodystrophy, Familial Partial/complications , Clavicle/metabolism , Clavicle/pathology , Mutation , Progeria/pathology , Dysostoses/complications , Lamin Type A/genetics
16.
Cell Mol Life Sci ; 79(1): 23, 2022 Jan 04.
Article in English | MEDLINE | ID: mdl-34984553

ABSTRACT

Vapor nanobubble (VNB) photoporation is a physical method for intracellular delivery that has gained significant interest in the past decade. It has successfully been used to introduce molecular cargo of diverse nature into different cell types with high throughput and minimal cytotoxicity. For translational purposes, it is important to understand whether and how photoporation affects cell homeostasis. To obtain a comprehensive view on the transcriptional rewiring that takes place after VNB photoporation, we performed a longitudinal shotgun RNA-sequencing experiment. Six hours after photoporation, we found a marked upregulation of LMNA transcripts as well as their protein products, the A-type lamins. At the same time point, we observed a significant increase in several heterochromatin marks, suggesting a global stiffening of the nucleus. These molecular features vanished 24 h after photoporation. Since VNB-induced chromatin condensation was prolonged in LMNA knockout cells, A-type lamins may be required for restoring the nucleus to its original state. Selective depletion of A-type lamins reduced cell viability after VNB photoporation, while pharmacological stimulation of LMNA transcription increased the percentage of successfully transfected cells that survived after photoporation. Therefore, our results suggest that cells respond to VNB photoporation by temporary upregulation of A-type lamins to facilitate their recovery.


Subject(s)
Cell Membrane Permeability , Cell Membrane/metabolism , Cell Nucleus/metabolism , Lamin Type A/metabolism , Nanoparticles/chemistry , Gene Expression Profiling , HeLa Cells , Humans , Light , Microtubules/metabolism , Polymerization , Protein Biosynthesis , Temperature , Transcription, Genetic , Transcriptome/genetics , Up-Regulation/genetics , Volatilization
17.
Genes Dev ; 29(3): 225-37, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25644599

ABSTRACT

The intermediate filament proteins, A- and B-type lamins, form the nuclear lamina scaffold adjacent to the inner nuclear membrane. B-type lamins confer elasticity, while A-type lamins lend viscosity and stiffness to nuclei. Lamins also contribute to chromatin regulation and various signaling pathways affecting gene expression. The mechanical roles of lamins and their functions in gene regulation are often viewed as independent activities, but recent findings suggest a highly cross-linked and interdependent regulation of these different functions, particularly in mechanosignaling. In this newly emerging concept, lamins act as a "mechanostat" that senses forces from outside and responds to tension by reinforcing the cytoskeleton and the extracellular matrix. A-type lamins, emerin, and the linker of the nucleoskeleton and cytoskeleton (LINC) complex directly transmit forces from the extracellular matrix into the nucleus. These mechanical forces lead to changes in the molecular structure, modification, and assembly state of A-type lamins. This in turn activates a tension-induced "inside-out signaling" through which the nucleus feeds back to the cytoskeleton and the extracellular matrix to balance outside and inside forces. These functions regulate differentiation and may be impaired in lamin-linked diseases, leading to cellular phenotypes, particularly in mechanical load-bearing tissues.


Subject(s)
Lamins/metabolism , Mechanotransduction, Cellular , Animals , Cell Movement , Extracellular Matrix/genetics , Extracellular Matrix/metabolism , Gene Expression Regulation , Humans , Lamins/chemistry , Mutation
18.
Genes Dev ; 29(19): 2022-36, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26443848

ABSTRACT

Lamina-associated polypeptide 2α (LAP2α) localizes throughout the nucleoplasm and interacts with the fraction of lamins A/C that is not associated with the peripheral nuclear lamina. The LAP2α-lamin A/C complex negatively affects cell proliferation. Lamins A/C are encoded by LMNA, a single heterozygous mutation of which causes Hutchinson-Gilford progeria syndrome (HGPS). This mutation generates the lamin A variant progerin, which we show here leads to loss of LAP2α and nucleoplasmic lamins A/C, impaired proliferation, and down-regulation of extracellular matrix components. Surprisingly, contrary to wild-type cells, ectopic expression of LAP2α in cells expressing progerin restores proliferation and extracellular matrix expression but not the levels of nucleoplasmic lamins A/C. We conclude that, in addition to its cell cycle-inhibiting function with lamins A/C, LAP2α can also regulate extracellular matrix components independently of lamins A/C, which may help explain the proliferation-promoting function of LAP2α in cells expressing progerin.


Subject(s)
DNA-Binding Proteins/metabolism , Down-Regulation , Extracellular Matrix Proteins/genetics , Membrane Proteins/metabolism , Progeria/physiopathology , Cell Line , Cell Proliferation/genetics , Cells, Cultured , DNA-Binding Proteins/genetics , Humans , Lamin Type A/genetics , Lamin Type A/metabolism , Membrane Proteins/genetics , Progeria/genetics , Up-Regulation
19.
Int J Mol Sci ; 24(21)2023 Nov 05.
Article in English | MEDLINE | ID: mdl-37958962

ABSTRACT

The maintenance of genome integrity through generations is largely determined by the stability of telomeres. Increasing evidence suggests that telomere dysfunction may trigger changes in cell fate, independently of telomere length. Telomeric multiple tandem repeats are potentially highly recombinogenic. Heterochromatin formation, transcriptional repression, the suppression of homologous recombination and chromosome end protection are all required for telomere stability. Genetic and epigenetic defects affecting telomere homeostasis may cause length-independent internal telomeric DNA damage. Growing evidence, including that based on Drosophila research, points to a telomere checkpoint mechanism that coordinates cell fate with telomere state. According to this scenario, telomeres, irrespective of their length, serve as a primary sensor of genome instability that is capable of triggering cell death or developmental arrest. Telomeric factors released from shortened or dysfunctional telomeres are thought to mediate these processes. Here, we discuss a novel signaling role for telomeric RNAs in cell fate and early development. Telomere checkpoint ensures genome stability in multicellular organisms but aggravates the aging process, promoting the accumulation of damaged and senescent cells.


Subject(s)
RNA , Telomere Homeostasis , Animals , RNA/metabolism , Drosophila/genetics , Aging/genetics , Telomere/genetics , Genomic Instability
20.
Biol Cell ; 113(7): 295-310, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33638183

ABSTRACT

Nuclear lamins are type V intermediate filament proteins that form a filamentous meshwork beneath the inner nuclear membrane. Additionally, a sub-population of A- and B-type lamins localizes in the nuclear interior. The nuclear lamina protects the nucleus from mechanical stress and mediates nucleo-cytoskeletal coupling. Lamins form a scaffold that partially tethers chromatin at the nuclear envelope. The nuclear lamina also stabilises protein-protein interactions involved in gene regulation and DNA repair. The lamin-based protein sub-complexes are implicated in both nuclear and cytoskeletal organisation, the mechanical stability of the nucleus, genome organisation, transcriptional regulation, genome stability and cellular differentiation. Here, we review recent research on nuclear lamins and unique roles of A- and B-type lamins in modulating various nuclear processes and their impact on cell function.


Subject(s)
Lamins/physiology , Nuclear Lamina/physiology , Animals , Chromatin/metabolism , Cytoskeleton/metabolism , Gene Expression Regulation , Humans , Structure-Activity Relationship , Yeasts
SELECTION OF CITATIONS
SEARCH DETAIL