Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Molecules ; 26(16)2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34443639

ABSTRACT

Laser-reduced graphene oxide (LRGO) on a polyethylene terephthalate (PET) substrate was prepared in one step to obtain the LRGO grid electrode for sensitive carbaryl determination. The grid form results in a grid distribution of different electrochemically active zones affecting the electroactive substance diffusion towards the electrode surface and increasing the electrochemical sensitivity for carbaryl determination. Carbaryl is electrochemically irreversibly oxidized at the secondary amine moiety of the molecule with the loss of one proton and one electron in the pH range from 5 to 7 by linear scan voltammetry (LSV) on the LRGO grid electrode with a scan rate of 300 mV/s. Some interference of the juice matrix molecules does not significantly affect the LSV oxidation current of carbaryl on the LRGO grid electrode after adsorptive accumulation without applied potential. The LRGO grid electrode can be used for LSV determination of carbaryl in fruit juices in the concentration range from 0.25 to 128 mg/L with LOD of 0.1 mg/L. The fabrication of the LRGO grid electrode opens up possibilities for further inexpensive monitoring of carbaryl in other fruit juices and fruits.


Subject(s)
Carbaryl/chemistry , Graphite/chemistry , Electrochemical Techniques/methods , Electrodes , Hydrogen-Ion Concentration , Lasers , Oxidation-Reduction
2.
Biosens Bioelectron ; 252: 116142, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38401281

ABSTRACT

Nanostructured electrochemical biosensors have ushered in a new era of diagnostic precision, offering enhanced sensitivity and specificity for clinical biomarker detection. Among them, capacitive biosensing enables ultrasensitive label-free detection of multiple molecular targets. However, the complexity and cost associated with conventional fabrication methods of nanostructured platforms hinder the widespread adoption of these devices. This study introduces a capacitive biosensor that leverages laser-engraved reduced graphene oxide (rGO) electrodes decorated with gold nanoparticles (AuNPs). The fabrication involves laser-scribed GO-Au3+ films, yielding rGO-AuNP electrodes, seamlessly transferred onto a PET substrate via a press-stamping methodology. These electrodes have a remarkable affinity for biomolecular recognition after being functionalized with specific bioreceptors. For example, initial studies with human IgG antibodies confirm the detection capabilities of the biosensor using electrochemical capacitance spectroscopy. Furthermore, the biosensor can quantify CA-19-9 glycoprotein, a clinical cancer biomarker. The biosensor exhibits a dynamic range from 0 to 300 U mL-1, with a limit of detection of 8.9 U mL-1. Rigorous testing with known concentrations of a pretreated CA-19-9 antigen from human fluids confirmed their accuracy and reliability in detecting the glycoprotein. This study signifies notable progress in capacitive biosensing for clinical biomarkers, potentially leading to more accessible and cost-effective point-of-care solutions.


Subject(s)
Biosensing Techniques , Graphite , Metal Nanoparticles , Humans , Gold/chemistry , Reproducibility of Results , Metal Nanoparticles/chemistry , Biosensing Techniques/methods , Graphite/chemistry , Electrodes , Glycoproteins , Electrochemical Techniques/methods , Limit of Detection
3.
Biosens Bioelectron ; 258: 116315, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38701536

ABSTRACT

Research in electrochemical detection in lateral flow assays (LFAs) has gained significant momentum in recent years. The primary impetus for this surge in interest is the pursuit of achieving lower limits of detection, especially given that LFAs are the most widely employed point-of-care biosensors. Conventionally, the strategy for merging electrochemistry and LFAs has centered on the superposition of screen-printed electrodes onto nitrocellulose substrates during LFA fabrication. Nevertheless, this approach poses substantial limitations regarding scalability. In response, we have developed a novel method for the complete integration of reduced graphene oxide (rGO) electrodes into LFA strips. We employed a CO2 laser to concurrently reduce graphene oxide and pattern nitrocellulose, exposing its backing to create connection sites impervious to sample leakage. Subsequently, rGO and nitrocellulose were juxtaposed and introduced into a roll-to-roll system using a wax printer. The exerted pressure facilitated the transfer of rGO onto the nitrocellulose. We systematically evaluated several electrochemical strategies to harness the synergy between rGO and LFAs. While certain challenges persist, our rGO transfer technology presents compelling potential for setting a new standard in electrochemical LFA fabrication.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Electrodes , Graphite , Point-of-Care Systems , Graphite/chemistry , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Humans , Equipment Design , Collodion/chemistry , Point-of-Care Testing , Limit of Detection , Oxidation-Reduction
4.
ACS Sens ; 8(2): 598-609, 2023 02 24.
Article in English | MEDLINE | ID: mdl-36734274

ABSTRACT

The combination of two-dimensional materials and metal nanoparticles (MNPs) allows the fabrication of novel nanocomposites with unique physical/chemical properties exploitable in high-performance smart devices and biosensing strategies. Current methods to obtain graphene-based films decorated with noble MNPs are cumbersome, poorly reproducible, and difficult to scale up. Herein, we propose a straightforward, versatile, surfactant-free, and single-step technique to produce reduced graphene oxide (rGO) conductive films integrating "naked" noble MNPs. This method relies on the instantaneous laser-induced co-reduction of graphene oxide and metal cations, resulting in highly exfoliated rGO nanosheets embedding gold, silver, and platinum NPs. The production procedure has been optimized, and the obtained nanomaterials are fully characterized; the hybrid nanosheets have been easily transferred onto lab-made screen-printed electrodes preserving their nanoarchitecture. The Au@rGO-, Ag@rGO-, and Pt@rGO-based electrodes have been challenged to detect caffeic acid, nitrite, and hydrogen peroxide in model solutions and real samples. The sensors yielded quantitative responses (R2 ≥ 0.997) with sub-micromolar limits of detections (LODs ≤ 0.6 µM) for all the analytes, allowing accurate quantification in samples (recoveries ≥ 90%; RSD ≤ 14.8%, n = 3). This single-step protocol which requires low cost and minimal equipment will allow the fabrication of free-standing, MNP-embedded rGO films integrable into a variety of scalable smart devices and biosensors.


Subject(s)
Graphite , Metal Nanoparticles , Graphite/chemistry , Electrochemical Techniques/methods , Metal Nanoparticles/chemistry , Gold/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL