Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 194
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 182(6): 1508-1518.e16, 2020 09 17.
Article in English | MEDLINE | ID: mdl-32783917

ABSTRACT

Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most frequent cause of familial Parkinson's disease. LRRK2 is a multi-domain protein containing a kinase and GTPase. Using correlative light and electron microscopy, in situ cryo-electron tomography, and subtomogram analysis, we reveal a 14-Å structure of LRRK2 bearing a pathogenic mutation that oligomerizes as a right-handed double helix around microtubules, which are left-handed. Using integrative modeling, we determine the architecture of LRRK2, showing that the GTPase and kinase are in close proximity, with the GTPase closer to the microtubule surface, whereas the kinase is exposed to the cytoplasm. We identify two oligomerization interfaces mediated by non-catalytic domains. Mutation of one of these abolishes LRRK2 microtubule-association. Our work demonstrates the power of cryo-electron tomography to generate models of previously unsolved structures in their cellular environment.


Subject(s)
Cryoelectron Microscopy/methods , Electron Microscope Tomography/methods , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/chemistry , Microtubules/metabolism , Parkinson Disease/metabolism , Cytoplasm/metabolism , GTP Phosphohydrolases/chemistry , GTP Phosphohydrolases/metabolism , HEK293 Cells , Humans , Microscopy, Electron, Transmission , Microtubules/chemistry , Models, Chemical , Mutation , Parkinson Disease/genetics , Parkinson Disease/pathology , Phosphotransferases/chemistry , Phosphotransferases/metabolism , Protein Domains , WD40 Repeats
2.
Trends Biochem Sci ; 47(3): 187-188, 2022 03.
Article in English | MEDLINE | ID: mdl-34756665

ABSTRACT

Variations in the LRRK2 gene represent one of the strongest genetic factors for Parkinson's disease (PD). It has become clear that structural knowledge of the encoded large multidomain LRRK2 protein will cast light on its biological function. The new study from Myasnikov, Zhu, et al. provides a high-resolution structure of the full-length LRRK2.


Subject(s)
Parkinson Disease , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/chemistry , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Mutation , Parkinson Disease/genetics , Parkinson Disease/metabolism
3.
J Cell Sci ; 136(17)2023 09 01.
Article in English | MEDLINE | ID: mdl-37698513

ABSTRACT

Leucine-rich repeat kinase 2 (LRRK2) is a multidomain scaffolding protein with dual guanosine triphosphatase (GTPase) and kinase enzymatic activities, providing this protein with the capacity to regulate a multitude of signalling pathways and act as a key mediator of diverse cellular processes. Much of the interest in LRRK2 derives from mutations in the LRRK2 gene being the most common genetic cause of Parkinson's disease, and from the association of the LRRK2 locus with a number of other human diseases, including inflammatory bowel disease. Therefore, the LRRK2 research field has focused on the link between LRRK2 and pathology, with the aim of uncovering the underlying mechanisms and, ultimately, finding novel therapies and treatments to combat them. From the biochemical and cellular functions of LRRK2, to its relevance to distinct disease mechanisms, this Cell Science at a Glance article and the accompanying poster deliver a snapshot of our current understanding of LRRK2 function, dysfunction and links to disease.


Subject(s)
Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Parkinson Disease , Humans , Leucine , Mutation , Parkinson Disease/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics
4.
Neurobiol Dis ; 196: 106522, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38705492

ABSTRACT

Idiopathic Parkinson's disease (PD) is epidemiologically linked with exposure to toxicants such as pesticides and solvents, which comprise a wide array of chemicals that pollute our environment. While most are structurally distinct, a common cellular target for their toxicity is mitochondrial dysfunction, a key pathological trigger involved in the selective vulnerability of dopaminergic neurons. We and others have shown that environmental mitochondrial toxicants such as the pesticides rotenone and paraquat, and the organic solvent trichloroethylene (TCE) appear to be influenced by the protein LRRK2, a genetic risk factor for PD. As LRRK2 mediates vesicular trafficking and influences endolysosomal function, we postulated that LRRK2 kinase activity may inhibit the autophagic removal of toxicant damaged mitochondria, resulting in elevated oxidative stress. Conversely, we suspected that inhibition of LRRK2, which has been shown to be protective against dopaminergic neurodegeneration caused by mitochondrial toxicants, would reduce the intracellular production of reactive oxygen species (ROS) and prevent mitochondrial toxicity from inducing cell death. To do this, we tested in vitro if genetic or pharmacologic inhibition of LRRK2 (MLi2) protected against ROS caused by four toxicants associated with PD risk - rotenone, paraquat, TCE, and tetrachloroethylene (PERC). In parallel, we assessed if LRRK2 inhibition with MLi2 could protect against TCE-induced toxicity in vivo, in a follow up study from our observation that TCE elevated LRRK2 kinase activity in the nigrostriatal tract of rats prior to dopaminergic neurodegeneration. We found that LRRK2 inhibition blocked toxicant-induced ROS and promoted mitophagy in vitro, and protected against dopaminergic neurodegeneration, neuroinflammation, and mitochondrial damage caused by TCE in vivo. We also found that cells with the LRRK2 G2019S mutation displayed exacerbated levels of toxicant induced ROS, but this was ameliorated by LRRK2 inhibition with MLi2. Collectively, these data support a role for LRRK2 in toxicant-induced mitochondrial dysfunction linked to PD risk through oxidative stress and the autophagic removal of damaged mitochondria.


Subject(s)
Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Reactive Oxygen Species , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/antagonists & inhibitors , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Animals , Reactive Oxygen Species/metabolism , Rats , Trichloroethylene/toxicity , Mitochondria/drug effects , Mitochondria/metabolism , Rotenone/toxicity , Parkinson Disease/metabolism , Parkinson Disease/prevention & control , Paraquat/toxicity , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Oxidative Stress/drug effects , Humans , Environmental Pollutants/toxicity , Rats, Sprague-Dawley
5.
Curr Issues Mol Biol ; 46(5): 4324-4336, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38785531

ABSTRACT

Astrocytes in the brain contribute to various essential functions, including maintenance of the neuronal framework, survival, communication, metabolic processes, and neurotransmitter levels. Leucine-rich repeat kinase 2 (LRRK2) is associated with the pathogenesis of Parkinson's disease (PD). LRRK2 is expressed in neurons, microglia, and astrocytes and plays diverse roles in these cell types. We aimed to determine the effects of mutant human G2019S-LRRK2 (GS-hLRRK2) in rat primary astrocytes (rASTROs). Transfection with GS-hLRRK2 significantly decreased cell viability compared to transfection with the vector and wild-type human LRRK2 (WT-hLRRK2). GS-hLRRK2 expression significantly reduced the levels of nerve growth factor and increased the levels of proinflammatory cytokines (interleukin-1ß and tumor necrosis factor α) compared to the vector and WT-hLRRK2 expression. Furthermore, GS-hLRRK2 expression in rASTROs promoted astrogliosis, which was characterized by increased expression of glial fibrillary acidic protein and vimentin. Treatment with the conditioned medium of G2019S LRRK2-expressing rASTROs decreased N27 cell viability compared to treatment with that of WT-hLRRK2-expressing rASTROs. Consequently, the regulation of the dopamine synthesis pathway was affected in N27 cells, thereby leading to altered levels of tyrosine hydroxylase, dopamine transporter, Nurr1, and dopamine release. Overall, the G2019S LRRK2 mutation disrupted astrocyte function, thereby aggravating PD progression.

6.
Biochem Biophys Res Commun ; 723: 150199, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-38824807

ABSTRACT

Rab3A is a member of the Rab GTPase family involved in synaptic vesicle trafficking. Recent evidence has demonstrated that Rab3A is phosphorylated by leucine-rich repeat kinase 2 (LRRK2) that is implicated in both familial and sporadic forms of Parkinson's disease (PD), and an abnormal increase in Rab3A phosphorylation has been proposed as a cause of PD. Despite the potential importance of Rab3A in PD pathogenesis, its structural information is limited and the effects of bound nucleotides on its biophysical and biochemical properties remain unclear. Here, we show that GDP-bound Rab3A is preferentially phosphorylated by LRRK2 compared with GTP-bound Rab3A. The secondary structure of Rab3A, measured by circular dichroism (CD) spectroscopy, revealed that Rab3A is resistant to heat-induced denaturation at pH 7.4 or 9.0 regardless of the nucleotides bound. In contrast, Rab3A underwent heat-induced denaturation at pH 5.0 at a lower temperature in its GDP-bound form than in its GTP-bound form. The unfolding temperature of Rab3A was studied by differential scanning fluorimetry, which showed a significantly higher unfolding temperature in GTP-bound Rab3A than in GDP-bound Rab3A, with the highest at pH 7.4. These results suggest that Rab3A has unusual thermal stability under physiologically relevant conditions and that bound nucleotides influence both thermal stability and phosphorylation by LRRK2.


Subject(s)
Guanosine Diphosphate , Guanosine Triphosphate , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Protein Structure, Secondary , rab3A GTP-Binding Protein , Phosphorylation , Guanosine Triphosphate/metabolism , Guanosine Triphosphate/chemistry , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/chemistry , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , rab3A GTP-Binding Protein/metabolism , rab3A GTP-Binding Protein/chemistry , Guanosine Diphosphate/metabolism , Guanosine Diphosphate/chemistry , Protein Stability
7.
Biochem Soc Trans ; 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39083004

ABSTRACT

Lysosomes are dynamic cellular structures that adaptively remodel their membrane in response to stimuli, including membrane damage. Lysosomal dysfunction plays a central role in the pathobiology of Parkinson's disease (PD). Gain-of-function mutations in Leucine-rich repeat kinase 2 (LRRK2) cause familial PD and genetic variations in its locus increase the risk of developing the sporadic form of the disease. We previously uncovered a process we term LYTL (LYsosomal Tubulation/sorting driven by LRRK2), wherein membrane-damaged lysosomes generate tubules sorted into mobile vesicles. Subsequently, these vesicles interact with healthy lysosomes. LYTL is orchestrated by LRRK2 kinase activity, via the recruitment and phosphorylation of a subset of RAB GTPases. Here, we summarize the current understanding of LYTL and its regulation, as well as the unknown aspects of this process.

8.
J Exp Bot ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39041593

ABSTRACT

Cuticular wax (CW) is the first defensive barrier of plants that forms a waterproof barrier, protects the plant from desiccation, and defends against insects, pathogens, and UV radiation. Sorghum, an important grass crop with high heat and drought tolerance, exhibits a much higher wax load than other grasses and the model plant Arabidopsis. In this study, we explored the regulation of sorghum CW biosynthesis using a bloomless mutant. The CW on leaf sheaths of bloomless 41 (bm41) mutant showed significantly reduced very long-chain fatty acids (VLCFAs), triterpenoids, alcohols, and other wax components, with an overall 86% decrease in total wax content compared to the wild-type. Notably, the 28-carbon and 30-carbon VLCFAs were decreased in the mutants. Using bulk segregant analysis, we identified the causal gene of the bloomless phenotype as a leucine-rich repeat transmembrane protein kinase. Transcriptome analysis of the wild-type and bm41 mutant leaf sheaths revealed BM41 as a positive regulator of lipid biosynthesis and steroid metabolism. BM41 may regulate CW biosynthesis by regulating the expression of the gene encoding 3-ketoacyl-CoA synthase 6. Identification of BM41 as a new regulator of CW biosynthesis provides fundamental knowledge for improving grass crops' heat and drought tolerance by increasing CW.

9.
FASEB J ; 37(5): e22930, 2023 05.
Article in English | MEDLINE | ID: mdl-37086089

ABSTRACT

Mutations in leucine-rich repeat kinase 2 (LRRK2) cause familial Parkinson's disease (PD). Recent studies have shown that LRRK2 physiologically phosphorylates several Rab family proteins including Rab12 and that this phosphorylation is accelerated by the pathogenic mutations in LRRK2, although the significance in the PD pathogenesis remains unknown. Here we examined the effect of the overexpression of LRRK2 on the distribution of organelles in cultured cells and found that lysosomes become clustered in a perinuclear region upon the overexpression of pathogenic mutant LRRK2 in a manner dependent on its kinase activity. The perinuclear clustering of lysosomes was abolished by knocking out RAB12 as well as its effector protein RILPL1. Re-expression of Rab12 in RAB12 knockout cells suggested that the phosphorylation at Ser106 of Rab12 is required for the perinuclear clustering of lysosomes. Moreover, phosphorylated Rab12 was also accumulated on the clustered lysosomes, and the phosphorylation of Rab12 increased its interaction with RILPL1, leading us to conclude that the increase in the phosphorylation of Rab12 by pathogenic LRRK2 compromised intracellular lysosomal transport via the enhanced interaction of Rab12 with RILPL1. These data suggest the involvement of abnormal regulation of lysosomal transport in the LRRK2-mediated pathogenesis of PD.


Subject(s)
Adaptor Proteins, Signal Transducing , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Lysosomes , rab GTP-Binding Proteins , Cell Line , Humans , Lysosomes/metabolism , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , rab GTP-Binding Proteins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Phosphorylation , Parkinson Disease , Microtubules/metabolism
10.
Bioorg Chem ; 143: 106972, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37995640

ABSTRACT

Parkinson's disease (PD) is an age-related second most common progressive neurodegenerative disorder that affects millions of people worldwide. Despite decades of research, no effective disease modifying therapeutics have reached clinics for treatment/management of PD. Leucine-rich repeat kinase 2 (LRRK2) which controls membrane trafficking and lysosomal function and its variant LRRK2-G2019S are involved in the development of both familial and sporadic PD. LRRK2, is therefore considered as a legitimate target for the development of therapeutics against PD. During the last decade, efforts have been made to develop effective, safe and selective LRRK2 inhibitors and also our understanding about LRRK2 has progressed. However, there is an urge to learn from the previously designed and reported LRRK2 inhibitors in order to effectively approach designing of new LRRK2 inhibitors. In this review, we have aimed to cover the pre-clinical studies undertaken to develop small molecule LRRK2 inhibitors by screening the patents and other available literature in the last decade. We have highlighted LRRK2 as targets in the progress of PD and subsequently covered detailed design, synthesis and development of diverse scaffolds as LRRK2 inhibitors. Moreover, LRRK2 inhibitors under clinical development has also been discussed. LRRK2 inhibitors seem to be potential targets for future therapeutic interventions in the treatment and management of PD and this review can act as a cynosure for guiding discovery, design, and development of selective and non-toxic LRRK2 inhibitors. Although, there might be challenges in developing effective LRRK2 inhibitors, the opportunity to successfully develop novel therapeutics targeting LRRK2 against PD has never been greater.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/drug therapy , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Mutation
11.
Biochem J ; 2023 May 22.
Article in English | MEDLINE | ID: mdl-37212165

ABSTRACT

LRRK2 is a multi-domain protein with three catalytically inert N-terminal domains (NtDs) and four C-terminal domains, including a kinase and a GTPase domain. LRRK2 mutations are linked to Parkinson's Disease. Recent structures of LRRK2RCKW and a full-length inactive LRRK2 (fl-LRRK2INACT) monomer revealed that the kinase domain drives LRRK2 activation. The LRR domain and also an ordered LRR- COR linker, wrap around the C-lobe of the kinase domain and sterically block the substrate binding surface in fl-LRRK2INACT. Here we focus on the crosstalk between domains. Our biochemical studies of GTPase and kinase activities of fl-LRRK2 and LRRK2RCKW reveal how mutations influence this crosstalk differently depending on the domain borders investigated. Furthermore, we demonstrate that removing the NtDs leads to altered intramolecular regulation. To further investigate the crosstalk, we used Hydrogen-Deuterium exchange Mass Spectrometry (HDX-MS) to characterize the conformation of LRRK2RCKW   and Gaussian Accelerated Molecular Dynamics (GaMD) to create dynamic portraits of fl-LRRK2 and LRRK2RCKW. These models allowed us to investigate the dynamic changes in wild type and mutant LRRK2s. Our data show that the a3ROC helix, the Switch II motif in the ROC domain, and the LRR-ROC linker play crucial roles in mediating local and global conformational changes. We demonstrate how these regions are affected by other domains in fl-LRRK2 and LRRK2RCKW and show how unleashing of the NtDs as well as PD mutations lead to changes in conformation and dynamics of the ROC and kinase domains which ultimately impact kinase and GTPase activities. These allosteric sites are potential therapeutic targets.

12.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Article in English | MEDLINE | ID: mdl-34088839

ABSTRACT

To explore how pathogenic mutations of the multidomain leucine-rich repeat kinase 2 (LRRK2) hijack its finely tuned activation process and drive Parkinson's disease (PD), we used a multitiered approach. Most mutations mimic Rab-mediated activation by "unleashing" kinase activity, and many, like the kinase inhibitor MLi-2, trap LRRK2 onto microtubules. Here we mimic activation by simply deleting the inhibitory N-terminal domains and then characterize conformational changes induced by MLi-2 and PD mutations. After confirming that LRRK2RCKW retains full kinase activity, we used hydrogen-deuterium exchange mass spectrometry to capture breathing dynamics in the presence and absence of MLi-2. Solvent-accessible regions throughout the entire protein are reduced by MLi-2 binding. With molecular dynamics simulations, we created a dynamic portrait of LRRK2RCKW and demonstrate the consequences of kinase domain mutations. Although all domains contribute to regulating kinase activity, the kinase domain, driven by the DYGψ motif, is the allosteric hub that drives LRRK2 regulation.


Subject(s)
Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/chemistry , Molecular Dynamics Simulation , Amino Acid Motifs , Humans , Hydrogen Deuterium Exchange-Mass Spectrometry , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Protein Domains , Protein Transport
13.
Biochem Biophys Res Commun ; 667: 43-49, 2023 07 30.
Article in English | MEDLINE | ID: mdl-37207563

ABSTRACT

An abnormal increase in the phosphorylation of Rab12 by leucine-rich repeat kinase 2 (LRRK2), a serine/threonine kinase genetically linked to Parkinson's disease (PD), has been implicated in the pathogenesis of PD, although the underlying mechanism remains unclear. In this report, we show that LRRK2 phosphorylates Rab12 more efficiently in its GDP-bound form than in its GTP-bound form using an in vitro phosphorylation assay. This observation suggests that LRRK2 recognizes the structural difference of Rab12 caused by the bound nucleotide and that Rab12 phosphorylation inhibits its activation. Circular dichroism data revealed that Rab12, in its GDP-bound form, is more susceptible to heat-induced denaturation than its GTP-bound form, which was exacerbated at basic pH. Differential scanning fluorimetry showed that heat-induced denaturation of Rab12 in its GDP-bound form occurs at a lower temperature than in its GTP-bound form. These results suggest that the type of nucleotide bound to Rab12 determines the efficiency of LRRK2-mediated phosphorylation and the thermal stability of Rab12, and provide insights into elucidating the mechanism of the abnormal increase in Rab12 phosphorylation.


Subject(s)
Nucleotides , Protein Serine-Threonine Kinases , Guanosine Triphosphate/metabolism , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Nucleotides/metabolism , Phosphorylation , Protein Serine-Threonine Kinases/metabolism , rab GTP-Binding Proteins/metabolism , Parkinson Disease/genetics
14.
Mov Disord ; 38(1): 138-142, 2023 01.
Article in English | MEDLINE | ID: mdl-36253640

ABSTRACT

BACKGROUND: The alteration of substantia nigra (SN) degeneration in populations at risk of Parkinson's disease (PD) is unclear. OBJECTIVE: We investigated free water (FW) values in the posterior SN (pSN) in asymptomatic LRRK2 G2019S mutation carriers. METHODS: We analyzed diffusion imaging data from 28 asymptomatic LRRK2 G2019S mutation carriers and 30 healthy controls (HCs), whereas 11 asymptomatic LRRK2 G2019S carriers and 11 HCs were followed up. FW values in the pSN were measured and compared between the groups. The relationship between longitudinal changes in FW in the pSN and dopamine transporter striatal binding ratio (SBR) was analyzed. RESULTS: FW values in the pSN were significantly elevated and kept increasing during follow-up in asymptomatic LRRK2 G2019S carriers. There was a negative correlation between FW changes in the left pSN and SBR changes in the left putamen. CONCLUSION: FW in the pSN has the potential to be a progression imaging marker of early dopaminergic degeneration in the population at risk of PD. © 2022 International Parkinson and Movement Disorder Society.


Subject(s)
Parkinson Disease , Substantia Nigra , Humans , Mutation/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Substantia Nigra/diagnostic imaging , Substantia Nigra/metabolism , Parkinson Disease/diagnostic imaging , Parkinson Disease/genetics , Parkinson Disease/metabolism , Putamen/metabolism , Water/metabolism
15.
FASEB J ; 36(6): e22343, 2022 06.
Article in English | MEDLINE | ID: mdl-35535564

ABSTRACT

Systemic perturbations can drive a neuroimmune cascade after surgical trauma, including affecting the blood-brain barrier (BBB), activating microglia, and contributing to cognitive deficits such as delirium. Delirium superimposed on dementia (DSD) is a particularly debilitating complication that renders the brain further vulnerable to neuroinflammation and neurodegeneration, albeit these molecular mechanisms remain poorly understood. Here, we have used an orthopedic model of tibial fracture/fixation in APPSwDI/mNos2-/- AD (CVN-AD) mice to investigate relevant pathogenetic mechanisms underlying DSD. We conducted the present study in 6-month-old CVN-AD mice, an age at which we speculated amyloid-ß pathology had not saturated BBB and neuroimmune functioning. We found that URMC-099, our brain-penetrant anti-inflammatory neuroprotective drug, prevented inflammatory endothelial activation, breakdown of the BBB, synapse loss, and microglial activation in our DSD model. Taken together, our data link post-surgical endothelial activation, microglial MafB immunoreactivity, and synapse loss as key substrates for DSD, all of which can be prevented by URMC-099.


Subject(s)
Delirium , Dementia , Animals , Delirium/complications , Delirium/prevention & control , Dementia/etiology , Dementia/prevention & control , Hippocampus/metabolism , Mice , Pyridines , Pyrroles/therapeutic use
16.
Bioorg Chem ; 141: 106906, 2023 12.
Article in English | MEDLINE | ID: mdl-37837728

ABSTRACT

Parkinson's disease (PD) is the second most common neurodegenerative disease. Several single gene mutations involved in PD have been identified such as leucine-rich repeat kinase 2 (LRRK2), the most common cause of sporadic and familial PD. Its mutations have attracted much attention to therapeutically targeting this kinase. To date, many compounds including small chemical molecules with diverse scaffolds and RNA agents have been developed with significant amelioration in preclinical PD models. Currently, five candidates, DNL201, DNL151, WXWH0226, NEU-723 and BIIB094, have advanced to clinical trials for PD treatment. In this review, we describe the structure, pathogenic mutations and the mechanism of LRRK2, and summarize the development of LRRK2 inhibitors in preclinical and clinical studies, trying to provide an insight into targeting LRRK2 for PD intervention in future.


Subject(s)
Neurodegenerative Diseases , Parkinson Disease , Humans , Parkinson Disease/drug therapy , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Leucine , Protein Serine-Threonine Kinases/genetics , Mutation
17.
Biol Pharm Bull ; 46(1): 123-127, 2023.
Article in English | MEDLINE | ID: mdl-36596520

ABSTRACT

Mutations in leucine rich-repeat kinase 2 (LRRK2) cause autosomal-dominant, late-onset Parkinson's disease (PD). Accumulating evidence indicates that PD-associated LRRK2 mutations induce neuronal cell death by increasing cellular reactive oxygen species levels. However, the mechanism of increased oxidative stress associated with LRRK2 kinase activity remains unclear. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that protects cells from oxidative stress by inducing the expression of antioxidant genes. In the present, it was found that decreased expression of Nrf2 and mRNA expression of its target genes in Lrrk2-transgenic mouse brain and LRRK2 overexpressing SH-SY5Y cells. Furthermore, knockdown of glycogen synthase kinase-3ß (GSK-3ß) recovered Nrf2 expression and mRNA expression of its target genes in LRRK2 overexpressing SH-SY5Y cells. We concluded that since Nrf2 is transcriptional factor for antioxidative responses, therefore, reduction of Nrf2 expression by LRRK2 may be part of a mechanism that LRRK2-induces vulnerability to oxidative stress in neuronal cells.


Subject(s)
NF-E2-Related Factor 2 , Neuroblastoma , Mice , Animals , Humans , Mice, Transgenic , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Neuroblastoma/metabolism , Brain/metabolism , Antioxidants/metabolism , RNA, Messenger/metabolism , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism
18.
Biochem J ; 479(17): 1759-1783, 2022 09 16.
Article in English | MEDLINE | ID: mdl-35950872

ABSTRACT

Mutations enhancing the kinase activity of leucine-rich repeat kinase-2 (LRRK2) cause Parkinson's disease (PD) and therapies that reduce LRRK2 kinase activity are being tested in clinical trials. Numerous rare variants of unknown clinical significance have been reported, but how the vast majority impact on LRRK2 function is unknown. Here, we investigate 100 LRRK2 variants linked to PD, including previously described pathogenic mutations. We identify 23 LRRK2 variants that robustly stimulate kinase activity, including variants within the N-terminal non-catalytic regions (ARM (E334K, A419V), ANK (R767H), LRR (R1067Q, R1325Q)), as well as variants predicted to destabilize the ROC:CORB interface (ROC (A1442P, V1447M), CORA (R1628P) CORB (S1761R, L1795F)) and COR:COR dimer interface (CORB (R1728H/L)). Most activating variants decrease LRRK2 biomarker site phosphorylation (pSer935/pSer955/pSer973), consistent with the notion that the active kinase conformation blocks their phosphorylation. We conclude that the impact of variants on kinase activity is best evaluated by deploying a cellular assay of LRRK2-dependent Rab10 substrate phosphorylation, compared with a biochemical kinase assay, as only a minority of activating variants (CORB (Y1699C, R1728H/L, S1761R) and kinase (G2019S, I2020T, T2031S)), enhance in vitro kinase activity of immunoprecipitated LRRK2. Twelve variants including several that activate LRRK2 and have been linked to PD, suppress microtubule association in the presence of a Type I kinase inhibitor (ARM (M712V), LRR (R1320S), ROC (A1442P, K1468E, S1508R), CORA (A1589S), CORB (Y1699C, R1728H/L) and WD40 (R2143M, S2350I, G2385R)). Our findings will stimulate work to better understand the mechanisms by which variants impact biology and provide rationale for variant carrier inclusion or exclusion in ongoing and future LRRK2 inhibitor clinical trials.


Subject(s)
Parkinson Disease , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Microtubules/metabolism , Mutation , Parkinson Disease/genetics , Parkinson Disease/metabolism , Phosphorylation , Protein Binding
19.
Biochem J ; 479(18): 1941-1965, 2022 09 30.
Article in English | MEDLINE | ID: mdl-36040231

ABSTRACT

Leucine-rich-repeat-kinase 1 (LRRK1) and its homolog LRRK2 are multidomain kinases possessing a ROC-CORA-CORB containing GTPase domain and phosphorylate distinct Rab proteins. LRRK1 loss of function mutations cause the bone disorder osteosclerotic metaphyseal dysplasia, whereas LRRK2 missense mutations that enhance kinase activity cause Parkinson's disease. Previous work suggested that LRRK1 but not LRRK2, is activated via a Protein Kinase C (PKC)-dependent mechanism. Here we demonstrate that phosphorylation and activation of LRRK1 in HEK293 cells is blocked by PKC inhibitors including LXS-196 (Darovasertib), a compound that has entered clinical trials. We show multiple PKC isoforms phosphorylate and activate recombinant LRRK1 in a manner reversed by phosphatase treatment. PKCα unexpectedly does not activate LRRK1 by phosphorylating the kinase domain, but instead phosphorylates a cluster of conserved residues (Ser1064, Ser1074 and Thr1075) located within a region of the CORB domain of the GTPase domain. These residues are positioned at the equivalent region of the LRRK2 DK helix reported to stabilize the kinase domain αC-helix in the active conformation. Thr1075 represents an optimal PKC site phosphorylation motif and its mutation to Ala, blocked PKC-mediated activation of LRRK1. A triple Glu mutation of Ser1064/Ser1074/Thr1075 to mimic phosphorylation, enhanced LRRK1 kinase activity ∼3-fold. From analysis of available structures, we postulate that phosphorylation of Ser1064, Ser1074 and Thr1075 activates LRRK1 by promoting interaction and stabilization of the αC-helix on the kinase domain. This study provides new fundamental insights into the mechanism controlling LRRK1 activity and reveals a novel unexpected activation mechanism.


Subject(s)
GTP Phosphohydrolases , Protein Serine-Threonine Kinases , Cordyceps , GTP Phosphohydrolases/metabolism , HEK293 Cells , Humans , Leucine/metabolism , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Mutation , Phosphoric Monoester Hydrolases/metabolism , Phosphorylation , Protein Isoforms/metabolism , Protein Kinase C/genetics , Protein Kinase C/metabolism , Protein Kinase C-alpha/metabolism , Protein Kinase Inhibitors , Protein Serine-Threonine Kinases/genetics
20.
Int J Mol Sci ; 24(13)2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37445652

ABSTRACT

Leucine-rich repeat kinase 2 (LRRK2) has been linked to dopaminergic neuronal vulnerability to oxidative stress (OS), mitochondrial impairment, and increased cell death in idiopathic and familial Parkinson's disease (PD). However, how exactly this kinase participates in the OS-mitochondria-apoptosis connection is still unknown. We used clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 LRRK2 knockout (KO) in the human embryonic kidney cell line 293 (HEK-293) to evaluate the cellular response to the mitochondrial inhibitor complex I rotenone (ROT), a well-known OS and cell death inducer. We report successful knockout of the LRRK2 gene in HEK-293 cells using CRISPR editing (ICE, approximately 60%) and flow cytometry (81%) analyses. We found that HEK-293 LRRK2 WT cells exposed to rotenone (ROT, 50 µM) resulted in a significant increase in intracellular reactive oxygen species (ROS, +7400%); oxidized DJ-1-Cys106-SO3 (+52%); phosphorylation of LRRK2 (+70%) and c-JUN (+171%); enhanced expression of tumor protein (TP53, +2000%), p53 upregulated modulator of apoptosis (PUMA, +1950%), and Parkin (PRKN, +22%); activation of caspase 3 (CASP3, +8000%), DNA fragmentation (+35%) and decreased mitochondrial membrane potential (ΔΨm, -58%) and PTEN induced putative kinase 1 (PINK1, -49%) when compared to untreated cells. The translocation of the cytoplasmic fission protein dynamin-related Protein 1 (DRP1) to mitochondria was also observed by colocalization with translocase of the outer membrane 20 (TOM20). Outstandingly, HEK-293 LRRK2 KO cells treated with ROT showed unaltered OS and apoptosis markers. We conclude that loss of LRRK2 causes HEK-293 to be resistant to ROT-induced OS, mitochondrial damage, and apoptosis in vitro. Our data support the hypothesis that LRRK2 acts as a proapoptotic kinase by regulating mitochondrial proteins (e.g., PRKN, PINK1, DRP1, and PUMA), transcription factors (e.g., c-JUN and TP53), and CASP3 in cells under stress conditions. Taken together, these observations suggest that LRRK2 is an important kinase in the pathogenesis of PD.


Subject(s)
Apoptosis Regulatory Proteins , Rotenone , Humans , Rotenone/toxicity , Caspase 3/metabolism , HEK293 Cells , Apoptosis Regulatory Proteins/metabolism , Oxidative Stress , Apoptosis/genetics , Protein Kinases/metabolism , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL