Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 418
Filter
Add more filters

Publication year range
1.
Annu Rev Biochem ; 83: 79-98, 2014.
Article in English | MEDLINE | ID: mdl-24606142

ABSTRACT

Lipidomics aims to quantitatively define lipid classes, including their molecular species, in biological systems. Lipidomics has experienced rapid progress, mainly because of continuous technical advances in instrumentation that are now enabling quantitative lipid analyses with an unprecedented level of sensitivity and precision. The still-growing category of lipids includes a broad diversity of chemical structures with a wide range of physicochemical properties. Reflecting this diversity, different methods and strategies are being applied to the quantification of lipids. Here, I review state-of-the-art electrospray ionization tandem mass spectrometric approaches and direct infusion to quantitatively assess lipid compositions of cells and subcellular fractions. Finally, I discuss a few examples of the power of mass spectrometry-based lipidomics in addressing cell biological questions.


Subject(s)
Lipids/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Animals , Cardiolipins/chemistry , Chemistry, Physical , Computational Biology , Humans , Mitochondria/metabolism , Organelles/chemistry , Solvents/chemistry , Subcellular Fractions/chemistry
2.
Proc Natl Acad Sci U S A ; 121(24): e2400711121, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38833476

ABSTRACT

Understanding how microbial lipidomes adapt to environmental and nutrient stress is crucial for comprehending microbial survival and functionality. Certain anaerobic bacteria can synthesize glycerolipids with ether/ester bonds, yet the complexities of their lipidome remodeling under varying physicochemical and nutritional conditions remain largely unexplored. In this study, we thoroughly examined the lipidome adaptations of Desulfatibacillum alkenivorans strain PF2803T, a mesophilic anaerobic sulfate-reducing bacterium known for its high proportions of alkylglycerol ether lipids in its membrane, under various cultivation conditions including temperature, pH, salinity, and ammonium and phosphorous concentrations. Employing an extensive analytical and computational lipidomic methodology, we identified an assemblage of nearly 400 distinct lipids, including a range of glycerol ether/ester lipids with various polar head groups. Information theory-based analysis revealed that temperature fluctuations and phosphate scarcity profoundly influenced the lipidome's composition, leading to an enhanced diversity and specificity of novel lipids. Notably, phosphorous limitation led to the biosynthesis of novel glucuronosylglycerols and sulfur-containing aminolipids, termed butyramide cysteine glycerols, featuring various ether/ester bonds. This suggests a novel adaptive strategy for anaerobic heterotrophs to thrive under phosphorus-depleted conditions, characterized by a diverse array of nitrogen- and sulfur-containing polar head groups, moving beyond a reliance on conventional nonphospholipid types.


Subject(s)
Lipidomics , Nitrogen , Phosphorus , Sulfur , Phosphorus/metabolism , Sulfur/metabolism , Nitrogen/metabolism , Adaptation, Physiological , Sulfates/metabolism , Bacteria, Anaerobic/metabolism , Anaerobiosis
3.
Dev Biol ; 509: 51-58, 2024 May.
Article in English | MEDLINE | ID: mdl-38342400

ABSTRACT

Glucose and fatty acids (FA) metabolism disturbances during oocyte in vitro maturation (IVM) affect their metabolism and surrounding cumulus cells, but only inhibition of glucose metabolism decreases embryo culture efficiency. Therefore, the present experiment aimed to reveal if glucose or FA metabolism inhibition leads to the disruption of embryo developmental potential, and to characterize the metabolic landscape of embryos reaching the blastocyst stage. Inhibitors of glucose (IO + DHEA) or FA (ETOMOXIR) metabolism were applied during IVM, and the control group was matured under standard conditions. Blastocysts obtained from experimental and control groups were analyzed with regard to lipidome and metabolome (mass spectrometry), transcriptome (RNA-Seq) and fluorescence lipid droplets staining (BODIPY). We showed that inhibition of glucose and fatty acid metabolism leads to cellular stress response compromising the quality of preimplantation embryos. The inhibition of energy metabolism affects membrane fluidity as well as downregulates fatty acids biosynthesis and gene expression of trophectoderm cell line markers. Therefore, we conclude that oocyte maturation environment exerts a substantial effect on preimplantation development programming at cellular and molecular levels.


Subject(s)
Cumulus Cells , Oocytes , Female , Cattle , Animals , Oocytes/metabolism , Cumulus Cells/metabolism , Embryonic Development , Energy Metabolism , Blastocyst/metabolism , Glucose/metabolism , Fatty Acids/metabolism
4.
Plant J ; 117(3): 924-943, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37902994

ABSTRACT

Chromoplasts act as a metabolic sink for carotenoids, in which plastoglobules serve as versatile lipoprotein particles. PGs in chloroplasts have been characterized. However, the features of PGs from non-photosynthetic plastids are poorly understood. We found that the development of chromoplast plastoglobules (CPGs) in globular and crystalloid chromoplasts of citrus is associated with alterations in carotenoid storage. Using Nycodenz density gradient ultracentrifugation, an efficient protocol for isolating highly purified CPGs from sweet orange (Citrus sinensis) pulp was established. Forty-four proteins were defined as likely comprise the core proteome of CPGs using comparative proteomics analysis. Lipidome analysis of different chromoplast microcompartments revealed that the nonpolar microenvironment within CPGs was modified by 35 triacylglycerides, two sitosterol esters, and one stigmasterol ester. Manipulation of the CPG-localized gene CsELT1 (esterase/lipase/thioesterase) in citrus calli resulted in increased lipids and carotenoids, which is further evidence that the nonpolar microenvironment of CPGs contributes to carotenoid accumulation and storage in the chromoplasts. This multi-feature analysis of CPGs sheds new light on the role of chromoplasts in carotenoid metabolism, paving the way for manipulating carotenoid content in citrus fruit and other crops.


Subject(s)
Citrus sinensis , Citrus , Citrus/genetics , Citrus/metabolism , Multiomics , Carotenoids/metabolism , Plastids/metabolism , Citrus sinensis/genetics , Fruit/genetics , Fruit/metabolism
5.
J Lipid Res ; 65(7): 100575, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38866327

ABSTRACT

Lipids are components of cytomembranes that are involved in various biochemical processes. High-altitude hypoxic environments not only affect the body's energy metabolism, but these environments can also cause abnormal lipid metabolism involved in the hypoxia-induced cognitive impairment. Thus, comprehensive lipidomic profiling of the brain tissue is an essential step toward understanding the mechanism of cognitive impairment induced by hypoxic exposure. In the present study, mice showed reduced new-object recognition and spatial memory when exposed to hypobaric hypoxia for 1 day. Histomorphological staining revealed significant morphological and structural damage to the hippocampal tissue, along with prolonged exposure to hypobaric hypoxia. Dynamic lipidomics of the mouse hippocampus showed a significant shift in both the type and distribution of phospholipids, as verified by spatial lipid mapping. Collectively, a diverse and dynamic lipid composition in mice hippocampus was uncovered, which deepens our understanding of biochemical changes during sustained hypoxic exposure and could provide new insights into the cognitive decline induced by high-altitude hypoxia exposure.


Subject(s)
Hippocampus , Hypoxia , Lipidomics , Animals , Hippocampus/metabolism , Hippocampus/pathology , Mice , Lipidomics/methods , Hypoxia/metabolism , Male , Mass Spectrometry , Lipids/analysis , Mice, Inbred C57BL , Lipid Metabolism
6.
Plant J ; 115(2): 452-469, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37026387

ABSTRACT

Plasma membrane represents a critical battleground between plants and attacking microbes. Necrosis-and-ethylene-inducing peptide 1 (Nep1)-like proteins (NLPs), cytolytic toxins produced by some bacterial, fungal and oomycete species, are able to target on lipid membranes by binding eudicot plant-specific sphingolipids (glycosylinositol phosphorylceramide) and form transient small pores, causing membrane leakage and subsequent cell death. NLP-producing phytopathogens are a big threat to agriculture worldwide. However, whether there are R proteins/enzymes that counteract the toxicity of NLPs in plants remains largely unknown. Here we show that cotton produces a peroxisome-localized enzyme lysophospholipase, GhLPL2. Upon Verticillium dahliae attack, GhLPL2 accumulates on the membrane and binds to V. dahliae secreted NLP, VdNLP1, to block its contribution to virulence. A higher level of lysophospholipase in cells is required to neutralize VdNLP1 toxicity and induce immunity-related genes expression, meanwhile maintaining normal growth of cotton plants, revealing the role of GhLPL2 protein in balancing resistance to V. dahliae and growth. Intriguingly, GhLPL2 silencing cotton plants also display high resistance to V. dahliae, but show severe dwarfing phenotype and developmental defects, suggesting GhLPL2 is an essential gene in cotton. GhLPL2 silencing results in lysophosphatidylinositol over-accumulation and decreased glycometabolism, leading to a lack of carbon sources required for plants and pathogens to survive. Furthermore, lysophospholipases from several other crops also interact with VdNLP1, implying that blocking NLP virulence by lysophospholipase may be a common strategy in plants. Our work demonstrates that overexpressing lysophospholipase encoding genes have great potential for breeding crops with high resistance against NLP-producing microbial pathogens.


Subject(s)
Lysophospholipase , Verticillium , Lysophospholipase/genetics , Gossypium/genetics , Peroxisomes , Plant Breeding , Plant Diseases/microbiology , Disease Resistance/genetics , Gene Expression Regulation, Plant
7.
Mol Microbiol ; 120(6): 893-905, 2023 12.
Article in English | MEDLINE | ID: mdl-37864403

ABSTRACT

In the yeast Saccharomyces cerevisiae, the absence of the pseudouridine synthase Pus3/Deg1, which modifies tRNA positions 38 and 39, results in increased lipid droplet (LD) content and translational defects. In addition, starvation-like transcriptome alterations and induced protein aggregation were observed. In this study, we show that the deg1 mutant increases specific misreading errors. This could lead to altered expression of the main regulators of neutral lipid synthesis which are the acetyl-CoA carboxylase (Acc1), an enzyme that catalyzes a key step in fatty acid synthesis, and its regulator, the Snf1/AMPK kinase. We demonstrate that upregulation of the neutral lipid content of LD in the deg1 mutant is achieved by a mechanism operating in parallel to the known Snf1/AMPK kinase-dependent phosphoregulation of Acc1. While in wild-type cells removal of the regulatory phosphorylation site (Ser-1157) in Acc1 results in strong upregulation of triacylglycerol (TG), but not steryl esters (SE), the deg1 mutation more specifically upregulates SE levels. In order to elucidate if other lipid species are affected, we compared the lipidomes of wild type and deg1 mutants, revealing multiple altered lipid species. In particular, in the exponential phase of growth, the deg1 mutant shows a reduction in the pool of phospholipids, indicating a compromised capacity to mobilize acyl-CoA from storage lipids. We conclude that Deg1 plays a key role in the coordination of lipid storage and mobilization, which in turn influences lipid homeostasis. The lipidomic effects in the deg1 mutant may be indirect outcomes of the activation of various stress responses resulting from protein aggregation.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , AMP-Activated Protein Kinase Kinases , Lipidomics , Lipids , Protein Aggregates , RNA, Transfer/genetics , RNA, Transfer/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism
8.
J Cell Sci ; 135(5)2022 03 01.
Article in English | MEDLINE | ID: mdl-34881783

ABSTRACT

Male and female Plasmodium falciparum gametocytes are the parasite lifecycle stage responsible for transmission of malaria from the human host to the mosquito vector. Not only are gametocytes able to survive in radically different host environments, but they are also precursors for male and female gametes that reproduce sexually soon after ingestion by the mosquito. Here, we investigate the sex-specific lipid metabolism of gametocytes within their host red blood cell. Comparison of the male and female lipidome identifies cholesteryl esters and dihydrosphingomyelin enrichment in female gametocytes. Chemical inhibition of each of these lipid types in mature gametocytes suggests dihydrosphingomyelin synthesis but not cholesteryl ester synthesis is important for gametocyte viability. Genetic disruption of each of the two sphingomyelin synthase genes points towards sphingomyelin synthesis contributing to gametocytogenesis. This study shows that gametocytes are distinct from asexual stages, and that the lipid composition is also vastly different between male and female gametocytes, reflecting the different cellular roles these stages play. Taken together, our results highlight the sex-specific nature of gametocyte lipid metabolism, which has the potential to be targeted to block malaria transmission. This article has an associated First Person interview with the first author of the paper.


Subject(s)
Malaria, Falciparum , Plasmodium falciparum , Animals , Female , Humans , Life Cycle Stages/physiology , Lipid Metabolism , Male , Mosquito Vectors , Plasmodium falciparum/metabolism , Sphingomyelins/metabolism
9.
FEMS Yeast Res ; 242024 Jan 09.
Article in English | MEDLINE | ID: mdl-39025792

ABSTRACT

Time-dependent changes in the lipid body (LB) lipidome of two oleaginous yeasts, Yarrowia lipolytica NCIM 3589 and Yarrowia bubula NCIM 3590 differing in growth temperature was investigated. LB size and lipid content were higher in Y. lipolytica based on microscopy, Feret, and integrated density analysis with lipid accumulation and mobilization occurring at 48 h in both strains. Variations in LB lipidome were reflected in interfacial tension (59.67 and 68.59 mN m-1) and phase transition temperatures (30°C-100°C and 60°C-100°C) for Y. lipolytica and Y. bubula, respectively. Liquid Chromatography-Mass Spectroscopy (LC-MS) analysis revealed neutral lipids (NLs), phospholipids, sphingolipids, sterols, and fatty acids as the major classes present in both strains while fatty acid amides were seen only in Y. lipolytica. Amongst the lipid classes, a few species were present in abundance with a number of lipids being less dominant. Permutational multivariate analysis of variance (PERMANOVA) and Analysis of covariance (ANOCOVA) analysis suggest 22 lipids belonging to NLs, fatty acid amides, and free fatty acids were found to be statistically different between the two strains. Analysis of the ratios between different lipid components suggest changes in LB size and mobilization as a function of time. The results indicate influence of temperature and strain variation on the dynamics of LB lipidome in Yarrowia species.


Subject(s)
Lipidomics , Temperature , Yarrowia , Yarrowia/metabolism , Yarrowia/growth & development , Chromatography, Liquid , Mass Spectrometry , Lipid Droplets/metabolism , Lipid Metabolism , Lipids/analysis
10.
Prostaglandins Other Lipid Mediat ; 173: 106840, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38830399

ABSTRACT

We have previously demonstrated that the glucocorticoid receptor ß (GRß) isoform induces hepatic steatosis in mice fed a normal chow diet. The GRß isoform inhibits the glucocorticoid-binding isoform GRα, reducing responsiveness and inducing glucocorticoid resistance. We hypothesized that GRß regulates lipids that cause metabolic dysfunction. To determine the effect of GRß on hepatic lipid classes and molecular species, we overexpressed GRß (GRß-Ad) and vector (Vec-Ad) using adenovirus delivery, as we previously described. We fed the mice a normal chow diet for 5 days and harvested the livers. We utilized liquid chromatography-mass spectrometry (LC-MS) analyses of the livers to determine the lipid species driven by GRß. The most significant changes in the lipidome were monoacylglycerides and cholesterol esters. There was also increased gene expression in the GRß-Ad mice for lipogenesis, eicosanoid synthesis, and inflammatory pathways. These indicate that GRß-induced glucocorticoid resistance may drive hepatic fat accumulation, providing new therapeutic advantages.


Subject(s)
Eicosanoids , Glucocorticoids , Inflammation , Lipogenesis , Liver , Receptors, Glucocorticoid , Animals , Mice , Liver/metabolism , Receptors, Glucocorticoid/metabolism , Receptors, Glucocorticoid/genetics , Eicosanoids/metabolism , Glucocorticoids/metabolism , Inflammation/metabolism , Male , Mice, Inbred C57BL , Lipid Metabolism
11.
Int J Legal Med ; 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39249528

ABSTRACT

Bloodstains are crucial pieces of physical evidences found at violent crime scenes, providing valuable information for reconstructing forensic cases. However, there is limited data on how bloodstain lipidomes change over time after deposition. Hence, we deployed a high-throughput high-performance liquid chromatography-mass spectrometry (HPLC-MS) approach to construct lipidomic atlases of bloodstains, whole blood, plasma, and blood cells from 15 healthy adults. A time-course analysis was also performed on bloodstains deposited for up to 6 months at room temperature (~ 25°C). The molecular levels of 60 out of 400 detected lipid species differed dramatically between bloodstain and whole blood samples, with major disturbances observed in membrane glycerophospholipids. More than half of these lipids were prevalent in the cellular and plasmic fractions; approximately 27% and 10% of the identified lipids were uniquely derived from blood cells and plasma, respectively. Furthermore, a subset of 65 temporally dynamic lipid species arose across the 6-month room-temperature deposition period, with decreased triacylglycerols (TAGs) and increased lysophosphatidylcholines (LPCs) as representatives, accounting for approximately 8% of the total investigated lipids. The instability of lipids increased linearly with time, with the most variability observed in the first 10 days. This study sheds light on the impact of air-drying bloodstains on blood components at room temperature and provides a list of potential bloodstain lipid markers for determining the age of bloodstains.

12.
J Pharmacol Sci ; 154(4): 279-293, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38485346

ABSTRACT

Despite the importance of lipid mediators in stress and depression and their link to inflammation, the influence of stress on these mediators and their role in inflammation is not fully understood. This study used RNA-seq, LC-MS/MS, and flow cytometry analyses in a mouse model subjected to chronic social defeat stress to explore the effects of acute and chronic stress on lipid mediators, gene expression, and cell population in the bone marrow and spleen. In the bone marrow, chronic stress induced a sustained transition from lymphoid to myeloid cells, accompanied by corresponding changes in gene expression. This change was associated with decreased levels of 15-deoxy-d12,14-prostaglandin J2, a lipid mediator that inhibits inflammation. In the spleen, chronic stress also induced a lymphoid-to-myeloid transition, albeit transiently, alongside gene expression changes indicative of extramedullary hematopoiesis. These changes were linked to lower levels of 12-HEPE and resolvins, both critical for inhibiting and resolving inflammation. Our findings highlight the significant role of anti-inflammatory and pro-resolving lipid mediators in the immune responses induced by chronic stress in the bone marrow and spleen. This study paves the way for understanding how these lipid mediators contribute to the immune mechanisms of stress and depression.


Subject(s)
Bone Marrow , Spleen , Mice , Animals , Spleen/metabolism , Bone Marrow/metabolism , Chromatography, Liquid , Tandem Mass Spectrometry , Inflammation/metabolism , Lipids , Gene Expression
13.
Lipids Health Dis ; 23(1): 109, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622701

ABSTRACT

OBJECTIVE: This study aims to investigate the association between specific lipidomes and the risk of breast cancer (BC) using the Two-Sample Mendelian Randomization (TSMR) approach and Bayesian Model Averaging Mendelian Randomization (BMA-MR) method. METHOD: The study analyzed data from large-scale GWAS datasets of 179 lipidomes to assess the relationship between lipidomes and BC risk across different molecular subtypes. TSMR was employed to explore causal relationships, while the BMA-MR method was carried out to validate the results. The study assessed heterogeneity and horizontal pleiotropy through Cochran's Q, MR-Egger intercept tests, and MR-PRESSO. Moreover, a leave-one-out sensitivity analysis was performed to evaluate the impact of individual single nucleotide polymorphisms on the MR study. RESULTS: By examining 179 lipidome traits as exposures and BC as the outcome, the study revealed significant causal effects of glycerophospholipids, sphingolipids, and glycerolipids on BC risk. Specifically, for estrogen receptor-positive BC (ER+ BC), phosphatidylcholine (P < 0.05) and phosphatidylinositol (OR: 0.916-0.966, P < 0.05) within glycerophospholipids play significant roles, along with the importance of glycerolipids (diacylglycerol (OR = 0.923, P < 0.001) and triacylglycerol, OR: 0.894-0.960, P < 0.05)). However, the study did not observe a noteworthy impact of sphingolipids on ER+BC. In the case of estrogen receptor-negative BC (ER- BC), not only glycerophospholipids, sphingolipids (OR = 1.085, P = 0.008), and glycerolipids (OR = 0.909, P = 0.002) exerted an influence, but the protective effect of sterols (OR: 1.034-1.056, P < 0.05) was also discovered. The prominence of glycerolipids was minimal in ER-BC. Phosphatidylethanolamine (OR: 1.091-1.119, P < 0.05) was an important causal effect in ER-BC. CONCLUSIONS: The findings reveal that phosphatidylinositol and triglycerides levels decreased the risk of BC, indicating a potential protective role of these lipid molecules. Moreover, the study elucidates BC's intricate lipid metabolic pathways, highlighting diverse lipidome structural variations that may have varying effects in different molecular subtypes.


Subject(s)
Lipidomics , Neoplasms , Bayes Theorem , Mendelian Randomization Analysis , Glycerophospholipids , Phosphatidylinositols , Sphingolipids , Receptors, Estrogen/genetics , Genome-Wide Association Study
14.
Scand J Med Sci Sports ; 34(1): e14553, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38268074

ABSTRACT

Low energy availability (LEA) is a health concern for athletes, although it may paradoxically lead to improved cardiometabolic health in the general population. We investigated the associations between LEA, body composition, and serum cardiometabolic profile in 23 physique athletes (DIET) and 21 controls (CONT) during a 5-month pre-competition diet (MID), followed by 1 week of increased energy availability (COMP) and a 5-month weight regain period (POST). Quantification of 250 serum metabolome variables was conducted by NMR spectroscopy, body composition by dual-energy x-ray absorptiometry, dietary intake by food diaries, and exercise levels by training logs. Body fat percentage decreased from 19.5 ± 7.0% to 8.3 ± 5.3% (p < 0.001) in DIET through increased exercise levels and decreased energy intake, while CONT maintained those constant. In MID, DIET had increased (FDR < 0.01) HDL cholesterol, HDL particle size and number, and decreased (FDR < 0.05) VLDL lipids, serum triglycerides, and low-grade inflammation (glycoprotein acetyls) compared to baseline and CONT. The changes were associated with reduced android fat mass (-78 ± 13%) and energy intake (-28 ± 10%). In COMP, most of the metabolic changes found in MID persisted, except for altered triglycerides in all lipoprotein classes. After weight regain in POST, serum metabolome, body composition, energy intake, and exercise levels had reverted to baseline levels. In conclusion, fat loss and LEA may have beneficial yet transient effects on the serum cardiometabolic profile of lean individuals. Especially the HDL lipidome and lipoprotein triglycerides offer potential novel biomarkers for detecting LEA in athletes.


Subject(s)
Athletes , Cardiovascular Diseases , Humans , Cholesterol, HDL , Triglycerides , Weight Gain
15.
Skin Res Technol ; 30(7): e13781, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38932454

ABSTRACT

BACKGROUND: Reports suggest that lipid profiles may be linked to the likelihood of developing skin cancer, yet the exact causal relationship is still unknown. OBJECTIVE: This study aimed to examine the connection between lipidome and skin cancers, as well as investigate any possible mediators. METHODS: A two-sample Mendelian randomization (MR) analysis was conducted on 179 lipidomes and each skin cancer based on a genome-wide association study (GWAS), including melanoma, basal cell carcinoma (BCC), and squamous cell carcinoma (SCC). Then, Bayesian weighted MR was performed to verify the analysis results of two-sample MR. Moreover, a two-step MR was employed to investigate the impact of TNF-like weak inducer of apoptosis (TWEAK)-mediated lipidome on skin cancer rates. RESULTS: MR analysis identified higher genetically predicted phosphatidylcholine (PC) (17:0_18:2) could reduce the risk of skin tumors, including BCC (OR = 0.9149, 95% CI: 0.8667-0.9658), SCC (OR = 0.9343, 95% CI: 0.9087-0.9606) and melanoma (OR = 0.9982, 95% CI: 0.9966-0.9997). The proportion of PC (17:0_18:2) predicted by TWEAK-mediated genetic prediction was 6.6 % in BCC and 7.6% in SCC. The causal relationship between PC (17:0_18:2) and melanoma was not mediated by TWEAK. CONCLUSION: This study identified a negative causal relationship between PC (17:0_18:2) and keratinocyte carcinomas, a small part of which was mediated by TWEAK, and most of the remaining mediating factors are still unclear. Further research on other risk factors is needed in the future.


Subject(s)
Carcinoma, Basal Cell , Carcinoma, Squamous Cell , Cytokine TWEAK , Keratinocytes , Lipidomics , Mendelian Randomization Analysis , Skin Neoplasms , Humans , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , Cytokine TWEAK/genetics , Cytokine TWEAK/metabolism , Keratinocytes/metabolism , Carcinoma, Basal Cell/genetics , Carcinoma, Basal Cell/metabolism , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Genome-Wide Association Study , Melanoma/genetics , Polymorphism, Single Nucleotide , Genetic Predisposition to Disease/genetics , Bayes Theorem
16.
Skin Res Technol ; 30(3): e13653, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38488420

ABSTRACT

BACKGROUND: During the coronavirus disease 2019 pandemic, wearing medical respirators and masks was essential to prevent transmission. OBJECTIVE: To quantify the effects of N95 mask usage by measuring facial skin biophysical characteristics and changes in the lipidome. METHODS: Sixty healthy volunteers wore N95 respirators for 3 or 6 h. Facial images were acquired and physiological parameters were measured in specific facial areas, before and after mask-wearing. Lipidome analysis was also performed. RESULTS: After N95 respirator usage, facial erythema was observed in both the 3 and 6 h groups. Both sebum secretion and trans-epidermal water loss increased significantly in mask-covered cheeks and chins after 6 h of mask wearing compared with before mask wearing (p < 0.05). Principal component analysis revealed significant differences in lipid composition after mask wearing compared with before. The ceramide subclass NS exhibited a positive correlation with stratum corneum hydration, whereas the AP subclass was negatively correlated with trans-epidermal water loss in the 6 h group. CONCLUSION: Prolonged wear of N95 respirators may impair facial skin function and alter lipidome composition.


Subject(s)
N95 Respirators , Respiratory Protective Devices , Humans , Lipidomics , Masks , Water , Delivery of Health Care
17.
J Dairy Sci ; 107(2): 711-725, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37776996

ABSTRACT

This study investigated the changes in sheep milk lipids during in vitro gastrointestinal digestion in response to heat treatment (75°C/15 s and 95°C/5 min) and homogenization (200/50 bar) using lipidomics. Homogenized and pasteurized sheep milk had higher levels of polar lipids in gastric digesta emptied at 20 min than raw sheep milk. Intense heat treatment of homogenized sheep milk resulted in a reduced level of polar lipids compared with homogenized-pasteurized sheep milk. The release rate of free fatty acids during small intestinal digestion for gastric digesta emptied at 20 min followed the order: raw ≤ pasteurized < homogenized-pasteurized ≤ homogenized-heated sheep milk; the rate for gastric digesta emptied at 180 min showed a reverse order. No differences in the lipolysis degree were observed among differently processed sheep milks. These results indicated that processing treatments affect the lipid composition of digesta and the lipolysis rate but not the lipolysis degree during small intestinal digestion.


Subject(s)
Hot Temperature , Milk , Animals , Sheep , Lipidomics , Digestion , Fatty Acids, Nonesterified
18.
J Dairy Sci ; 107(7): 4205-4215, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38428489

ABSTRACT

The composition of milk lipids varies across different ethnic sources. The lipidome profiles of Chinese Han human milk (HHM) and Chinese Korean human milk (KHM) were investigated in this study. A total of 741 lipids were identified in HHM and KHM. Twenty-eight differentially expressed lipids (DEL) were screened between the 2 milk groups; among these, 6 triacylglycerols (TG), 13 diacylglycerols (DG), 7 free fatty acids (FFA), and 1 monoglyceride (MG) were upregulated in KHM. Carnitine (CAR) was upregulated in HHM. Most DEL showed a single peak distribution in both groups. The correlations, related pathways and diseases of these DEL were further analyzed. The results demonstrated that DG, MG, and FFA showed highly positive correlations with each other (r > 0.8). The most enriched Kyoto Encyclopedia of Genes and Genomes (https://www.kegg.jp/kegg/) and Human Metabolome Database (http://www.hmdb.ca) pathways were inositol phosphate metabolism, and α-linolenic acid and linolenic acid metabolism, respectively. Major depressive disorder-related FFA (20:5) and FFA (22:6) were more abundant in KHM, whereas HHM showed more obesity-related CAR. These data potentially provide lipidome information regarding human milk from different ethnicities in China.


Subject(s)
Lipidomics , Milk, Human , Female , Humans , China/ethnology , East Asian People/ethnology , Ethnicity/genetics , Lipids , Milk, Human/chemistry , Republic of Korea/ethnology , Triglycerides/metabolism
19.
Ecotoxicol Environ Saf ; 272: 116061, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38340598

ABSTRACT

Exposure to environmental endocrine disruptors (EEDs) has become a global health concern, and EEDs are known to be potent inducers of constitutive androstane receptor (CAR). 1,4-bis [2-(3,5-dichloropyridyloxy)] benzene (TCPOBOP, hereafter abbreviated as TC), a specific ligand for CAR, has been considered as a potential EED. Here, we analyzed the effect of TC exposure to female mice on the histological morphology of their alveoli in the basic unit of lactation. We quantified differences in the milk metabolome of the control and TC-exposed group while assessing the correlations between metabolites and neonatal growth. Mammary histological results showed that TC exposure inhibited alveolar development. Based on the milk metabolomic data, we identified a total of 1505 differential metabolites in both the positive and negative ion mode, which indicated that TC exposure affected milk composition. As expected, the differential metabolites were significantly enriched in the drug metabolism pathway. Further analyses revealed that differential metabolites were significantly enriched in multiple lipid metabolic pathways, such as fatty acid biosynthesis, suggesting that most differential metabolites were concentrated in lipids. Simultaneously, a quantitative analysis showed that TC exposure led to a decrease in the relative abundance of total milk lipids, affecting the proportion of some lipid subclasses. Notably, a portion of lipid metabolites were associated with neonatal growth. Taken together, these findings suggest that TC exposure may affect milk lipidomes, resulting in the inability of mothers to provide adequate nutrients, ultimately affecting the growth and health of their offspring.


Subject(s)
Milk , Pyridines , Receptors, Cytoplasmic and Nuclear , Mice , Female , Animals , Milk/chemistry , Liposomes , Lipids/analysis
20.
Int J Mol Sci ; 25(13)2024 Jul 07.
Article in English | MEDLINE | ID: mdl-39000556

ABSTRACT

Obesity is an important risk factor for the development of pregnancy complications. We investigated the effects of pregestational overweight and obesity on maternal lipidome during pregnancy and on newborns' characteristics. The study encompassed 131 pregnant women, 99 with pre-pregnancy body mass index (BMI) < 25 kg/m2 and 32 with BMI ≥ 25 kg/m2. Maternal lipid status parameters, plasma markers of cholesterol synthesis and absorption and sphingolipids were determined in each trimester. Data on neonatal height, weight and APGAR scores were assessed. The results showed a higher prevalence (p < 0.05) of pregnancy and childbirth complications among the participants with elevated pregestational BMI. Levels of total cholesterol, HDL-cholesterol (p < 0.05) and LDL-cholesterol (p < 0.01) were significantly lower, and concentrations of triglycerides were higher (p < 0.05) in women with increased pre-gestational BMI. Lower concentrations of the cholesterol synthesis marker, desmosterol, in the 2nd trimester (p < 0.01) and the cholesterol absorption marker, campesterol, in each trimester (p < 0.01, p < 0.05, p < 0.01, respectively) were also found in this group. Markers of maternal cholesterol synthesis were in positive correlation with neonatal APGAR scores in the group of mothers with healthy pre-pregnancy weight but in negative correlation in the overweight/obese group. Our results indicate that gestational adaptations of maternal lipidome depend on her pregestational nutritional status and that such changes may affect neonatal outcomes.


Subject(s)
Body Mass Index , Lipidomics , Obesity , Overweight , Pregnancy Complications , Humans , Female , Pregnancy , Infant, Newborn , Adult , Obesity/metabolism , Obesity/blood , Lipidomics/methods , Overweight/metabolism , Pregnancy Complications/metabolism , Pregnancy Complications/blood , Lipids/blood , Cholesterol/blood
SELECTION OF CITATIONS
SEARCH DETAIL