Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 518
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Brief Bioinform ; 25(4)2024 May 23.
Article in English | MEDLINE | ID: mdl-38877886

ABSTRACT

Single-cell sequencing has revolutionized our ability to dissect the heterogeneity within tumor populations. In this study, we present LoRA-TV (Low Rank Approximation with Total Variation), a novel method for clustering tumor cells based on the read depth profiles derived from single-cell sequencing data. Traditional analysis pipelines process read depth profiles of each cell individually. By aggregating shared genomic signatures distributed among individual cells using low-rank optimization and robust smoothing, the proposed method enhances clustering performance. Results from analyses of both simulated and real data demonstrate its effectiveness compared with state-of-the-art alternatives, as supported by improvements in the adjusted Rand index and computational efficiency.


Subject(s)
Neoplasms , Single-Cell Analysis , Single-Cell Analysis/methods , Humans , Neoplasms/genetics , Neoplasms/pathology , Cluster Analysis , Algorithms , Computational Biology/methods , High-Throughput Nucleotide Sequencing/methods , Genomics/methods
2.
Neuroimage ; 293: 120616, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697587

ABSTRACT

Cortical parcellation plays a pivotal role in elucidating the brain organization. Despite the growing efforts to develop parcellation algorithms using functional magnetic resonance imaging, achieving a balance between intra-individual specificity and inter-individual consistency proves challenging, making the generation of high-quality, subject-consistent cortical parcellations particularly elusive. To solve this problem, our paper proposes a fully automated individual cortical parcellation method based on consensus graph representation learning. The method integrates spectral embedding with low-rank tensor learning into a unified optimization model, which uses group-common connectivity patterns captured by low-rank tensor learning to optimize subjects' functional networks. This not only ensures consistency in brain representations across different subjects but also enhances the quality of each subject's representation matrix by eliminating spurious connections. More importantly, it achieves an adaptive balance between intra-individual specificity and inter-individual consistency during this process. Experiments conducted on a test-retest dataset from the Human Connectome Project (HCP) demonstrate that our method outperforms existing methods in terms of reproducibility, functional homogeneity, and alignment with task activation. Extensive network-based comparisons on the HCP S900 dataset reveal that the functional network derived from our cortical parcellation method exhibits greater capabilities in gender identification and behavior prediction than other approaches.


Subject(s)
Cerebral Cortex , Connectome , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Connectome/methods , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/physiology , Cerebral Cortex/anatomy & histology , Machine Learning , Female , Male , Image Processing, Computer-Assisted/methods , Adult , Algorithms , Reproducibility of Results
3.
Neuroimage ; 292: 120601, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38588832

ABSTRACT

PURPOSE: Intravoxel incoherent motion (IVIM) is a quantitative magnetic resonance imaging (MRI) method used to quantify perfusion properties of tissue non-invasively without contrast. However, clinical applications are limited by unreliable parameter estimates, particularly for the perfusion fraction (f) and pseudodiffusion coefficient (D*). This study aims to develop a high-fidelity reconstruction for reliable estimation of IVIM parameters. The proposed method is versatile and amenable to various acquisition schemes and fitting methods. METHODS: To address current challenges with IVIM, we adapted several advanced reconstruction techniques. We used a low-rank approximation of IVIM images and temporal subspace modeling to constrain the magnetization dynamics of the bi-exponential diffusion signal decay. In addition, motion-induced phase variations were corrected between diffusion directions and b-values, facilitating the use of high SNR real-valued diffusion data. The proposed method was evaluated in simulations and in vivo brain acquisitions in six healthy subjects and six individuals with a history of SARS-CoV-2 infection and compared with the conventionally reconstructed magnitude data. Following reconstruction, IVIM parameters were estimated voxel-wise. RESULTS: Our proposed method reduced noise contamination in simulations, resulting in a 60%, 58.9%, and 83.9% reduction in the NRMSE for D, f, and D*, respectively, compared to the conventional reconstruction. In vivo, anisotropic properties of D, f, and D* were preserved with the proposed method, highlighting microvascular differences in gray matter between individuals with a history of COVID-19 and those without (p = 0.0210), which wasn't observed with the conventional reconstruction. CONCLUSION: The proposed method yielded a more reliable estimation of IVIM parameters with less noise than the conventional reconstruction. Further, the proposed method preserved anisotropic properties of IVIM parameter estimates and demonstrated differences in microvascular perfusion in COVID-affected subjects, which weren't observed with conventional reconstruction methods.


Subject(s)
COVID-19 , Image Processing, Computer-Assisted , Humans , COVID-19/diagnostic imaging , Image Processing, Computer-Assisted/methods , Adult , Brain/diagnostic imaging , Motion , Female , Male , SARS-CoV-2 , Magnetic Resonance Imaging/methods , Diffusion Magnetic Resonance Imaging/methods
4.
Hum Brain Mapp ; 45(8): e26718, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38825985

ABSTRACT

The early stages of human development are increasingly acknowledged as pivotal in laying the groundwork for subsequent behavioral and cognitive development. Spatiotemporal (4D) brain functional atlases are important in elucidating the development of human brain functions. However, the scarcity of such atlases for early life stages stems from two primary challenges: (1) the significant noise in functional magnetic resonance imaging (fMRI) that complicates the generation of high-quality atlases for each age group, and (2) the rapid and complex changes in the early human brain that hinder the maintenance of temporal consistency in 4D atlases. This study tackles these challenges by integrating low-rank tensor learning with spectral embedding, thereby proposing a novel, data-driven 4D functional atlas generation framework based on spectral functional network learning (SFNL). This method utilizes low-rank tensor learning to capture common functional connectivity (FC) patterns across different ages, thus optimizing FCs for each age group to improve the temporal consistency of functional networks. Incorporating spectral embedding aids in mitigating potential noise in FC networks derived from fMRI data by reconstructing networks in the spectral space. Utilizing SFNL-generated functional networks enables the creation of consistent and highly qualified spatiotemporal functional atlases. The framework was applied to the developing Human Connectome Project (dHCP) dataset, generating the first neonatal 4D functional atlases with fine-grained temporal and spatial resolutions. Experimental evaluations focusing on functional homogeneity, reliability, and temporal consistency demonstrated the superiority of our framework compared to existing methods for constructing 4D atlases. Additionally, network analysis experiments, including individual identification, functional systems development, and local efficiency assessments, further corroborate the efficacy and robustness of the generated atlases. The 4D atlases and related codes will be made publicly accessible (https://github.com/zhaoyunxi/neonate-atlases).


Subject(s)
Atlases as Topic , Connectome , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Infant, Newborn , Connectome/methods , Male , Female , Brain/diagnostic imaging , Brain/physiology , Brain/growth & development , Infant , Image Processing, Computer-Assisted/methods , Machine Learning , Nerve Net/diagnostic imaging , Nerve Net/physiology , Nerve Net/growth & development
5.
Brief Bioinform ; 23(5)2022 09 20.
Article in English | MEDLINE | ID: mdl-35870203

ABSTRACT

The rapid development of single-cel+l RNA sequencing (scRNA-seq) technology provides unprecedented opportunities for exploring biological phenomena at the single-cell level. The discovery of cell types is one of the major applications for researchers to explore the heterogeneity of cells. Some computational methods have been proposed to solve the problem of scRNA-seq data clustering. However, the unavoidable technical noise and notorious dropouts also reduce the accuracy of clustering methods. Here, we propose the cauchy-based bounded constraint low-rank representation (CBLRR), which is a low-rank representation-based method by introducing cauchy loss function (CLF) and bounded nuclear norm regulation, aiming to alleviate the above issue. Specifically, as an effective loss function, the CLF is proven to enhance the robustness of the identification of cell types. Then, we adopt the bounded constraint to ensure the entry values of single-cell data within the restricted interval. Finally, the performance of CBLRR is evaluated on 15 scRNA-seq datasets, and compared with other state-of-the-art methods. The experimental results demonstrate that CBLRR performs accurately and robustly on clustering scRNA-seq data. Furthermore, CBLRR is an effective tool to cluster cells, and provides great potential for downstream analysis of single-cell data. The source code of CBLRR is available online at https://github.com/Ginnay/CBLRR.


Subject(s)
Single-Cell Analysis , Software , Algorithms , Cluster Analysis , Gene Expression Profiling/methods , RNA-Seq , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods
6.
Magn Reson Med ; 91(1): 61-74, 2024 01.
Article in English | MEDLINE | ID: mdl-37677043

ABSTRACT

PURPOSE: To improve the spatiotemporal qualities of images and dynamics of speech MRI through an improved data sampling and image reconstruction approach. METHODS: For data acquisition, we used a Poisson-disc random under sampling scheme that reduced the undersampling coherence. For image reconstruction, we proposed a novel locally higher-rank partial separability model. This reconstruction model represented the oral and static regions using separate low-rank subspaces, therefore, preserving their distinct temporal signal characteristics. Regional optimized temporal basis was determined from the regional-optimized virtual coil approach. Overall, we achieved a better spatiotemporal image reconstruction quality with the potential of reducing total acquisition time by 50%. RESULTS: The proposed method was demonstrated through several 2-mm isotropic, 64 mm total thickness, dynamic acquisitions with 40 frames per second and compared to the previous approach using a global subspace model along with other k-space sampling patterns. Individual timeframe images and temporal profiles of speech samples were shown to illustrate the ability of the Poisson-disc under sampling pattern in reducing total acquisition time. Temporal information of sagittal and coronal directions was also shown to illustrate the effectiveness of the locally higher-rank operator and regional optimized temporal basis. To compare the reconstruction qualities of different regions, voxel-wise temporal SNR analysis were performed. CONCLUSION: Poisson-disc sampling combined with a locally higher-rank model and a regional-optimized temporal basis can drastically improve the spatiotemporal image quality and provide a 50% reduction in overall acquisition time.


Subject(s)
Magnetic Resonance Imaging , Speech , Magnetic Resonance Imaging/methods , Image Processing, Computer-Assisted/methods , Algorithms
7.
Magn Reson Med ; 91(5): 1978-1993, 2024 May.
Article in English | MEDLINE | ID: mdl-38102776

ABSTRACT

PURPOSE: To propose a new reconstruction method for multidimensional MR fingerprinting (mdMRF) to address shading artifacts caused by physiological motion-induced measurement errors without navigating or gating. METHODS: The proposed method comprises two procedures: self-calibration and subspace reconstruction. The first procedure (self-calibration) applies temporally local matrix completion to reconstruct low-resolution images from a subset of under-sampled data extracted from the k-space center. The second procedure (subspace reconstruction) utilizes temporally global subspace reconstruction with pre-estimated temporal subspace from low-resolution images to reconstruct aliasing-free, high-resolution, and time-resolved images. After reconstruction, a customized outlier detection algorithm was employed to automatically detect and remove images corrupted by measurement errors. Feasibility, robustness, and scan efficiency were evaluated through in vivo human brain imaging experiments. RESULTS: The proposed method successfully reconstructed aliasing-free, high-resolution, and time-resolved images, where the measurement errors were accurately represented. The corrupted images were automatically and robustly detected and removed. Artifact-free T1, T2, and ADC maps were generated simultaneously. The proposed reconstruction method demonstrated robustness across different scanners, parameter settings, and subjects. A high scan efficiency of less than 20 s per slice has been achieved. CONCLUSION: The proposed reconstruction method can effectively alleviate shading artifacts caused by physiological motion-induced measurement errors. It enables simultaneous and artifact-free quantification of T1, T2, and ADC using mdMRF scans without prospective gating, with robustness and high scan efficiency.


Subject(s)
Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Algorithms , Phantoms, Imaging , Artifacts
8.
Magn Reson Med ; 92(4): 1310-1322, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38923032

ABSTRACT

PURPOSE: To develop a practical method to enable 3D T1 mapping of brain metabolites. THEORY AND METHODS: Due to the high dimensionality of the imaging problem underlying metabolite T1 mapping, measurement of metabolite T1 values has been currently limited to a single voxel or slice. This work achieved 3D metabolite T1 mapping by leveraging a recent ultrafast MRSI technique called SPICE (spectroscopic imaging by exploiting spatiospectral correlation). The Ernst-angle FID MRSI data acquisition used in SPICE was extended to variable flip angles, with variable-density sparse sampling for efficient encoding of metabolite T1 information. In data processing, a novel generalized series model was used to remove water and subcutaneous lipid signals; a low-rank tensor model with prelearned subspaces was used to reconstruct the variable-flip-angle metabolite signals jointly from the noisy data. RESULTS: The proposed method was evaluated using both phantom and healthy subject data. Phantom experimental results demonstrated that high-quality 3D metabolite T1 maps could be obtained and used for correction of T1 saturation effects. In vivo experimental results showed metabolite T1 maps with a large spatial coverage of 240 × 240 × 72 mm3 and good reproducibility coefficients (< 11%) in a 14.5-min scan. The metabolite T1 times obtained ranged from 0.99 to 1.44 s in gray matter and from 1.00 to 1.35 s in white matter. CONCLUSION: We successfully demonstrated the feasibility of 3D metabolite T1 mapping within a clinically acceptable scan time. The proposed method may prove useful for both T1 mapping of brain metabolites and correcting the T1-weighting effects in quantitative metabolic imaging.


Subject(s)
Algorithms , Brain , Imaging, Three-Dimensional , Magnetic Resonance Imaging , Phantoms, Imaging , Humans , Brain/diagnostic imaging , Brain/metabolism , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Image Processing, Computer-Assisted/methods , Male , Brain Mapping/methods , Magnetic Resonance Spectroscopy/methods , Adult , Reproducibility of Results , Female
9.
Magn Reson Med ; 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39285623

ABSTRACT

PURPOSE: To develop a model-based motion correction (MoCo) method that does not need an analytical signal model to improve the quality of cardiac multi-parametric mapping. METHODS: The proposed method constructs a hybrid loss that includes a dictionary-matching loss and a signal low-rankness loss, where the former registers the multi-contrast original images to a set of motion-free synthetic images and the latter forces the deformed images to be spatiotemporally coherent. We compared the proposed method with non-MoCo, a pairwise registration method (Pairwise-MI), and a groupwise registration method (pTVreg) via a free-breathing Multimapping dataset of 15 healthy subjects, both quantitatively and qualitatively. RESULTS: The proposed method achieved the lowest contour tracking errors (epicardium: 2.00 ± 0.39 mm vs 4.93 ± 2.29 mm, 3.50 ± 1.26 mm, and 2.61 ± 1.00 mm, and endocardium: 1.84 ± 0.34 mm vs 4.93 ± 2.40 mm, 3.43 ± 1.27 mm, and 2.55 ± 1.09 mm for the proposed method, non-MoCo, Pairwise-MI, and pTVreg, respectively; all p < 0.01) and the lowest dictionary matching errors among all methods. The proposed method also achieved the highest scores on the visual quality of mapping (T1: 4.74 ± 0.33 vs 2.91 ± 0.82, 3.58 ± 0.87, and 3.97 ± 1.05, and T2: 4.48 ± 0.56 vs 2.59 ± 0.81, 3.56 ± 0.93, and 4.14 ± 0.80 for the proposed method, non-MoCo, Pairwise-MI, and pTVreg, respectively; all p < 0.01). Finally, the proposed method had similar T1 and T2 mean values and SDs relative to the breath-hold reference in nearly all myocardial segments, whereas all other methods led to significantly different T1 and T2 measures and increases of SDs in multiple segments. CONCLUSION: The proposed method significantly improves the motion correction accuracy and mapping quality compared with non-MoCo and alternative image-based methods.

10.
Magn Reson Med ; 2024 Oct 14.
Article in English | MEDLINE | ID: mdl-39402739

ABSTRACT

PURPOSE: DWI is an important contrast for prostate MRI to enable early and accurate detection of cancer. This study introduces a Dixon 3-shot-EPI protocol with structured low-rank reconstruction for navigator-free DWI. The aim is to overcome the limitations of single-shot EPI (ssh-EPI), such as geometric distortions and fat signal interference, while addressing the motion-induced phase variations of multishot EPI and simultaneously allowing water/fat separation. METHODS: DWI data were acquired from 7 healthy volunteers using both Dixon 3-shot EPI and standard fat-suppressed ssh-EPI with similar scan times for comparison. Two readers evaluated image quality using a 5-point Likert scale regarding different aspects. The ADC values were quantitatively compared between protocols. To show feasibility in a clinical setting, the protocol was applied to two patients. RESULTS: From the reader scores, Dixon 3-shot EPI significantly reduced geometric distortion compared with ssh-EPI (p < 0.01), with no significant differences in edge definition, SNR, or overall image quality. There was no significant difference in ADC values between the two protocols. However, the Dixon multishot-EPI protocol offered advantages such as self-referenced B0 map-driven distortion correction, greater flexibility in imaging parameters, and superior fat suppression. In the patient data, the lesion could be clearly identified in both protocols and on the associated ADC maps. CONCLUSION: The proposed Dixon 3-shot-EPI protocol shows promise as an alternative to ssh-EPI for prostate DWI, providing reduced geometric distortions and improved fat suppression. It addresses common DWI issues based on EPI and enhances scanning flexibility, indicating potential for optimized imaging.

11.
Magn Reson Med ; 91(6): 2459-2482, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38282270

ABSTRACT

PURPOSE: To develop and evaluate methods for (1) reconstructing 3D-quantification using an interleaved Look-Locker acquisition sequence with T2 preparation pulse (3D-QALAS) time-series images using a low-rank subspace method, which enables accurate and rapid T1 and T2 mapping, and (2) improving the fidelity of subspace QALAS by combining scan-specific deep-learning-based reconstruction and subspace modeling. THEORY AND METHODS: A low-rank subspace method for 3D-QALAS (i.e., subspace QALAS) and zero-shot deep-learning subspace method (i.e., Zero-DeepSub) were proposed for rapid and high fidelity T1 and T2 mapping and time-resolved imaging using 3D-QALAS. Using an ISMRM/NIST system phantom, the accuracy and reproducibility of the T1 and T2 maps estimated using the proposed methods were evaluated by comparing them with reference techniques. The reconstruction performance of the proposed subspace QALAS using Zero-DeepSub was evaluated in vivo and compared with conventional QALAS at high reduction factors of up to nine-fold. RESULTS: Phantom experiments showed that subspace QALAS had good linearity with respect to the reference methods while reducing biases and improving precision compared to conventional QALAS, especially for T2 maps. Moreover, in vivo results demonstrated that subspace QALAS had better g-factor maps and could reduce voxel blurring, noise, and artifacts compared to conventional QALAS and showed robust performance at up to nine-fold acceleration with Zero-DeepSub, which enabled whole-brain T1, T2, and PD mapping at 1 mm isotropic resolution within 2 min of scan time. CONCLUSION: The proposed subspace QALAS along with Zero-DeepSub enabled high fidelity and rapid whole-brain multiparametric quantification and time-resolved imaging.


Subject(s)
Magnetic Resonance Imaging , Multiparametric Magnetic Resonance Imaging , Magnetic Resonance Imaging/methods , Imaging, Three-Dimensional/methods , Reproducibility of Results , Brain/diagnostic imaging , Phantoms, Imaging
12.
Magn Reson Med ; 92(4): 1421-1439, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38726884

ABSTRACT

PURPOSE: To develop a novel low-rank tensor reconstruction approach leveraging the complete acquired data set to improve precision and repeatability of multiparametric mapping within the cardiovascular MR Multitasking framework. METHODS: A novel approach that alternated between estimation of temporal components and spatial components using the entire data set acquired (i.e., including navigator data and imaging data) was developed to improve reconstruction. The precision and repeatability of the proposed approach were evaluated on numerical simulations, 10 healthy subjects, and 10 cardiomyopathy patients at multiple scan times for 2D myocardial T1/T2 mapping with MR Multitasking and were compared with those of the previous navigator-derived fixed-basis approach. RESULTS: In numerical simulations, the proposed approach outperformed the previous fixed-basis approach with lower T1 and T2 error against the ground truth at all scan times studied and showed better motion fidelity. In human subjects, the proposed approach showed no significantly different sharpness or T1/T2 measurement and significantly improved T1 precision by 20%-25%, T2 precision by 10%-15%, T1 repeatability by about 30%, and T2 repeatability by 25%-35% at 90-s and 50-s scan times The proposed approach at the 50-s scan time also showed comparable results with that of the previous fixed-basis approach at the 90-s scan time. CONCLUSION: The proposed approach improved precision and repeatability for quantitative imaging with MR Multitasking while maintaining comparable motion fidelity, T1/T2 measurement, and septum sharpness and had the potential for further reducing scan time from 90 s to 50 s.


Subject(s)
Algorithms , Humans , Reproducibility of Results , Male , Female , Image Interpretation, Computer-Assisted/methods , Adult , Image Enhancement/methods , Middle Aged , Sensitivity and Specificity , Image Processing, Computer-Assisted/methods , Cardiomyopathies/diagnostic imaging , Multiparametric Magnetic Resonance Imaging/methods , Heart/diagnostic imaging
13.
Magn Reson Med ; 91(6): 2443-2458, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38361309

ABSTRACT

PURPOSE: The 3D multi-shot EPI imaging offers several benefits including higher SNR and high isotropic resolution compared to 2D single shot EPI. However, it suffers from shot-to-shot inconsistencies arising from physiologically induced phase variations and bulk motion. This work proposed a motion compensated structured low-rank (mcSLR) reconstruction method to address both issues for 3D multi-shot EPI. METHODS: Structured low-rank reconstruction has been successfully used in previous work to deal with inter-shot phase variations for 3D multi-shot EPI imaging. It circumvents the estimation of phase variations by reconstructing an individual image for each phase state which are then sum-of-squares combined, exploiting their linear interdependency encoded in structured low-rank constraints. However, structured low-rank constraints become less effective in the presence of inter-shot motion, which corrupts image magnitude consistency and invalidates the linear relationship between shots. Thus, this work jointly models inter-shot phase variations and motion corruptions by incorporating rigid motion compensation for structured low-rank reconstruction, where motion estimates are obtained in a fully data-driven way without relying on external hardware or imaging navigators. RESULTS: Simulation and in vivo experiments at 7T have demonstrated that the mcSLR method can effectively reduce image artifacts and improve the robustness of 3D multi-shot EPI, outperforming existing methods which only address inter-shot phase variations or motion, but not both. CONCLUSION: The proposed mcSLR reconstruction compensates for rigid motion, and thus improves the validity of structured low-rank constraints, resulting in improved robustness of 3D multi-shot EPI to both inter-shot motion and phase variations.


Subject(s)
Algorithms , Brain , Imaging, Three-Dimensional/methods , Motion , Echo-Planar Imaging/methods , Image Processing, Computer-Assisted/methods , Artifacts , Diffusion Magnetic Resonance Imaging/methods
14.
Magn Reson Med ; 91(4): 1694-1706, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38181180

ABSTRACT

PURPOSE: Water removal is one of the computational bottlenecks in the processing of high-resolution MRSI data. The purpose of this work is to propose an approach to reduce the computing time required for water removal in large MRS data. METHODS: In this work, we describe a singular value decomposition-based approach that uses the partial position-time separability and the time-domain linear predictability of MRSI data to reduce the computational time required for water removal. Our approach arranges MRS signals in a Casorati matrix form, applies low-rank approximations utilizing singular value decomposition, removes residual water from the most prominent left-singular vectors, and finally reconstructs the water-free matrix using the processed left-singular vectors. RESULTS: We have demonstrated the effectiveness of our proposed algorithm for water removal using both simulated and in vivo data. The proposed algorithm encompasses a pip-installable tool ( https://pypi.org/project/CSVD/), available on GitHub ( https://github.com/amirshamaei/CSVD), empowering researchers to use it in future studies. Additionally, to further promote transparency and reproducibility, we provide comprehensive code for result replication. CONCLUSIONS: The findings of this study suggest that the proposed method is a promising alternative to existing water removal methods due to its low processing time and good performance in removing water signals.


Subject(s)
Magnetic Resonance Imaging , Water , Water/chemistry , Reproducibility of Results , Magnetic Resonance Spectroscopy , Magnetic Resonance Imaging/methods , Algorithms
15.
Magn Reson Med ; 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39344291

ABSTRACT

PURPOSE: To develop a highly accelerated non-contrast-enhanced 4D-MRA technique by combining stack-of-stars golden-angle radial acquisition with a modified self-calibrated low-rank subspace reconstruction. METHODS: A low-rank subspace reconstruction framework was introduced in radial 4D MRA (SUPER 4D MRA) by combining stack-of-stars golden-angle radial acquisition with control-label k-space subtraction-based low-rank subspace modeling. Radial 4D MRA data were acquired and reconstructed using the proposed technique on 12 healthy volunteers and 1 patient with steno-occlusive disease. The performance of SUPER 4D MRA was compared with two temporally constrained reconstruction methods (golden-angle radial sparse parallel [GRASP] and GRASP-Pro) at different acceleration rates in terms of image quality and delineation of blood dynamics. RESULTS: SUPER 4D MRA outperformed the other two reconstruction methods, offering superior image quality with a clear background and detailed delineation of cerebrovascular structures as well as great temporal fidelity in blood flow dynamics. SUPER 4D MRA maintained excellent performance even at higher acceleration rates. CONCLUSIONS: SUPER 4D MRA is a promising technique for highly accelerating 4D MRA acquisition without comprising both temporal fidelity and image quality.

16.
Magn Reson Med ; 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39171431

ABSTRACT

PURPOSE: Radiotherapy treatment planning (RTP) using MR has been used increasingly for the abdominal site. Multiple contrast weightings and motion-resolved imaging are desired for accurate delineation of the target and various organs-at-risk and patient-tailored planning. Current MR protocols achieve these through multiple scans with distinct contrast and variable respiratory motion management strategies and acquisition parameters, leading to a complex and inaccurate planning process. This study presents a standalone MR Multitasking (MT)-based technique to produce volumetric, motion-resolved, multicontrast images for abdominal radiotherapy treatment planning. METHODS: The MT technique resolves motion and provides a wide range of contrast weightings by repeating a magnetization-prepared (saturation recovery and T2 preparations) spoiled gradient-echo readout series and adopting the MT image reconstruction framework. The performance of the technique was assessed through digital phantom simulations and in vivo studies of both healthy volunteers and patients with liver tumors. RESULTS: In the digital phantom study, the MT technique presented structural details and motion in excellent agreement with the digital ground truth. The in vivo studies showed that the motion range was highly correlated (R2 = 0.82) between MT and 2D cine imaging. MT allowed for a flexible contrast-weighting selection for better visualization. Initial clinical testing with interobserver analysis demonstrated acceptable target delineation quality (Dice coefficient = 0.85 ± 0.05, Hausdorff distance = 3.3 ± 0.72 mm). CONCLUSION: The developed MT-based, abdomen-dedicated technique is capable of providing motion-resolved, multicontrast volumetric images in a single scan, which may facilitate abdominal radiotherapy treatment planning.

17.
Magn Reson Med ; 92(4): 1440-1455, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38725430

ABSTRACT

PURPOSE: To develop a new sequence to simultaneously acquire Cartesian sodium (23Na) MRI and accelerated Cartesian single (SQ) and triple quantum (TQ) sodium MRI of in vivo human brain at 7 T by leveraging two dedicated low-rank reconstruction frameworks. THEORY AND METHODS: The Double Half-Echo technique enables short echo time Cartesian 23Na MRI and acquires two k-space halves, reconstructed by a low-rank coupling constraint. Additionally, three-dimensional (3D) 23Na Multi-Quantum Coherences (MQC) MRI requires multi-echo sampling paired with phase-cycling, exhibiting a redundant multidimensional space. Simultaneous Autocalibrating and k-Space Estimation (SAKE) were used to reconstruct highly undersampled 23Na MQC MRI. Reconstruction performance was assessed against five-dimensional (5D) CS, evaluating structural similarity index (SSIM), root mean squared error (RMSE), signal-to-noise ratio (SNR), and quantification of tissue sodium concentration and TQ/SQ ratio in silico, in vitro, and in vivo. RESULTS: The proposed sequence enabled the simultaneous acquisition of fully sampled 23Na MRI while leveraging prospective undersampling for 23Na MQC MRI. SAKE improved TQ image reconstruction regarding SSIM by 6% and reduced RMSE by 35% compared to 5D CS in vivo. Thanks to prospective undersampling, the spatial resolution of 23Na MQC MRI was enhanced from 8 × 8 × 15 $$ 8\times 8\times 15 $$ mm3 to 8 × 8 × 8 $$ 8\times 8\times 8 $$ mm3 while reducing acquisition time from 2 × 31 $$ 2\times 31 $$ min to 2 × 23 $$ 2\times 23 $$ min. CONCLUSION: The proposed sequence, coupled with low-rank reconstructions, provides an efficient framework for comprehensive whole-brain sodium MRI, combining TSC, T2*, and TQ/SQ ratio estimations. Additionally, low-rank matrix completion enables the reconstruction of highly undersampled 23Na MQC MRI, allowing for accelerated acquisition or enhanced spatial resolution.


Subject(s)
Algorithms , Brain , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Phantoms, Imaging , Signal-To-Noise Ratio , Sodium , Humans , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Sodium/chemistry , Image Processing, Computer-Assisted/methods , Sodium Isotopes , Imaging, Three-Dimensional/methods , Computer Simulation
18.
Magn Reson Med ; 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39219160

ABSTRACT

PURPOSE: To introduce quantitative rapid gradient-echo (QRAGE), a novel approach for the simultaneous mapping of multiple quantitative MRI parameters, including water content, T1, T2*, and magnetic susceptibility at ultrahigh field strength. METHODS: QRAGE leverages a newly developed multi-echo MPnRAGE sequence, facilitating the acquisition of 171 distinct contrast images across a range of inversion and TE points. To maintain a short acquisition time, we introduce MIRAGE2, a novel model-based reconstruction method that exploits prior knowledge of temporal signal evolution, represented as damped complex exponentials. MIRAGE2 minimizes local Block-Hankel and Casorati matrices. Parameter maps are derived from the reconstructed contrast images through postprocessing steps. We validate QRAGE through extensive simulations, phantom studies, and in vivo experiments, demonstrating its capability for high-precision imaging. RESULTS: In vivo brain measurements show the promising performance of QRAGE, with test-retest SDs and deviations from reference methods of < 0.8% for water content, < 17 ms for T1, and < 0.7 ms for T2*. QRAGE achieves whole-brain coverage at a 1-mm isotropic resolution in just 7 min and 15 s, comparable to the acquisition time of an MP2RAGE scan. In addition, QRAGE generates a contrast image akin to the UNI image produced by MP2RAGE. CONCLUSION: QRAGE is a new, successful approach for simultaneously mapping multiple MR parameters at ultrahigh field.

19.
Magn Reson Med ; 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39385473

ABSTRACT

PURPOSE: To improve liver proton density fat fraction (PDFF) and R 2 * $$ {R}_2^{\ast } $$ quantification at 0.55 T by systematically validating the acquisition parameter choices and investigating the performance of locally low-rank denoising methods. METHODS: A Monte Carlo simulation was conducted to design a protocol for PDFF and R 2 * $$ {R}_2^{\ast } $$ mapping at 0.55 T. Using this proposed protocol, we investigated the performance of robust locally low-rank (RLLR) and random matrix theory (RMT) denoising. In a reference phantom, we assessed quantification accuracy (concordance correlation coefficient [ ρ c $$ {\rho}_c $$ ] vs. reference values) and precision (using SD) across scan repetitions. We performed in vivo liver scans (11 subjects) and used regions of interest to compare means and SDs of PDFF and R 2 * $$ {R}_2^{\ast } $$ measurements. Kruskal-Wallis and Wilcoxon signed-rank tests were performed (p < 0.05 considered significant). RESULTS: In the phantom, RLLR and RMT denoising improved accuracy in PDFF and R 2 * $$ {R}_2^{\ast } $$ with ρ c $$ {\rho}_c $$ >0.992 and improved precision with >67% decrease in SD across 50 scan repetitions versus conventional reconstruction (i.e., no denoising). For in vivo liver scans, the mean PDFF and mean R 2 * $$ {R}_2^{\ast } $$ were not significantly different between the three methods (conventional reconstruction; RLLR and RMT denoising). Without denoising, the SDs of PDFF and R 2 * $$ {R}_2^{\ast } $$ were 8.80% and 14.17 s-1. RLLR denoising significantly reduced the values to 1.79% and 5.31 s-1 (p < 0.001); RMT denoising significantly reduced the values to 2.00% and 4.81 s-1 (p < 0.001). CONCLUSION: We validated an acquisition protocol for improved PDFF and R 2 * $$ {R}_2^{\ast } $$ quantification at 0.55 T. Both RLLR and RMT denoising improved the accuracy and precision of PDFF and R 2 * $$ {R}_2^{\ast } $$ measurements.

20.
NMR Biomed ; : e5232, 2024 Aug 04.
Article in English | MEDLINE | ID: mdl-39099151

ABSTRACT

In recent years, diffusion models have made significant progress in accelerating magnetic resonance imaging. Nevertheless, it still has inherent limitations, such as prolonged iteration times and sluggish convergence rates. In this work, we present a novel generalized map generation model based on mean-reverting SDE, called GM-SDE, to alleviate these shortcomings. Notably, the core idea of GM-SDE is optimizing the initial values of the iterative algorithm. Specifically, the training process of GM-SDE diffuses the original k-space data to an intermediary degraded state with fixed Gaussian noise, while the reconstruction process generates the data by reversing this process. Based on the generalized map, three variants of GM-SDE are proposed to learn k-space data with different structural characteristics to improve the effectiveness of model training. GM-SDE also exhibits flexibility, as it can be integrated with traditional constraints, thereby further enhancing its overall performance. Experimental results showed that the proposed method can reduce reconstruction time and deliver excellent image reconstruction capabilities compared to the complete diffusion-based method.

SELECTION OF CITATIONS
SEARCH DETAIL