Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Eur Radiol ; 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39136707

ABSTRACT

OBJECTIVES: The use of magnetic resonance imaging (MRI) is safe from a long-term perspective since there are no known cumulative risks for patients or personnel. However, the technique comes with several acute risks associated with the powerful electromagnetic fields that are necessary to produce medical images. These risks include, among other things, a projectile hazard, loud noise, and the risk of heating. Safe use of MRI requires knowledge about the different hazards related to MRI and organizational structured work including the implementation of routines describing a safe workflow from the referral of a patient to the signed report. In this article, the risks associated with MRI are described along with suggestions for how each risk can be minimized or eliminated. CONCLUSION: The aim of this article is to provide support for the development of, and compliance with, MRI safety routines, and to work with the technique in a safe way. The scope of this treatise does not cover specific details of implant safety, however, the physical principles described can be applied to the risk assessment of implants. KEY POINTS: Establish whether any MR contraindications apply to the patient. Evaluate means to deal with identified risks for both patients and personnel. It is imperative to always perform and document a risk-benefit assessment.

2.
Sensors (Basel) ; 22(16)2022 Aug 12.
Article in English | MEDLINE | ID: mdl-36015775

ABSTRACT

Localization of the underwater magnetic sensor arrays plays a pivotal role in the magnetic silencing facility. A localization approach is proposed for underwater sensors based on the optimization of magnetic field gradients in the inverse problem of localization. In the localization system, a solenoid coil carrying direct current serves as the magnetic source. By measuring the magnetic field generated by the magnetic source in different positions, an objective function is established. The position vector of the sensor is determined by a novel multi-swarm particle swarm optimization with dynamic learning strategy. Without the optimization of the magnetic source's positions, the sensors' positions, especially in the z-axis direction, struggle to meet the requested localization. A strategy is proposed to optimize the positions of the magnetic source based on magnetic field gradients in the three directions of x, y and z axes. Compared with the former method, the model experiments show that the proposed method could achieve a 10 cm location error for the position type 2 sensor and meet the request of localization.

3.
NMR Biomed ; 29(9): 1305-15, 2016 09.
Article in English | MEDLINE | ID: mdl-25974894

ABSTRACT

In this article we present our projections of future hardware developments on 7 T human MRI systems. These include compact cryogen-light magnets, improved gradient performance, integrated RF-receive and direct current shimming coil arrays, new RF technology with adaptive impedance matching, patient-specific specific absorption rate estimation and monitoring, and increased integration of physiological monitoring systems. Copyright © 2015 John Wiley & Sons, Ltd.


Subject(s)
Image Enhancement/instrumentation , Magnetic Resonance Imaging/instrumentation , Magnets , Signal Processing, Computer-Assisted/instrumentation , Transducers , Animals , Equipment Design/methods , Equipment Design/trends , Forecasting , Humans , Magnetic Resonance Imaging/trends , Radiation Dosage , Reproducibility of Results , Sensitivity and Specificity
4.
J Magn Reson Imaging ; 41(5): 1454-64, 2015 May.
Article in English | MEDLINE | ID: mdl-24943462

ABSTRACT

PURPOSE: To present a technique for non-contrast-enhanced in vivo imaging of the blood volume fraction of the human lung. The technique is based on the intravoxel incoherent motion (IVIM) approach. However, a substantial novelty is introduced here: the need for external diffusion sensitizing gradients is eliminated by exploiting the internal magnetic field gradients typical of the lung tissue, due to magnetic susceptibility differences at air/tissue interfaces. MATERIALS AND METHODS: A single shot turbo spin-echo sequence with stimulated-echo preparation and electrocardiograph synchronization was used for acquisition. Two images were acquired in a single breath-hold of 10 seconds duration: one reference image and one blood-suppressed image. The blood volume fraction was quantified using a two-compartment signal decay model, as given by the IVIM theory. Experiments were performed at 1.5T in eight healthy volunteers. RESULTS: Values of the blood volume fraction obtained within the lung parenchyma (36 ± 16%) are in good agreement with previous reports, obtained using contrast-enhanced magnetic resonance angiography (33%), and show relatively good reproducibility. CONCLUSION: The presented technique offers a robust way to quantify the blood volume fraction of the human lung parenchyma without using contrast agents. Image acquisition can be accomplished in a single breath-hold and could be suitable for clinical applications on patients with lung diseases. J. Magn. Reson. Imaging 2015;41:1454-1464. © 2014 Wiley Periodicals, Inc.


Subject(s)
Blood Volume Determination/methods , Blood Volume/physiology , Image Interpretation, Computer-Assisted/methods , Lung/physiology , Magnetic Resonance Angiography/methods , Pulmonary Circulation/physiology , Adult , Female , Humans , Imaging, Three-Dimensional/methods , Male , Motion , Reproducibility of Results , Sensitivity and Specificity
5.
J Phys Condens Matter ; 35(5)2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36384048

ABSTRACT

An overview of the effect of a magnetic field gradient on fluids with linear magnetic susceptibilities is given. It is shown that two commonly encountered expressions, the magnetic field gradient force and the concentration gradient force for paramagnetic species in solution are equivalent for incompressible fluids. The magnetic field gradient and concentration gradient forces are approximations of the Kelvin force and Korteweg-Helmholtz force densities, respectively. The criterion for the appearance of magnetically induced convection is derived. Experimental work in which magnetically induced convection plays a role is reviewed.

6.
J Magn Reson ; 273: 124-129, 2016 12.
Article in English | MEDLINE | ID: mdl-27825066

ABSTRACT

The production of large volumes of highly polarized noble gases like helium and xenon is vital to applications of magnetic resonance imaging and spectroscopy with hyperpolarized (HP) gas in humans. In the past ten years, 129Xe has become the gas of choice due to its lower cost, higher availability, relatively high tissue solubility, and wide range of chemical shift values. Though near unity levels of xenon polarization have been achieved in-cell using stopped-flow Spin Exchange Optical Pumping (SEOP), these levels are currently unmatched by continuous-flow SEOP methods. Among the various mechanisms that cause xenon relaxation, such as persistent and transient xenon dimers, wall collisions, and interactions with oxygen, relaxation due to diffusion in magnetic field gradients, caused by rapidly changing magnetic field strength and direction, is often ignored. However, during continuous-flow SEOP production, magnetic field gradients may not have a negligible contribution, especially considering that this methodology requires the combined use of magnets with very different characteristics (low field for spin exchange optical pumping and high field for the reduction of xenon depolarization in the solid state during the freeze out phase) that, when placed together, inevitably create magnetic field gradients along the gas-flow-path. Here, a combination of finite element analysis and Monte Carlo simulations is used to determine the effect of such magnetic field gradients on xenon gas polarization with applications to a specific, continuous-flow hyperpolarization system.


Subject(s)
Magnetic Fields , Magnetic Resonance Imaging , Xenon Isotopes
7.
ACS Nano ; 9(4): 3664-76, 2015.
Article in English | MEDLINE | ID: mdl-25801533

ABSTRACT

Intra- and extracellular signaling play critical roles in cell polarity, ultimately leading to the development of functional cell-cell connections, tissues, and organs. In the brain, pathologically oriented neurons are often the cause for disordered circuits, severely impacting motor function, perception, and memory. Aside from control through gene expression and signaling pathways, it is known that nervous system development can be manipulated by mechanical stimuli (e.g., outgrowth of axons through externally applied forces). The inverse is true as well: intracellular molecular signals can be converted into forces to yield axonal outgrowth. The complete role played by mechanical signals in mediating single-cell polarity, however, remains currently unclear. Here we employ highly parallelized nanomagnets on a chip to exert local mechanical stimuli on cortical neurons, independently of the amount of superparamagnetic nanoparticles taken up by the cells. The chip-based approach was utilized to quantify the effect of nanoparticle-mediated forces on the intracellular cytoskeleton as visualized by the distribution of the microtubule-associated protein tau. While single cortical neurons prefer to assemble tau proteins following poly-L-lysine surface cues, an optimal force range of 4.5-70 pN by the nanomagnets initiated a tau distribution opposed to the pattern cue. In larger cell clusters (groups comprising six or more cells), nanoparticle-mediated forces induced tau repositioning in an observed range of 190-270 pN, and initiation of magnetic field-directed cell displacement was observed at forces above 300 pN. Our findings lay the groundwork for high-resolution mechanical encoding of neural networks in vitro, mechanically driven cell polarization in brain tissues, and neurotherapeutic approaches using functionalized superparamagnetic nanoparticles to potentially restore disordered neural circuits.


Subject(s)
Brain/cytology , Cell Engineering/methods , Cell Polarity , Magnets , Nanotechnology/methods , Neurons/cytology , Animals , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Biomechanical Phenomena , Cell Polarity/drug effects , Intracellular Space/drug effects , Intracellular Space/metabolism , Nanoparticles , Neurons/drug effects , Neurons/metabolism , Protein Transport/drug effects , Rats , tau Proteins/metabolism
8.
J Magn Reson ; 245: 150-5, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25058914

ABSTRACT

An algorithm is derived and demonstrated that reconstructs an EPR spectral-spatial image from projections with arbitrarily selected gradients. This approach permits imaging wide spectra without the use of the very large sweep widths and gradients that would be required for spectral-spatial imaging with filtered back projection reconstruction. Each projection is defined as the sum of contributions at the set of locations in the object. At each location gradients shift the spectra in the magnetic field domain, which is equivalent to a phase change in the Fourier-conjugate frequency domain. This permits solution of the problem in the frequency domain. The method was demonstrated for 2D images of phantoms consisting of (i) two tubes containing (14)N and (15)N nitroxide and (ii) two tubes containing a pH sensitive trityl radical at pH 7.0 and 7.2. In each case spectral slices through the image agree well with the full spectra obtained in the absence of gradient.


Subject(s)
Algorithms , Electron Spin Resonance Spectroscopy , Nitrogen Oxides/chemistry , Trityl Compounds/chemistry , Electron Spin Resonance Spectroscopy/methods , Image Enhancement/methods , Image Processing, Computer-Assisted/methods , Phantoms, Imaging
9.
J Magn Reson ; 236: 57-65, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24056273

ABSTRACT

Lorentz Effect Imaging (LEI) is an MRI technique that has been proposed for direct imaging of neuronal activity. While promising results have been obtained in phantoms and in the human median nerve in vivo, its contrast mechanism is still not fully understood. In this paper, computational model simulations were used to investigate how electromagnetohydrodynamics (EMHD) may explain the LEI contrast. Three computational models of an electrolyte-filled phantom subject to an applied current dipole, synchronized to oscillating magnetic field gradients of an LEI protocol, were developed to determine the velocity and displacement of water molecules as well as the resulting signal loss in an MR image. The simulated images were compared to images from previous LEI phantom experiments with identical properties for different stimulus current amplitudes and polarities. The first model, which evaluated ion trajectories based on Stokes flow using different mobility values, did not generate an appreciable signal loss due to an insufficient number of water molecules associated with the ion hydration shells. The second model, which computed particle drift based on the Lorentz force of charged particles in free space, was able to approximate the magnitude, but not the distribution of signal loss observed in the experimental images. The third model, which computed EMHD based on the Lorentz force and Navier-Stokes equations for flow of a conducting fluid, provided results consistent with both the magnitude and distribution of signal loss seen in the LEI experiments. Our EMHD model further yields information on electrical potential, velocity, displacement, and pressure, which are not readily available in an experiment, thereby providing a robust means to study and optimize LEI for imaging neuronal activity in the human cortex.


Subject(s)
Electromagnetic Fields , Magnetic Resonance Imaging/methods , Neurons/physiology , Algorithms , Computer Simulation , Electrolytes , Humans , Image Processing, Computer-Assisted , Ions , Median Nerve/anatomy & histology , Models, Statistical , Neurons/ultrastructure , Phantoms, Imaging
SELECTION OF CITATIONS
SEARCH DETAIL