Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.328
Filter
Add more filters

Publication year range
1.
J Comput Chem ; 45(8): 446-453, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-37942818

ABSTRACT

Herein, the structural evolution, electronic and magnetic properties of silicon clusters with two different dopants, CrMnSin (n = 4-20) clusters were investigated at density functional theory (DFT) level. Small-sized CrMnSin (n = 4-9) clusters tend to adopt bipyramid-based geometries, while clusters with sizes n = 10 and 11 prefer to opening cage-like structures. For sizes n = 12 to 14, the half-encapsulated structures gradually transform into closed-cage Cr@Sin structures, with the Mn atom exposed outside. Starting from size 15, both the Cr and Mn atoms are completely encapsulated by silicon atoms. Meanwhile, the Cr and Mn atoms in smaller-sized CrMnSin (n = 4-7) clusters tend to be separated, while they prefer to stay together for larger sizes. Cr atom always acts as electron donor, but not for Mn atom. From the average binding energies, one can conclude that it is easier to form larger size clusters. Smaller and larger sized CrMnSin (n = 4-9 and 19-20) clusters prefer to exhibit ferromagnetic Cr-Mn coupling, while sizes n = 10-18 always exhibit ferrimagnetic state. To our knowledge, the CrMnSin clusters is the first kind of neutral transition-metal doped semiconductor clusters that show ferrimagnetic state within a wide size range.

2.
J Comput Chem ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38872590

ABSTRACT

Due to the potential applications in next-generation micro/nano electronic devices and functional materials, magnetic germanium (Ge)-based clusters are receiving increasing attention. In this work, we reported the structures, electronic and magnetic properties of CrMnGen with sizes n = 3-20. Transition metals (TMs) of Cr and Mn tend to stay together and be surrounded by Ge atoms. Small sized clusters with n ≤ 8 prefer to adopt bipyramid-based structures as the motifs with the excess Ge atoms absorbed on the surface. Starting from n = 9, the structure with one TM atom interior appears and persists until n = 16, and for larger sizes n = 17-20, the two TM atoms are full-encapsulated by Ge atoms to form endohedral structures. The Hirshfeld population analyses show that Cr atom always acts as the electron donor, while Mn atom is always the acceptor except for sizes 3 and 6. The average binding energies of these clusters increase with cluster size n, sharing a very similar trend as that of CrMnSin (n = 4-20) clusters, which indicates that it is favorable to form large-sized clusters. CrMnGen (n = 6, 13, 16, 19, and 20) clusters prefer to exhibit ferromagnetic Cr-Mn coupling, while the remaining clusters are ferrimagnetic.

3.
Chemistry ; : e202401041, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38785416

ABSTRACT

Investigations of the nature and degree of antiaromaticity of cycloheptatrienyl anion derivatives using both experimental and computational tools are presented. The ground state of cycloheptatrienyl anion in the gas phase is triplet, planar and Baird-aromatic. In DMSO, it assumes a singlet distorted allylic form with a paratropic ring current. The other derivatives in both phases assume either allylic or diallylic conformations depending on the substituent pattern. A combination of experimental and computational methods was used to determine the pKa values of 16 derivatives in DMSO, which ranged from 36 to -10.7. We revealed that the stronger stabilization of the anionic system, which correlates with acidity, does not necessarily imply a lower degree of antiaromaticity in terms of magnetic properties. Conversely, the substitution pattern first affects the geometry of the ring through the bulkiness of the substituents and their better conjugation with a more distorted system. Consequently, the distortion reduces the cyclic conjugation in the π-system and thereby decreases the paratropic current in a magnetic field, which manifests itself as a decrease in the NICS. The triplet-state geometries and magnetic properties are nearly independent on the substitution pattern, which is typical for simple aromatic systems.

4.
Chemistry ; 30(3): e202303048, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-37932887

ABSTRACT

Magnetic refrigeration technology based on Gd-based paramagnets is expected to be applied to refrigeration in extremely low temperatures, thereby reducing the consumption of liquid helium. Here, we obtained a compound, Gd3 TeBO9 with high Gd3+ concentration through element substitution. The Gd3+ concentration in this compound is as high as 2.4×1024  ions/kg, which is 33 % higher than the commercial Gd3 Ga5 O12 (GGG), and further magnetic tests show that Gd3 TeBO9 has a large magnetic entropy change (57.44 J/(kg K) and 408 mJ/(cm3 K) at 2.6 K and 7 T), which is 1.5 times that of GGG, implying the possibility of its further development as an potential magnetocaloric material.

5.
Chemistry ; 30(13): e202303499, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38116871

ABSTRACT

A novel synthetic approach has been employed to synthesize a series of new nitronyl nitroxides: 2-(1-propyl-1H-imidazol-5-yl)- (Ln-Pr ), 2-(1-isopropyl-1H-imidazol-5-yl)- (Li-Pr ) and 2-(1-butyl-1H-imidazol-5-yl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole-3-oxide-1-oxyl (Ln-Bu ). The reaction of Cu(hfac)2 with LR in a 1 : 2 ratio yields mononuclear heterospin complexes [Cu(hfac)2 (LR )2 ] (LR =Ln-Pr , Li-Pr , Ln-Bu ), which have a similar crystal structure to the "jumping" crystals [Cu(hfac)2 (LMe )2 ] that exhibit chemomechanical activity. It was shown that an increase in the alkyl substituent R leads to changes in the crystal packing of the molecules and the absence of chemomechanical activity. Furthermore, it was found that two polymorph modifications of the heterospin complex [Cu(hfac)2 (Ln-Pr )2 ] can be obtained, and magnetic properties of [Cu(hfac)2 (Ln-Pr )2 ] strongly depend on the angle between the planes of the paramagnetic fragment O•-N-C=N→O and the imidazole ring in Ln-Pr .

6.
Chemistry ; 30(28): e202400410, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38483106

ABSTRACT

We have prepared and characterized three coordination polymers formulated as [Dy2(C6O4Cl2)3(fma)6] ⋅ 4.5fma (1) and [Dy2(C6O4X2)3(fma)6] ⋅ 4fma ⋅ 2H2O with X=Br (2) and Cl (3), where fma=formamide and C6O4X2 2-=3,6-disubstituted-2,5-dihydroxy-1,4-benzoquinone dianion with X=Cl (chloranilato) and Br (bromanilato). Compounds 1 and 3 are solvates obtained with slow and fast precipitation methods, respectively. Compounds 2 and 3 are isostructural and only differ in the X group of the anilato ligand. The three compounds present (6,3)-gon two-dimensional hexagonal honey-comb structures. Magnetic measurements indicate that the three compounds show slow relaxation of the magnetization at low temperatures when a continuous magnetic field is applied, although with different relaxation times and energy barriers depending on X and the crystallisation molecules. Compounds 1-3 represent the first examples of anilato-based lattices with formamide and field-induced slow relaxation of the magnetization.

7.
Nanotechnology ; 35(27)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38635294

ABSTRACT

The tuning of exchange bias (EB) in nanoparticles has garnered significant attention due to its diverse range of applications. Here, we demonstrate EB in single-phase CoO nanoparticles, where two magnetic phases naturally emerge as the crystallite size decreases from 34.6 ± 0.8 to 10.8 ± 0.9 nm. The Néel temperature (TN) associated with antiferromagnetic ordering decreases monotonically with the reduction in crystallite size, highlighting the significant influence of size effects. The 34.6 nm nanoparticles exhibit magnetization irreversibility between zero-field cooled (ZFC) and field-cooled (FC) states belowTN. With further reduction in size this irreversibility appears well aboveTN, resulting in the absence of true paramagnetic regime which indicates the occurnace of an additional magnetic phase. The frequency-dependent ac-susceptibility in 10.8 nm nanoparticles suggests slow dynamics of disordered surface spins aboveTN, coinciding with the establishment of long-range order in the core. The thermoremanent magnetization (TRM) and iso-thermoremanent magnetization (IRM) curves suggest a core-shell structure: the core is antiferromagnetic, and the shell consists of disordered surface spins causing ferromagnetic interaction. Hence, the EB in these CoO nanoparticles results from the exchange coupling between an antiferromagnetic core and a disordered shell that exhibits unconventional surface spin characteristics.

8.
Nanotechnology ; 35(26)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38467061

ABSTRACT

For applications in magneto-electronic devices, diluted magnetic semiconductors (DMSs) usually exhibit spin-dependent coupling and induced ferromagnetism at high Curie temperatures. The processes behind the behavior of optical emission and ferromagnetism, which can be identified by complicated microstructural and chemical characteristics, are still not well understood. In this study, the impact of Al co-doping on the electronic, optical, and magnetic properties of Ni(II) doped ZnO monolayers has been investigated using first principles calculations. Ferromagnetism in the co-doped monolayer is mainly triggered by the exchange coupling between the electrons provided by Al co-doping and Ni(II)-dstates; therefore, the estimated Curie temperature is greater than room temperature. The spin-spin couplings in mono-doped and co-doped monolayers were explained using the band-coupling mechanism. Based on the optical study, we observed that the Ni-related absorption peak occurred at 2.13-2.17 eV, showing a redshift as Ni concentrations increased. The FM coupling between Ni ions in the co-doped monolayer may be responsible for the reduction in the fundamental band gap seen with Al co-doping. We observed peaks in the near IR and visible regions of the co-doped monolayer, which improve the optoelectronic device's photovoltaic performance. Additionally, the correlation between optical characteristics and spin-spin couplings has been studied. We found that the Ni(II)'sd-dtransition bands or fundamental band gap in the near configuration undergoes a significant shift in response to AFM and FM coupling, whereas in the far configuration, they have a negligible shift due to the paramagnetic behavior of the Ni ions. These findings suggest that the magnetic coupling in DMS may be utilized for controlling the optical characteristics.

9.
Nano Lett ; 23(19): 9126-9132, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37781926

ABSTRACT

Developing an efficient method to reversibly control materials' spin order is urgently needed but challenging in spintronics. Though various physical field control methods have been advancing, the chemical control of spin is little exploited. Here, we propose a chemical means for such spin manipulation, i.e., utilizing the well-known lactim-lactam tautomerization to reversibly modulate the magnetic phase transition in two-dimensional (2D) organometallic lattices. The proposal is verified by theoretically designing several 2D organometallic frameworks with antiferromagnetic to ferrimagnetic spin order transformation modulated by lactim-lactam tautomerization on organic linkers. The transition originates from the change in spin states of organic linkers (from singlet to doublet) via tautomerization. Such a transition further switches materials' electronic structures from normal semiconductors with zero spin polarization to bipolar magnetic semiconductors with valence and conduction band edges 100% spin polarized in opposite spin channels. Moreover, the magnitude of magnetic anisotropy energy also enhances by 5- to 9-fold.

10.
Int J Mol Sci ; 25(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38928461

ABSTRACT

"Core/shell" composites are based on a ferrite core coated by two layers with different properties, one of them is an isolator, SiO2, and the other is a semiconductor, TiO2. These composites are attracting interest because of their structure, photocatalytic activity, and magnetic properties. Nanocomposites of the "core/shell" МFe2O4/SiO2/TiO2 (М = Zn(II), Co(II)) type are synthesized with a core of MFe2O4 produced by two different methods, namely the sol-gel method (SG) using propylene oxide as a gelling agent and the hydrothermal method (HT). SiO2 and TiO2 layer coating is performed by means of tetraethylorthosilicate, TEOS, Ti(IV) tetrabutoxide, and Ti(OBu)4, respectively. A combination of different experimental techniques is required to prove the structure and phase composition, such as XRD, UV-Vis, TEM with EDS, photoluminescence, and XPS. By Rietveld analysis of the XRD data unit cell parameters, the crystallite size and weight fraction of the polymorphs anatase and rutile of the shell TiO2 and of the ferrite core are determined. The magnetic properties of the samples, and their activity for the photodegradation of the synthetic industrial dyes Malachite Green and Rhodamine B are measured in model water solutions under UV light irradiation and simulated solar irradiation. The influence of the water matrix on the photocatalytic activity is determined using artificial seawater in addition to ultrapure water. The rate constants of the photocatalytic process are obtained along with the reaction mechanism, established using radical scavengers where the role of the radicals is elucidated.


Subject(s)
Nanocomposites , Rhodamines , Rosaniline Dyes , Titanium , Water Pollutants, Chemical , Nanocomposites/chemistry , Rosaniline Dyes/chemistry , Catalysis , Water Pollutants, Chemical/chemistry , Rhodamines/chemistry , Titanium/chemistry , Photolysis , Silicon Dioxide/chemistry , Ferric Compounds/chemistry , Photochemical Processes , X-Ray Diffraction
11.
Int J Mol Sci ; 25(7)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38612928

ABSTRACT

In this study, we explored the formation of CuO nanoparticles, NiO nanoflakes, and CuO-NiO nanocomposites using saponin extract and a microwave-assisted hydrothermal method. Five green synthetic samples were prepared using aqueous saponin extract and a microwave-assisted hydrothermal procedure at 200 °C for 30 min. The samples were pristine copper oxide (100C), 75% copper oxide-25% nickel oxide (75C25N), 50% copper oxide-50% nickel oxide (50C50N), 25% copper oxide-75% nickel oxide (25C75N), and pristine nickel oxide (100N). The samples were characterized using FT-IR, XRD, XPS, SEM, and TEM. The XRD results showed that copper oxide and nickel oxide formed monoclinic and cubic phases, respectively. The morphology of the samples was useful and consisted of copper oxide nanoparticles and nickel oxide nanoflakes. XPS confirmed the +2 oxidation state of both the copper and nickel ions. Moreover, the optical bandgaps of copper oxide and nickel oxide were determined to be in the range of 1.29-1.6 eV and 3.36-3.63 eV, respectively, and the magnetic property studies showed that the synthesized samples exhibited ferromagnetic and superparamagnetic properties. In addition, the catalytic activity was tested against para-nitrophenol, demonstrating that the catalyst efficiency gradually improved in the presence of CuO. The highest rate constants were obtained for the 100C and 75C25N samples, with catalytic efficiencies of 98.7% and 78.2%, respectively, after 45 min.


Subject(s)
Nanocomposites , Nickel , Saponins , Copper , Microwaves , Spectroscopy, Fourier Transform Infrared , Oxides
12.
J Environ Manage ; 353: 120160, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38278120

ABSTRACT

The partial substitution of A-site in perovskites is a major strategy to enhance the catalytic oxidation activity. This study explores the use of silver (Ag) to partially replace the lanthanum (La) ion at the A-site in LaCoO3 perovskite, investigating the role of Ag in the ABO3 perovskite structure, elucidating the nitric oxide (NO) oxidation mechanism over La1-xAgxCoO3 (x = 0.1-0.5) perovskites. La0.7Ag0.3CoO3 with an Ag-doping amount of 0.3, exhibited the highest NO oxidation activity of 88.5% at 275 °C. Characterization results indicated that Ag substitution enhanced the perovskite, maintaining its original phase structure, existing in the form of a mixture of Ag0 and Ag+ in the La1-xAgxCoO3 (x = 0.1-0.5) perovskites. Notably, Ag substitution improved the specific surface area, reduction performance, Co3+, and surface adsorption oxygen content. Additionally, the study investigated the relationship between magnetism and NO oxidation from a magnetism perspective. Ag-doping strengthened the magnetism of La-Ag perovskite, resulting in stronger adsorption of paramagnetic NO. This study elucidated the NO oxidation mechanism over La-Ag perovskite, considering structural and magnetic properties, providing valuable insights for the subsequent development and industrial application of high oxidation ability perovskite catalysts.


Subject(s)
Calcium Compounds , Lanthanum , Nitric Oxide , Oxides , Titanium , Lanthanum/chemistry , Surface Properties , Magnetic Phenomena
13.
Molecules ; 29(8)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38675512

ABSTRACT

The geometrical structures, relative stabilities, and electronic and magnetic properties of niobium carbon clusters, Nb7Cn (n = 1-7), are investigated in this study. Density functional theory (DFT) calculations, coupled with the Saunders Kick global search, are conducted to explore the structural properties of Nb7Cn (n = 1-7). The results regarding the average binding energy, second-order difference energy, dissociation energy, HOMO-LUMO gap, and chemical hardness highlight the robust stability of Nb7C3. Analysis of the density of states suggests that the molecular orbitals of Nb7Cn primarily consist of orbitals from the transition metal Nb, with minimal involvement of C atoms. Spin density and natural population analysis reveal that the total magnetic moment of Nb7Cn predominantly resides on the Nb atoms. The contribution of Nb atoms to the total magnetic moment stems mainly from the 4d orbital, followed by the 5p, 5s, and 6s orbitals.

14.
Angew Chem Int Ed Engl ; 63(1): e202310147, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-37767854

ABSTRACT

Spin frustration, which results from geometric frustration and a systematical inability to satisfy all antiferromagnetic (AF) interactions between unpaired spins simultaneously, is under the spotlight for its importance in physics and materials science. Spin frustration is treated as the structural basis of quantum spin liquids (QSLs). Featuring flexible chemical structures, organic radical species exhibit great potential in building spin-frustrated molecules and lattices. So far, the reported examples of spin-frustrated organic radical compounds include triradicals, tetrathiafulvalene (TTF) radicals and derivatives, [Pd(dmit)2 ] compounds (dmit=1,3-dithiol-2-thione-4,5-dithiolate), nitronyl nitroxides, fullerenes, polycyclic aromatic hydrocarbons (PAHs), and other heterocyclic compounds where the spin frustration is generated intra- or intermolecularly. In this Minireview, we provide a brief summary of the reported radical compounds that possess spin frustration. The related data, including magnetic exchange coupling parameters, spin models, frustration parameters, and crystal lattices, are summarized and discussed.

15.
Angew Chem Int Ed Engl ; 63(13): e202317678, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38300223

ABSTRACT

The potassium silole K2 [SiC4 -2,5-(SiMe3 )2 -3,4-Ph2 ] reacts with [M(η8 -COT)(THF)4 ][BPh4 ] (M=Er, Y; COT=cyclo-octatetraenyl) in THF to give products that feature unprecedented insertion of the nucleophilic silicon centre into a carbon-oxygen bond of THF. The structure of the major product, [(µ-η8 : η8 -COT)M(µ-L1 )K]∞ (1M ), consists of polymeric chains of sandwich complexes, where the spiro-bicyclic silapyran ligand [C4 H8 OSiC4 (SiMe3 )2 Ph2 ]2- (L1 ) coordinates to potassium via the oxygen. The minor product [(µ-η8 : η8 -COT)M(µ-L1 )K(THF)]2 (2M ) features coordination of the silapyran to the rare-earth metal. In forming 1M and 2M , silole insertion into THF only occurs in the presence of potassium and the rare-earth metal, highlighting the importance of bimetallic synergy. The lower nucleophilicity of germanium(II) leads to contrasting reactivity of the potassium germole K2 [GeC4 -2,5-(SiMe3 )2 -3,4-Me2 ] towards [M(η8 -COT)(THF)4 ][BPh4 ], with intact transfer of the germole occurring to give the coordination polymers [{η5 -GeC4 (SiMe3 )2 Me2 }M(η8 -COT)K]∞ (3M ). Despite the differences in reactivity induced by the group 14 heteroatom, the single-molecule magnet properties of 1Er , 2Er and 3Er are similar, with thermally activated relaxation occurring via the first-excited Kramers doublet, subject to effective energy barriers of 122, 80 and 91 cm-1 , respectively. Compound 1Er is also analysed by high-frequency dynamic magnetic susceptibility measurements up to 106  Hz.

16.
Angew Chem Int Ed Engl ; 63(18): e202401950, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38453651

ABSTRACT

A mononuclear valence tautomeric (VT) complex, [Co(pycz)2(Sq)(Cat)] (1-trans), where pycz = 9-(pyridin-4-yl)-9H-carbazole, Sq⋅- = 3,5-di-tert-butyl-semiquinonato, and Cat2- = 3,5-di-tert-butyl-catecholato, is synthesized in the trans configuration, which undergoes one-step valence tautomeric transition above room temperature. Remarkably, 1-trans can transform into its isomeric structure, [Co(pycz)2(Sq)(Sq)] (1-cis), at temperature above 350 K in a single-crystal-to-single-crystal way by in situ molecular twist, and the resulting 1-cis exhibits a pronounced two-step VT transition during magnetic measurements that is rare for mononuclear VT complexes. Such drastic solid-state structural transformation is reported in VT compounds for the first time, which is actuated by a crystal surface's melting-recrystallization induced phase transition process. DFT calculations offer an underlying mechanism suggesting a concerted bond rotation during the structural transformation. The results demonstrate an unconventional approach that realizes structural transformation of VT complexes and the control of VT performance.

17.
Angew Chem Int Ed Engl ; 63(28): e202405498, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38651652

ABSTRACT

Three new nitrides La3MN5 (M=Cr, Mn, and Mo) have been synthesized using a high pressure azide route. These are the first examples of ternary Cs3CoCl5-type nitrides, and show that this (MN4)NLa3 antiperovskite structure type may be used to stabilise high oxidation-state transition metals in tetrahedral molecular [MN4]n- nitridometallate anions. Magnetic measurements confirm that Cr and Mo are in the M6+ state, but the M=Mn phase has an anomalously small paramagnetic moment and large cell volume. Neutron powder diffraction data are fitted using an anion-excess La3MnN5.30 model (space group I4/mcm, a=6.81587(9) Šand c=11.22664(18) Šat 200 K) in which Mn is close to the +7 state. Excess-anion incorporation into Cs3CoCl5-type materials has not been previously reported, and this or other substitution mechanisms may enable many other high oxidation state transition metal nitrides to be prepared.

18.
J Comput Chem ; 44(19): 1667-1672, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37083251

ABSTRACT

In this work, we investigated the structural evolution, electronic and magnetic properties of Cr2 Gen - clusters for n = 15-20 by using density functional theory (DFT) calculations. Low-energy structures for these clusters were fully searched through a self-developed genetic algorithm code combined with DFT calculations. The calculations show that all the two Cr atoms prefer to stay together to form a strong CrCr bond, which-except for size 20-is shorter than the nearest neighbor distance in Cr bulk. Sizes 15 and 16 adopt a wheel-like structure as the structural motif with the extra Ge atoms capped on the top, while larger sizes (n = 17-20) prefer fullerene-like Cr2 @Ge12 motifs. From the results of the average binding energies of Cr2 Gen - , one can conclude that it is easier to form larger size clusters. In these lowest-lying isomers except for size 16, the two Cr atoms contribute opposite magnetic moments for the total magnetic moments of 1 µB , showing an antiferromagnetic state.


Subject(s)
Algorithms , Electronics , Cluster Analysis , Isomerism
19.
Small ; : e2307966, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38054779

ABSTRACT

A family of hexagonal in-plane chemical ordering (Mo2/3 R1/3 )2 AlB2 (R = Tb, Dy, Ho, Er, Tm, and Lu) i-MAB phases are synthesized with R-3m hexagonal structure. The i-MAB phases with R = Tb to Tm are considered to have a nonlinear ferromagnetic-like coupling magnetic ground state with gradually weakened magnetocrystalline anisotropy due to variant R-R distances and 4f electrons. Their 2D derivatives (2D-MBene) with rare-earth (R) atom vacancies are obtained by chemical etching. The delamination solvent, surface functional terminations, and chemical bond of 2D-MBene can be modified by one-step nitridation in environment-friendly nitrogen instead of ammonia. A phase conversion is caused by nitridation at 973 K from 2D-MBene to Mo2 N, leading to the optimized specific capacitance of 229 F g-1 . Besides exploring more rare-earth-containing laminated boride systems, this work also demonstrates the promising application of their 2D derivatives with R vacancies in supercapacitors.

20.
Chemistry ; 29(66): e202301771, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-37665775

ABSTRACT

Qubits are the basic unit of quantum information and computation. To realize quantum computing and information processing, the decoherence times of qubits must be long enough. Among the studies of molecule-based electron spin qubits, most of the work focused on the ions with the spin S=1/2, where only single-bit gates can be constructed. However, quantum operations require the qubits to interact with each other, so people gradually carry out relevant research in ions or systems with S>1/2 and multilevel states. In this work, a two-dimensional (2D) oxygen-coordinated GdIII NaI -based oxamato supramolecular coordination framework, Na[Gd(4-HOpa)4 (H2 O)] ⋅ 2H2 O (1, 4-HOpa=N-4-hydroxyphenyloxamate), was selected as a possible carrier of qubit. The field-induced slow magnetic relaxation shows this system has phonon bottleneck (PB) effect at low temperatures with a very weak magnetic anisotropy. The pulse electron paramagnetic resonance studies show the spin-lattice and spin-spin relaxation times are T1 =1.66 ms at 4 K and Tm =4.25 µs at 8 K for its diamagnetically diluted sample (1Gd0.12 %). It suggested that the relatively long decoherence time is mainly ascribed to its near isotropic and the PB effect from resonance phonon trapped for pure sample, while the dilution further improves its qubit performance.

SELECTION OF CITATIONS
SEARCH DETAIL