Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 553
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 119(32): e2203604119, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35917352

ABSTRACT

Anthropogenic organophosphorus compounds (AOPCs), such as phosphotriesters, are used extensively as plasticizers, flame retardants, nerve agents, and pesticides. To date, only a handful of soil bacteria bearing a phosphotriesterase (PTE), the key enzyme in the AOPC degradation pathway, have been identified. Therefore, the extent to which bacteria are capable of utilizing AOPCs as a phosphorus source, and how widespread this adaptation may be, remains unclear. Marine environments with phosphorus limitation and increasing levels of pollution by AOPCs may drive the emergence of PTE activity. Here, we report the utilization of diverse AOPCs by four model marine bacteria and 17 bacterial isolates from the Mediterranean Sea and the Red Sea. To unravel the details of AOPC utilization, two PTEs from marine bacteria were isolated and characterized, with one of the enzymes belonging to a protein family that, to our knowledge, has never before been associated with PTE activity. When expressed in Escherichia coli with a phosphodiesterase, a PTE isolated from a marine bacterium enabled growth on a pesticide analog as the sole phosphorus source. Utilization of AOPCs may provide bacteria a source of phosphorus in depleted environments and offers a prospect for the bioremediation of a pervasive class of anthropogenic pollutants.


Subject(s)
Aquatic Organisms , Bacteria , Environmental Pollutants , Organophosphorus Compounds , Phosphoric Triester Hydrolases , Aquatic Organisms/enzymology , Bacteria/enzymology , Biodegradation, Environmental , Environmental Pollutants/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Indian Ocean , Mediterranean Sea , Organophosphorus Compounds/metabolism , Phosphoric Triester Hydrolases/genetics , Phosphoric Triester Hydrolases/metabolism , Phosphorus/metabolism , Seawater/microbiology
2.
J Biol Chem ; 299(9): 105116, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37524130

ABSTRACT

Xylans are polysaccharides composed of xylose and include ß1,4-xylan, ß1,3-xylan, and ß1,3/1,4-mixed-linkage xylan (MLX). MLX is widely present in marine red algae and constitutes a significant organic carbon in the ocean. Xylanases are hydrolase enzymes that play an important role in xylan degradation. While a variety of ß1,4-xylanases and ß1,3-xylanases involved in the degradation of ß1,4-xylan and ß1,3-xylan have been reported, no specific enzyme has yet been identified that degrades MLX. Herein, we report the characterization of a new MLX-specific xylanase from the marine bacterium Polaribacter sp. Q13 which utilizes MLX for growth. The bacterium secretes xylanases to degrade MLX, among which is Xyn26A, an MLX-specific xylanase that shows low sequence similarities (<27%) to ß1,3-xylanases in the glycoside hydrolase family 26 (GH26). We show that Xyn26A attacks MLX precisely at ß1,4-linkages, following a ß1,3-linkage toward the reducing end. We confirm that Xyn26A and its homologs have the same specificity and mode of action on MLX, and thus represent a new xylanase group which we term as MLXases. We further solved the structure of a representative MLXase, AlXyn26A. Structural and biochemical analyses revealed that the specificity of MLXases depends critically on a precisely positioned ß1,3-linkage at the -2/-1 subsite. Compared to the GH26 ß1,3-xylanases, we found MLXases have evolved a tunnel-shaped cavity that is fine-tuned to specifically recognize and hydrolyze MLX. Overall, this study offers a foremost insight into MLXases, shedding light on the biochemical mechanism of bacterial degradation of MLX.

3.
BMC Genomics ; 25(1): 146, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38321410

ABSTRACT

BACKGROUND: Environmental monitoring of bacterial pathogens is critical for disease control in coastal marine ecosystems to maintain animal welfare and ecosystem function and to prevent significant economic losses. This requires accurate taxonomic identification of environmental bacterial pathogens, which often cannot be achieved by commonly used genetic markers (e.g., 16S rRNA gene), and an understanding of their pathogenic potential based on the information encoded in their genomes. The decreasing costs of whole genome sequencing (WGS), combined with newly developed bioinformatics tools, now make it possible to unravel the full potential of environmental pathogens, beyond traditional microbiological approaches. However, obtaining a high-quality bacterial genome, requires initial cultivation in an axenic culture, which is a bottleneck in environmental microbiology due to cross-contamination in the laboratory or isolation of non-axenic strains. RESULTS: We applied WGS to determine the pathogenic potential of two Vibrio isolates from coastal seawater. During the analysis, we identified cross-contamination of one of the isolates and decided to use this dataset to evaluate the possibility of bioinformatic contaminant removal and recovery of bacterial genomes from a contaminated culture. Despite the contamination, using an appropriate bioinformatics workflow, we were able to obtain high quality and highly identical genomes (Average Nucleotide Identity value 99.98%) of one of the Vibrio isolates from both the axenic and the contaminated culture. Using the assembled genome, we were able to determine that this isolate belongs to a sub-lineage of Vibrio campbellii associated with several diseases in marine organisms. We also found that the genome of the isolate contains a novel Vibrio plasmid associated with bacterial defense mechanisms and horizontal gene transfer, which may offer a competitive advantage to this putative pathogen. CONCLUSIONS: Our study shows that, using state-of-the-art bioinformatics tools and a sufficient sequencing effort, it is possible to obtain high quality genomes of the bacteria of interest and perform in-depth genomic analyses even in the case of a contaminated culture. With the new isolate and its complete genome, we are providing new insights into the genomic characteristics and functional potential of this sub-lineage of V. campbellii. The approach described here also highlights the possibility of recovering complete bacterial genomes in the case of non-axenic cultures or obligatory co-cultures.


Subject(s)
Ecosystem , Vibrio , Animals , Sequence Analysis, DNA , RNA, Ribosomal, 16S/genetics , Vibrio/genetics , Genome, Bacterial , Phylogeny
4.
Appl Environ Microbiol ; : e0089024, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940564

ABSTRACT

Biological valorization of lignin, the second most abundant biopolymer on Earth, is an indispensable sector to build a circular economy and net-zero future. However, lignin is recalcitrant to bioupcycling, demanding innovative solutions. We report here the biological valorization of lignin-derived aromatic carbon to value-added chemicals without requesting extra organic carbon and freshwater via reprogramming the marine Roseobacter clade bacterium Roseovarius nubinhibens. We discovered the unusual advantages of this strain for the oxidation of lignin monomers and implemented a CRISPR interference (CRISPRi) system with the lacI-Ptrc inducible module, nuclease-deactivated Cas9, and programmable gRNAs. This is the first CRISPR-based regulatory system in R. nubinhibens, enabling precise and efficient repression of genes of interest. By deploying the customized CRISPRi, we reprogrammed the carbon flux from a lignin monomer, 4-hydroxybenzoate, to achieve the maximum production of protocatechuate, a pharmaceutical compound with antibacterial, antioxidant, and anticancer properties, with minimal carbon to maintain cell growth and drive biocatalysis. As a result, we achieved a 4.89-fold increase in protocatechuate yield with a dual-targeting CRISPRi system, and the system was demonstrated with real seawater. Our work underscores the power of CRISPRi in exploiting novel microbial chassis and will accelerate the development of marine synthetic biology. Meanwhile, the introduction of a new-to-the-field lineage of marine bacteria unveils the potential of blue biotechnology leveraging resources from the ocean.IMPORTANCEOne often overlooked sector in carbon-conservative biotechnology is the water resource that sustains these enabling technologies. Similar to the "food-versus-fuel" debate, the competition of freshwater between human demands and bioproduction is another controversial issue, especially under global water scarcity. Here, we bring a new-to-the-field lineage of marine bacteria with unusual advantages to the stage of engineering biology for simultaneous carbon and water conservation. We report the valorization of lignin monomers to pharmaceutical compounds without requesting extra organic substrate (e.g., glucose) or freshwater by reprogramming the marine bacterium Roseovarius nubinhibens with a multiplex CRISPR interference system. Beyond the blue lignin valorization, we present a proof-of-principle of leveraging marine bacteria and engineering biology for a sustainable future.

5.
Appl Environ Microbiol ; 90(1): e0170423, 2024 01 24.
Article in English | MEDLINE | ID: mdl-38169280

ABSTRACT

Catabolism of algal polysaccharides by marine bacteria is a significant process of marine carbon cycling. ß1,3/1,4-Mixed-linkage xylan (MLX) is a class of xylan in the ocean, widely present in the cell walls of red algae. However, the catabolic mechanism of MLX by marine bacteria remains elusive. Recently, we found that a marine Bacteroidetes strain, Polaribacter sp. Q13, is a specialist in degrading MLX, which secretes a novel MLX-specific xylanase. Here, the catabolic specialization of strain Q13 to MLX was studied by multiomics and biochemical analyses. Strain Q13 catabolizes MLX with a canonical starch utilization system (Sus), which is encoded by a single xylan utilization locus, XUL-Q13. In this system, the cell surface glycan-binding protein SGBP-B captures MLX specifically, contributing to the catabolic specificity. The xylanolytic enzyme system of strain Q13 is unique, and the enzymatic cascade dedicates the stepwise hydrolysis of the ß1,3- and ß1,4-linkages in MLX in the extracellular, periplasmic, and cytoplasmic spaces. Bioinformatics analysis and growth observation suggest that other marine Bacteroidetes strains harboring homologous MLX utilization loci also preferentially utilize MLX. These results reveal the catabolic specialization of MLX degradation by marine Bacteroidetes, leading to a better understanding of the degradation and recycling of MLX driven by marine bacteria.IMPORTANCERed algae contribute substantially to the primary production in marine ecosystems. The catabolism of red algal polysaccharides by marine bacteria is important for marine carbon cycling. Mixed-linkage ß1,3/1,4-xylan (MLX, distinct from hetero-ß1,4-xylans from terrestrial plants) is an abundant red algal polysaccharide, whose mechanism of catabolism by marine bacteria, however, remains largely unknown. This study reveals the catabolism of MLX by marine Bacteroidetes, promoting our understanding of the degradation and utilization of algal polysaccharides by marine bacteria. This study also sets a foundation for the biomass conversion of MLX.


Subject(s)
Flavobacteriaceae , Rhodophyta , Xylans/metabolism , Ecosystem , Flavobacteriaceae/metabolism , Polysaccharides/metabolism , Bacteroidetes/metabolism , Plants/metabolism , Rhodophyta/metabolism , Carbon/metabolism
6.
Appl Environ Microbiol ; 90(4): e0003224, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38551354

ABSTRACT

Aerobic anoxygenic phototrophic (AAP) bacteria harvest light energy using bacteriochlorophyll-containing reaction centers to supplement their mostly heterotrophic metabolism. While their abundance and growth have been intensively studied in coastal environments, much less is known about their activity in oligotrophic open ocean regions. Therefore, we combined in situ sampling in the North Pacific Subtropical Gyre, north of O'ahu island, Hawaii, with two manipulation experiments. Infra-red epifluorescence microscopy documented that AAP bacteria represented approximately 2% of total bacteria in the euphotic zone with the maximum abundance in the upper 50 m. They conducted active photosynthetic electron transport with maximum rates up to 50 electrons per reaction center per second. The in situ decline of bacteriochlorophyll concentration over the daylight period, an estimate of loss rates due to predation, indicated that the AAP bacteria in the upper 50 m of the water column turned over at rates of 0.75-0.90 d-1. This corresponded well with the specific growth rate determined in dilution experiments where AAP bacteria grew at a rate 1.05 ± 0.09 d-1. An amendment of inorganic nitrogen to obtain N:P = 32 resulted in a more than 10 times increase in AAP abundance over 6 days. The presented data document that AAP bacteria are an active part of the bacterioplankton community in the oligotrophic North Pacific Subtropical Gyre and that their growth was mostly controlled by nitrogen availability and grazing pressure.IMPORTANCEMarine bacteria represent a complex assembly of species with different physiology, metabolism, and substrate preferences. We focus on a specific functional group of marine bacteria called aerobic anoxygenic phototrophs. These photoheterotrophic organisms require organic carbon substrates for growth, but they can also supplement their metabolic needs with light energy captured by bacteriochlorophyll. These bacteria have been intensively studied in coastal regions, but rather less is known about their distribution, growth, and mortality in the oligotrophic open ocean. Therefore, we conducted a suite of measurements in the North Pacific Subtropical Gyre to determine the distribution of these organisms in the water column and their growth and mortality rates. A nutrient amendment experiment showed that aerobic anoxygenic phototrophs were limited by inorganic nitrogen. Despite this, they grew more rapidly than average heterotrophic bacteria, but their growth was balanced by intense grazing pressure.


Subject(s)
Bacteriochlorophylls , Phototrophic Processes , Bacteriochlorophylls/metabolism , Bacteria, Aerobic , Water/metabolism , Nitrogen/metabolism , Seawater/microbiology
7.
Appl Environ Microbiol ; : e0025524, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874338

ABSTRACT

Marine bacteria contribute substantially to cycle macroalgae polysaccharides in marine environments. Carrageenans are the primary cell wall polysaccharides of red macroalgae. The carrageenan catabolism mechanism and pathways are still largely unclear. Pseudoalteromonas is a representative bacterial genus that can utilize carrageenan. We previously isolated the strain Pseudoalteromonas haloplanktis LL1 that could grow on ι-carrageenan but produce no ι-carrageenase. Here, through a combination of bioinformatic, biochemical, and genetic analyses, we determined that P. haloplanktis LL1 processed a desulfurization-depolymerization sequential pathway for ι-carrageenan utilization, which was initiated by key sulfatases PhSulf1 and PhSulf2. PhSulf2 acted as an endo/exo-G4S (4-O-sulfation-ß-D-galactopyranose) sulfatase, while PhSulf1 was identified as a novel endo-DA2S sulfatase that could function extracellularly. Because of the unique activity of PhSulf1 toward ι-carrageenan rather than oligosaccharides, P. haloplanktis LL1 was considered to have a distinct ι-carrageenan catabolic pathway compared to other known ι-carrageenan-degrading bacteria, which mainly employ multifunctional G4S sulfatases and exo-DA2S (2-O-sulfation-3,6-anhydro-α-D-galactopyranose) sulfatase for sulfate removal. Furthermore, we detected widespread occurrence of PhSulf1-encoding gene homologs in the global ocean, indicating the prevalence of such endo-acting DA2S sulfatases as well as the related ι-carrageenan catabolism pathway. This research provides valuable insights into the enzymatic processes involved in carrageenan catabolism within marine ecological systems.IMPORTANCECarrageenan is a type of linear sulfated polysaccharide that plays a significant role in forming cell walls of marine algae and is found extensively distributed throughout the world's oceans. To the best of our current knowledge, the ι-carrageenan catabolism in marine bacteria either follows the depolymerization-desulfurization sequential process initiated by ι-carrageenase or starts from the desulfurization step catalyzed by exo-acting sulfatases. In this study, we found that the marine bacterium Pseudoalteromonas haloplanktis LL1 processes a distinct pathway for ι-carrageenan catabolism employing a specific endo-acting DA2S-sulfatase PhSulf1 and a multifunctional G4S sulfatase PhSulf2. The unique PhSulf1 homologs appear to be widely present on a global scale, indicating the indispensable contribution of the marine bacteria containing the distinct ι-carrageenan catabolism pathway. Therefore, this study would significantly enrich our understanding of the molecular mechanisms underlying carrageenan utilization, providing valuable insights into the intricate roles of marine bacteria in polysaccharide cycling in marine environments.

8.
Glycoconj J ; 41(2): 119-131, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38642279

ABSTRACT

Gram-negative bacteria living in marine waters have evolved peculiar adaptation strategies to deal with the numerous stress conditions that characterize aquatic environments. Among the multiple mechanisms for efficient adaptation, these bacteria typically exhibit chemical modifications in the structure of the lipopolysaccharide (LPS), which is a fundamental component of their outer membrane. In particular, the glycolipid anchor to the membrane of marine bacteria LPSs, i.e. the lipid A, frequently shows unusual chemical structures, which are reflected in equally singular immunological properties with potential applications as immune adjuvants or anti-sepsis drugs. In this work, we determined the chemical structure of the lipid A from Cellulophaga pacifica KMM 3664T isolated from the Sea of Japan. This bacterium showed to produce a heterogeneous mixture of lipid A molecules that mainly display five acyl chains and carry a single phosphate and a D-mannose disaccharide on the glucosamine backbone. Furthermore, we proved that C. pacifica KMM 3664T LPS acts as a weaker activator of Toll-like receptor 4 (TLR4) compared to the prototypical enterobacterial Salmonella typhimurium LPS. Our results are relevant to the future development of novel vaccine adjuvants and immunomodulators inspired by marine LPS chemistry.


Subject(s)
Lipid A , Lipid A/chemistry , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/chemistry , Bacterial Outer Membrane/metabolism , Bacterial Outer Membrane/chemistry , Animals , Lipopolysaccharides/chemistry , Mice
9.
Article in English | MEDLINE | ID: mdl-38240740

ABSTRACT

This study describes two Gram-negative, flexirubin-producing, biofilm-forming, motile-by-gliding and rod-shaped bacteria, isolated from the marine sponges Ircinia variabilis and Sarcotragus spinosulus collected off the coast of Algarve, Portugal. Both strains, designated Aq135T and Aq349T, were classified into the genus Aquimarina by means of 16S rRNA gene sequencing. We then performed phylogenetic, phylogenomic and biochemical analyses to determine whether these strains represent novel Aquimarina species. Whereas the closest 16S rRNA gene relatives to strain Aq135T were Aquimarina macrocephali JAMB N27T (97.8 %) and Aquimarina sediminis w01T (97.1 %), strain Aq349T was more closely related to Aquimarina megaterium XH134T (99.2 %) and Aquimarina atlantica 22II-S11-z7T (98.1 %). Both strains showed genome-wide average nucleotide identity scores below the species level cut-off (95 %) with all Aquimarina type strains with publicly available genomes, including their closest relatives. Digital DNA-DNA hybridization further suggested a novel species status for both strains since values lower than 70 % hybridization level with other Aquimarina type strains were obtained. Strains Aq135T and Aq349T grew from 4 to 30°C and with between 1-5 % (w/v) NaCl in marine broth. The most abundant fatty acids were iso-C17 : 03-OH and iso-C15 : 0 and the only respiratory quinone was MK-6. Strain Aq135T was catalase-positive and ß-galactosidase-negative, while Aq349T was catalase-negative and ß-galactosidase-positive. These strains hold unique sets of secondary metabolite biosynthetic gene clusters and are known to produce the peptide antibiotics aquimarins (Aq135T) and the trans-AT polyketide cuniculene (Aq349T), respectively. Based on the polyphasic approach employed in this study, we propose the novel species names Aquimarina aquimarini sp. nov. (type strain Aq135T=DSM 115833T=UCCCB 169T=ATCC TSD-360T) and Aquimarina spinulae sp. nov. (type strain Aq349T=DSM 115834T=UCCCB 170T=ATCC TSD-361T).


Subject(s)
Flavobacteriaceae , Porifera , Animals , Seawater/microbiology , Catalase/genetics , Fatty Acids/chemistry , Phylogeny , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Base Composition , Bacterial Typing Techniques , Sequence Analysis, DNA , beta-Galactosidase/genetics , Vitamin K 2
10.
Microb Ecol ; 87(1): 30, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38191744

ABSTRACT

The house fly is known to be a vector of antibiotic-resistant bacteria (ARB) in animal farms. It is also possible that the house fly contributes to the spread of ARB and antibiotic resistance genes (ARGs) among various environments. We hypothesized that ARB and ARGs present in marine fish and fishery food may gain access to humans via the house fly. We show herein that pAQU1, a marine bacterial ARG-bearing plasmid, persists in the house fly intestine for 5 days after fly ingestion of marine bacteria. In the case of Escherichia coli bearing the same plasmid, the persistence period exceeded 7 days. This interval is sufficient for transmission to human environments, meaning that the house fly is capable of serving as a vector of marine-derived ARGs. Time course monitoring of the house fly intestinal microflora showed that the initial microflora was occupied abundantly with Enterobacteriaceae. Experimentally ingested bacteria dominated the intestinal environment immediately following ingestion; however, after 72 h, the intestinal microflora recovered to resemble that observed at baseline, when diverse genera of Enterobacteriaceae were seen. Given that pAQU1 in marine bacteria and E. coli were detected in fly excrement (defined here as any combination of feces and regurgitated material) at 7 days post-bacterial ingestion, we hypothesize that the house fly may serve as a vector for transmission of ARGs from marine items and fish to humans via contamination with fly excrement.


Subject(s)
Anti-Infective Agents , Houseflies , Animals , Humans , Anti-Bacterial Agents/pharmacology , Angiotensin Receptor Antagonists , Escherichia coli/genetics , Angiotensin-Converting Enzyme Inhibitors , Drug Resistance, Bacterial/genetics , Bacteria/genetics , Enterobacteriaceae/genetics
11.
J Appl Microbiol ; 135(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38509027

ABSTRACT

AIMS: In this work, we aimed to isolate marine bacteria that produce metabolites with antifungal properties. METHODS AND RESULTS: Paenibacillus polymyxa 188 was isolated from a marine sediment sample, and it showed excellent antifungal activity against many fungi pathogenic to plants (Fusarium tricinctum, Pestalotiopsis clavispora, Fusarium oxysporum, F. oxysporum f. sp. Cubense (Foc), Curvularia plantarum, and Talaromyces pinophilus) and to humans (Aspergillus terreus, Penicillium oxalicum, and Microsphaeropsis arundinis). The antifungal compounds produced by P. polymyxa 188 were extracted and analyzed using matrix-assisted laser desorption ionization time-of-flight mass spectrometry. The complete genome sequence and biosynthetic gene clusters of P. polymyxa 188 were characterized and compared with those of other strains. A total of 238 carbohydrate-active enzymes (CAZymes) were identified in P. polymyxa 188. Two antibiotic gene clusters, fusaricidin and tridecaptin, exist in P. polymyxa 188, which is different from other strains that typically have multiple antibiotic gene clusters. CONCLUSIONS: Paenibacilluspolymyxa 188 was identified with numerous biosynthetic gene clusters, and its antifungal ability against pathogenic fungi was verified.


Subject(s)
Paenibacillus polymyxa , Paenibacillus , Humans , Paenibacillus polymyxa/metabolism , Antifungal Agents/chemistry , Anti-Bacterial Agents/metabolism , Paenibacillus/genetics
12.
Appl Microbiol Biotechnol ; 108(1): 112, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38217254

ABSTRACT

Marine bacteria living in association with marine sponges have proven to be a reliable source of biologically active secondary metabolites. However, no studies have yet reported natural products from Microbacterium testaceum spp. We herein report the isolation of a M. testaceum strain from the sponge Tedania brasiliensis. Molecular networking analysis of bioactive pre-fractionated extracts from culture media of M. testaceum enabled the discovery of testacosides A-D. Analysis of spectroscopic data and chemical derivatizations allowed the identification of testacosides A-D as glycoglycerolipids bearing a 1-[α-glucopyranosyl-(1 → 3)-(α-mannopyranosyl)]-glycerol moiety connected to 12-methyltetradecanoic acid for testacoside A (1), 14-methylpentadecanoic acid for testacoside B (2), and 14-methylhexadecanoic acid for testacosides C (3) and D (4). The absolute configuration of the monosaccharide residues was determined by 1H-NMR analysis of the respective diastereomeric thiazolidine derivatives. This is the first report of natural products isolated from cultures of M. testaceum. KEY POINTS: • The first report of metabolites produced by Microbacterium testaceum. • 1-[α-Glucopyranosyl-(1 → 3)-(α-mannopyranosyl)]-glycerol lipids isolated and identified. • Microbacterium testaceum strain isolated from the sponge Tedania brasiliensis.


Subject(s)
Actinomycetales , Biological Products , Glycolipids , Porifera , Animals , Glycerol/metabolism , Porifera/chemistry , Actinomycetales/metabolism , Magnetic Resonance Spectroscopy , Biological Products/metabolism , Microbacterium
13.
Biofouling ; 40(2): 177-192, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38465991

ABSTRACT

Silicone materials are widely used in fouling release coatings, but developing eco-friendly protection via biosourced coatings, such as polyhydroxyalcanoates (PHA) presents a major challenge. Anti-bioadhesion properties of medium chain length PHA and short chain length PHA films are studied and compared with a reference Polydimethylsiloxane coating. The results highlight the best capability of the soft and low-roughness PHA-mcl films to resist bacteria or diatoms adsorption as compared to neat PDMS and PHBHV coatings. These parameters are insufficient to explain all the results and other properties related to PHA crystallinity are discussed. Moreover, the addition of a low amount of PEG copolymers within the coatings, to create amphiphilic coatings, boosts their anti-adhesive properties. This work reveals the importance of the physical or chemical ambiguity of surfaces in their anti-adhesive effectiveness and highlights the potential of PHA-mcl film to resist the primary adhesion of microorganisms.


Subject(s)
Diatoms , Polyhydroxyalkanoates , Biofilms , Silicones/chemistry , Adsorption
14.
Curr Microbiol ; 81(4): 104, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38393394

ABSTRACT

A Gram-stain-negative, non-flagellated, aerobic, ovoid or rod-shaped bacterium with motility, designated B8T, was isolated from the sediment of Clam Island beach, Liaoning province, China. The optimum growth of strain B8T occurred at 35 oC, pH 7.0, and in the presence of 4.0-5.0% (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain B8T formed a distinct lineage within the genus Sphingomicrobium and was closely related to Sphingomicrobium nitratireducens O-35T (98.3% sequence similarity), Sphingomicrobium aestuariivivum KCTC 42286T (96.9%), and Sphingomicrobium astaxanthinifaciens JCM 18551T (96.5%). The digital DNA-DNA hybridization and average nucleotide identity values between strain B8T and closely related strains were lower than 21.0% and 78.0%, much lower than the cutoff values of 70.0% and 95.0%, respectively, for bacterial species delineation. The dominant respiratory quinone of strain B8T was ubiquinone-10. The major fatty acids were Sum In Feature 8 (C18:1ω7c and/or C18:1ω6c), Sum In Feature 3 (C16 : 1ω7c and/or C16 : 1ω6c), C17:1ω6c, C18:1 2-OH, and C16:0. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, sphingoglycolipid, glycolipids, and four unknown polar lipids. The DNA G + C content of strain B8T was 63.9%. Based on the phenotypic, phylogenetic, and chemotaxonomic analyses, strain B8T is considered a new species of Sphingomicrobium, for which the name Sphingomicrobium clamense sp. nov. is proposed. The type strain is B8T (= CGMCC 1.19486T = KCTC 92052T).


Subject(s)
Phospholipids , Seawater , Phospholipids/chemistry , Seawater/microbiology , Phylogeny , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Fatty Acids/chemistry , Ubiquinone/chemistry , Bacterial Typing Techniques , Sequence Analysis, DNA
15.
Biomed Chromatogr ; : e5957, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38973567

ABSTRACT

Microbial metabolites are an important source of tyrosinase (TYR) inhibitors because of their rich chemical diversity. However, because of the complex metabolic environment of microbial products, it is difficult to rapidly locate and identify natural TYR inhibitors. Affinity-based ligand screening is an important method for capturing active ingredients in complex samples, but ligand immobilization is an important factor affecting the screening process. In this paper, TYR was used as ligand, and the SpyTag/SpyCatcher coupling system was used to rapidly construct affinity chromatography vectors for screening TYR inhibitors and separating active components from complex samples. We successfully expressed SpyTag-TYR fusion protein and SpyCatcher protein, and incubated SpyCatcher protein with epoxy-activated agarose. The SpyTag-TYR protein was spontaneously coupled with SpyCatcher to obtain an affinity chromatography filler for immobilization of TYR, and the performance of the packaging material was characterized. Finally, compound 1 with enzyme inhibitory activity was successfully obtained from the fermentation product of marine microorganism C. Through HPLC, MS, 1H NMR and 13C NMR analyses, its structure was deduced as azelaic acid, and its activity was analyzed. The results showed that this is a feasible method for screening TYR inhibitors in complex systems.

16.
Int J Mol Sci ; 25(5)2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38474227

ABSTRACT

Inflammation, which has important functions in human defense systems and in maintaining the dynamic homeostasis of the body, has become a major risk factor for the progression of many chronic diseases. Although the applied medical products alleviate the general status, they still exert adverse effects in the long term. For this reason, the solution should be sought in more harmless and affordable agents. Microorganisms offer a wide range of active substances with anti-inflammatory properties. They confer important advantages such as their renewable and inexhaustible nature. This review aims to provide the most recent updates on microorganisms of different types and genera, being carriers of anti-inflammatory activity.


Subject(s)
Bacteria , Skin Abnormalities , Humans , Inflammation , Anti-Inflammatory Agents , Vision Disorders , Fungi
17.
Prep Biochem Biotechnol ; : 1-19, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963714

ABSTRACT

This study aimed to enhance the extracellular polymeric substances (EPS) production of Virgibacillus dokdonensis VITP14 and explore its antioxidant potential. EPS and biomass production by VITP14 strain were studied under different culture parameters and media compositions using one factor at a time method. Among different nutrient sources, glucose and peptone were identified as suitable carbon and nitrogen sources. Furthermore, the maximum EPS production was observed at 5% of inoculum size, 5 g/L of NaCl, and 96 h of fermentation. Response surface methodology was employed to augment EPS production and investigate the optimal levels of nutrient sources with their interaction. The strain was observed to produce actual maximum EPS of about 26.4 g/L for finalized optimum medium containing glucose 20 g/L, peptone 10 g/L, and NaCl 50 g/L while the predicted maximum EPS was 26.5 g/L. There was a nine fold increase in EPS production after optimization study. Additionally, EPS has exhibited significant scavenging, reducing, and chelating potential (>85%) at their higher concentration. This study imparts valuable insights into optimizing moderately halophilic bacterial EPS production and evaluating its natural antioxidant properties. According to findings, V. dokdonensis VITP14 was a promising isolate that will provide significant benefits to biopolymer producing industries.

18.
Chembiochem ; 24(3): e202200530, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36416092

ABSTRACT

Volatiles released by the apicomplexan alga Chromera velia CCAP1602/1 and their associated bacteria have been investigated. A metagenome analysis allowed the identification of the most abundant heterotrophic bacteria of the phycosphere, but the isolation of additional strains showed that metagenomics underestimated the complexity of the algal microbiome, However, a culture-independent approach revealed the presence of a planctomycete that likely represents a novel bacterial family. We analysed algal and bacterial volatiles by open-system-stripping analysis (OSSA) on Tenax TA desorption tubes, followed by thermodesorption, cryofocusing and GC-MS-analysis. The analyses of the alga and the abundant bacterial strains Sphingopyxis litoris A01A-101, Algihabitans albus A01A-324, "Coraliitalea coralii" A01A-333 and Litoreibacter sp. A01A-347 revealed sulfur- and nitrogen-containing compounds, ketones, alcohols, aldehydes, aromatic compounds, amides and one lactone, as well as the typical algal products, apocarotenoids. The compounds were identified by gas chromatographic retention indices, comparison of mass spectra and syntheses of reference compounds. A major algal metabolite was 3,4,4-trimethylcyclopent-2-en-1-one, an apocarotenoid indicating the presence of carotenoids related to capsanthin, not reported from algae so far. A low overlap in volatiles bouquets between C. velia and the bacteria was found, and the xenic algal culture almost exclusively released algal components.


Subject(s)
Alveolata , Alveolata/metabolism , Gas Chromatography-Mass Spectrometry/methods , Mass Spectrometry , Alcohols/metabolism , Bacteria
19.
Chembiochem ; 24(10): e202300183, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37042436

ABSTRACT

Marine bacteria, which are often described as chemical gold, are considered an exceptional source of new therapeutics. Considerable research interest has been given to lipopolysaccharides (LPSs), the main components of the Gram-negative outer membrane. LPS and its lipid A portion from marine bacteria are known to exhibit a tricky chemistry that has been often associated with intriguing properties such as behaving as immune adjuvants or anti-sepsis molecules. In this scenario, we report the structural determination of the lipid A from three marine bacteria within the Cellulophaga genus, which showed to produce an extremely heterogenous blend of tetra- to hexa-acylated lipid A species, mostly carrying one phosphate and one D-mannose on the glucosamine disaccharide backbone. The ability of the three LPSs in activating TLR4 signaling revealed a weaker immunopotential by C. baltica NNO 15840T and C. tyrosinoxydans EM41T , while C. algicola ACAM 630T behaved as a more potent TLR4 activator.


Subject(s)
Flavobacteriaceae , Gammaproteobacteria , Lipid A/chemistry , Toll-Like Receptor 4 , Lipopolysaccharides/chemistry
20.
Mol Ecol ; 32(23): 6278-6293, 2023 Dec.
Article in English | MEDLINE | ID: mdl-34995388

ABSTRACT

Most multicellular eukaryotes host complex communities of microorganisms, but the factors that govern their assembly are poorly understood. The settlement of specific microorganisms may have a lasting impact on community composition, a phenomenon known as the priority effect. Priority effects of individual bacterial strains on a host's microbiome are, however, rarely studied and their impact on microbiome functionality remains unknown. We experimentally tested the effect of two bacterial strains (Pseudoalteromonas tunicata D2 and Pseudovibrio sp. D323) on the assembly and succession of the microbial communities associated with the green macroalga Ulva australis. Using 16S rRNA gene sequencing and qPCR, we found that both strains exert a priority effect, with strain D2 causing initially strong but temporary taxonomic changes and strain D323 causing weaker but consistent changes. Consistent changes were predominately facilitatory and included taxa that may benefit the algal host. Metagenome analyses revealed that the strains elicited both shared (e.g., depletion of type III secretion system genes) and unique (e.g., enrichment of antibiotic resistance genes) effects on the predicted microbiome functionality. These findings indicate strong idiosyncratic effects of colonizing bacteria on the structure and function of host-associated microbial communities. Understanding the idiosyncrasies in priority effects is key for the development of novel probiotics to improve host condition.


Subject(s)
Microbiota , Rhodobacteraceae , Ulva , RNA, Ribosomal, 16S/genetics , Microbiota/genetics , Metagenome , Ulva/genetics , Rhodobacteraceae/genetics
SELECTION OF CITATIONS
SEARCH DETAIL