Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41.418
Filter
Add more filters

Coleção CLAP
Publication year range
1.
Annu Rev Immunol ; 38: 759-784, 2020 04 26.
Article in English | MEDLINE | ID: mdl-32340572

ABSTRACT

The signaling lipid sphingosine 1-phosphate (S1P) plays critical roles in an immune response. Drugs targeting S1P signaling have been remarkably successful in treatment of multiple sclerosis, and they have shown promise in clinical trials for colitis and psoriasis. One mechanism of these drugs is to block lymphocyte exit from lymph nodes, where lymphocytes are initially activated, into circulation, from which lymphocytes can reach sites of inflammation. Indeed, S1P can be considered a circulation marker, signaling to immune cells to help them find blood and lymphatic vessels, and to endothelial cells to stabilize the vasculature. That said, S1P plays pleiotropic roles in the immune response, and it will be important to build an integrated view of how S1P shapes inflammation. S1P can function so effectively because its distribution is exquisitely tightly controlled. Here we review how S1P gradients regulate immune cell exit from tissues, with particular attention to key outstanding questions in the field.


Subject(s)
Cell Movement/immunology , Immune System/immunology , Immune System/metabolism , Lysophospholipids/metabolism , Signal Transduction , Sphingosine/analogs & derivatives , Animals , Biomarkers , Humans , Immune System/cytology , Lymphocyte Activation/immunology , Lymphocytes/immunology , Lymphocytes/metabolism , Sphingosine/metabolism
2.
Annu Rev Immunol ; 35: 31-52, 2017 04 26.
Article in English | MEDLINE | ID: mdl-27860528

ABSTRACT

The lymphatic vasculature is not considered a formal part of the immune system, but it is critical to immunity. One of its major roles is in the coordination of the trafficking of antigen and immune cells. However, other roles in immunity are emerging. Lymphatic endothelial cells, for example, directly present antigen or express factors that greatly influence the local environment. We cover these topics herein and discuss how other properties of the lymphatic vasculature, such as mechanisms of lymphatic contraction (which immunologists traditionally do not take into account), are nonetheless integral in the immune system. Much is yet unknown, and this nascent subject is ripe for exploration. We argue that to consider the impact of lymphatic biology in any given immunological interaction is a key step toward integrating immunology with organ physiology and ultimately many complex pathologies.


Subject(s)
Endothelial Cells/immunology , Immune System , Immunity , Lymphatic System/immunology , Lymphatic Vessels/physiology , Animals , Antigen Presentation , Humans , Lipid Metabolism
3.
Annu Rev Immunol ; 34: 203-42, 2016 05 20.
Article in English | MEDLINE | ID: mdl-26907216

ABSTRACT

The continuous migration of immune cells between lymphoid and nonlymphoid organs is a key feature of the immune system, facilitating the distribution of effector cells within nearly all compartments of the body. Furthermore, reaching their correct position within primary, secondary, or tertiary lymphoid organs is a prerequisite to ensure immune cells' unimpaired differentiation, maturation, and selection, as well as their activation or functional silencing. The superfamilies of chemokines and chemokine receptors are of major importance in guiding immune cells to and within lymphoid and nonlymphoid tissues. In this review we focus on the role of the chemokine system in the migration dynamics of immune cells within lymphoid organs at the steady state and on how these dynamics are affected by infectious and inflammatory processes.


Subject(s)
Chemokines/immunology , Immune System , Infections/immunology , Inflammation/immunology , Lymphocytes/immunology , Lymphoid Tissue/immunology , Receptors, Chemokine/immunology , Animals , Cell Communication , Cell Movement , Humans , Lymphocyte Activation
4.
Cell ; 186(1): 32-46.e19, 2023 01 05.
Article in English | MEDLINE | ID: mdl-36608656

ABSTRACT

We investigate a 2,000-year genetic transect through Scandinavia spanning the Iron Age to the present, based on 48 new and 249 published ancient genomes and genotypes from 16,638 modern individuals. We find regional variation in the timing and magnitude of gene flow from three sources: the eastern Baltic, the British-Irish Isles, and southern Europe. British-Irish ancestry was widespread in Scandinavia from the Viking period, whereas eastern Baltic ancestry is more localized to Gotland and central Sweden. In some regions, a drop in current levels of external ancestry suggests that ancient immigrants contributed proportionately less to the modern Scandinavian gene pool than indicated by the ancestry of genomes from the Viking and Medieval periods. Finally, we show that a north-south genetic cline that characterizes modern Scandinavians is mainly due to the differential levels of Uralic ancestry and that this cline existed in the Viking Age and possibly earlier.


Subject(s)
Genome, Human , Humans , Europe , Genetic Variation , Scandinavian and Nordic Countries , United Kingdom , White People/genetics , White People/history , Human Migration
5.
Cell ; 186(25): 5472-5485.e9, 2023 12 07.
Article in English | MEDLINE | ID: mdl-38065079

ABSTRACT

The rise and fall of the Roman Empire was a socio-political process with enormous ramifications for human history. The Middle Danube was a crucial frontier and a crossroads for population and cultural movement. Here, we present genome-wide data from 136 Balkan individuals dated to the 1st millennium CE. Despite extensive militarization and cultural influence, we find little ancestry contribution from peoples of Italic descent. However, we trace a large-scale influx of people of Anatolian ancestry during the Imperial period. Between ∼250 and 550 CE, we detect migrants with ancestry from Central/Northern Europe and the Steppe, confirming that "barbarian" migrations were propelled by ethnically diverse confederations. Following the end of Roman control, we detect the large-scale arrival of individuals who were genetically similar to modern Eastern European Slavic-speaking populations, who contributed 30%-60% of the ancestry of Balkan people, representing one of the largest permanent demographic changes anywhere in Europe during the Migration Period.


Subject(s)
Human Migration , White People , Humans , Balkan Peninsula , Europe , White People/genetics
6.
Cell ; 186(14): 3049-3061.e15, 2023 07 06.
Article in English | MEDLINE | ID: mdl-37311454

ABSTRACT

Membrane tension is thought to be a long-range integrator of cell physiology. Membrane tension has been proposed to enable cell polarity during migration through front-back coordination and long-range protrusion competition. These roles necessitate effective tension transmission across the cell. However, conflicting observations have left the field divided as to whether cell membranes support or resist tension propagation. This discrepancy likely originates from the use of exogenous forces that may not accurately mimic endogenous forces. We overcome this complication by leveraging optogenetics to directly control localized actin-based protrusions or actomyosin contractions while simultaneously monitoring the propagation of membrane tension using dual-trap optical tweezers. Surprisingly, actin-driven protrusions and actomyosin contractions both elicit rapid global membrane tension propagation, whereas forces applied to cell membranes alone do not. We present a simple unifying mechanical model in which mechanical forces that engage the actin cortex drive rapid, robust membrane tension propagation through long-range membrane flows.


Subject(s)
Actins , Actomyosin , Actins/metabolism , Actomyosin/metabolism , Actin Cytoskeleton/metabolism , Cell Membrane/metabolism , Cell Movement/physiology
7.
Cell ; 185(8): 1402-1413.e21, 2022 04 14.
Article in English | MEDLINE | ID: mdl-35366416

ABSTRACT

The Avars settled the Carpathian Basin in 567/68 CE, establishing an empire lasting over 200 years. Who they were and where they came from is highly debated. Contemporaries have disagreed about whether they were, as they claimed, the direct successors of the Mongolian Steppe Rouran empire that was destroyed by the Turks in ∼550 CE. Here, we analyze new genome-wide data from 66 pre-Avar and Avar-period Carpathian Basin individuals, including the 8 richest Avar-period burials and further elite sites from Avar's empire core region. Our results provide support for a rapid long-distance trans-Eurasian migration of Avar-period elites. These individuals carried Northeast Asian ancestry matching the profile of preceding Mongolian Steppe populations, particularly a genome available from the Rouran period. Some of the later elite individuals carried an additional non-local ancestry component broadly matching the steppe, which could point to a later migration or reflect greater genetic diversity within the initial migrant population.


Subject(s)
Asian People , DNA, Ancient , Genetics, Population , Asian People/genetics , Genome , History, Ancient , Human Migration/history , Humans , Sulfur
8.
Cell ; 185(5): 815-830.e19, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35148838

ABSTRACT

Rapid neutrophil recruitment to sites of inflammation is crucial for innate immune responses. Here, we reveal that the G-protein-coupled receptor GPR35 is upregulated in activated neutrophils, and it promotes their migration. GPR35-deficient neutrophils are less recruited from blood vessels into inflamed tissue, and the mice are less efficient in clearing peritoneal bacteria. Using a bioassay, we find that serum and activated platelet supernatant stimulate GPR35, and we identify the platelet-derived serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA) as a GPR35 ligand. GPR35 function in neutrophil recruitment is strongly dependent on platelets, with the receptor promoting transmigration across platelet-coated endothelium. Mast cells also attract GPR35+ cells via 5-HIAA. Mice deficient in 5-HIAA show a loss of GPR35-mediated neutrophil recruitment to inflamed tissue. These findings identify 5-HIAA as a GPR35 ligand and neutrophil chemoattractant and establish a role for platelet- and mast cell-produced 5-HIAA in cell recruitment to the sites of inflammation and bacterial clearance.


Subject(s)
Hydroxyindoleacetic Acid/metabolism , Neutrophils , Receptors, G-Protein-Coupled/metabolism , Animals , Inflammation/metabolism , Ligands , Mice , Neutrophil Infiltration , Neutrophils/metabolism , Serotonin/metabolism
9.
Cell ; 185(21): 3931-3949.e26, 2022 10 13.
Article in English | MEDLINE | ID: mdl-36240740

ABSTRACT

Neural migration is a critical step during brain development that requires the interactions of cell-surface guidance receptors. Cancer cells often hijack these mechanisms to disseminate. Here, we reveal crystal structures of Uncoordinated-5 receptor D (Unc5D) in complex with morphogen receptor glypican-3 (GPC3), forming an octameric glycoprotein complex. In the complex, four Unc5D molecules pack into an antiparallel bundle, flanked by four GPC3 molecules. Central glycan-glycan interactions are formed by N-linked glycans emanating from GPC3 (N241 in human) and C-mannosylated tryptophans of the Unc5D thrombospondin-like domains. MD simulations, mass spectrometry and structure-based mutants validate the crystallographic data. Anti-GPC3 nanobodies enhance or weaken Unc5-GPC3 binding and, together with mutant proteins, show that Unc5/GPC3 guide migrating pyramidal neurons in the mouse cortex, and cancer cells in an embryonic xenograft neuroblastoma model. The results demonstrate a conserved structural mechanism of cell guidance, where finely balanced Unc5-GPC3 interactions regulate cell migration.


Subject(s)
Cell Movement , Glypicans/chemistry , Netrin Receptors/chemistry , Animals , Glypicans/metabolism , Humans , Mice , Mutant Proteins , Netrin Receptors/metabolism , Receptors, Cell Surface/metabolism , Single-Domain Antibodies , Thrombospondins
10.
Annu Rev Cell Dev Biol ; 39: 175-196, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37418775

ABSTRACT

The neural retina, at the back of the eye, is a fascinating system to use to discover how cells form tissues in the context of the developing nervous system. The retina is the tissue responsible for perception and transmission of visual information from the environment. It consists of five types of neurons and one type of glia cells that are arranged in a highly organized, layered structure to assure visual information flow. To reach this highly ordered arrangement, intricate morphogenic movements are occurring at the cell and tissue levels. I here discuss recent advances made to understand retinal development, from optic cup formation to neuronal layering. It becomes clear that these complex morphogenetic processes must be studied by taking the cellular as well as the tissue-wide aspects into account. The loop has to be closed between exploring how cell behavior influences tissue development and how the surrounding tissue itself influences single cells. Furthermore, it was recently revealed that the retina is a great system to study neuronal migration phenomena, and more is yet to be discovered in this aspect. Constantly developing imaging and image analysis toolboxes as well as the use of machine learning and synthetic biology make the retina the perfect system to explore more of its exciting neurodevelopmental biology.

11.
Cell ; 184(18): 4612-4625.e14, 2021 09 02.
Article in English | MEDLINE | ID: mdl-34352227

ABSTRACT

The Middle East region is important to understand human evolution and migrations but is underrepresented in genomic studies. Here, we generated 137 high-coverage physically phased genome sequences from eight Middle Eastern populations using linked-read sequencing. We found no genetic traces of early expansions out-of-Africa in present-day populations but found Arabians have elevated Basal Eurasian ancestry that dilutes their Neanderthal ancestry. Population sizes within the region started diverging 15-20 kya, when Levantines expanded while Arabians maintained smaller populations that derived ancestry from local hunter-gatherers. Arabians suffered a population bottleneck around the aridification of Arabia 6 kya, while Levantines had a distinct bottleneck overlapping the 4.2 kya aridification event. We found an association between movement and admixture of populations in the region and the spread of Semitic languages. Finally, we identify variants that show evidence of selection, including polygenic selection. Our results provide detailed insights into the genomic and selective histories of the Middle East.


Subject(s)
Genetics, Population/history , Genome, Human , Animals , Chromosomes, Human, Y/genetics , Databases, Genetic , Gene Pool , Genetic Introgression , Geography , History, Ancient , Human Migration , Humans , Middle East , Models, Genetic , Neanderthals/genetics , Phylogeny , Population Density , Selection, Genetic , Sequence Analysis, DNA
12.
Cell ; 184(8): 2103-2120.e31, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33740419

ABSTRACT

During cell migration or differentiation, cell surface receptors are simultaneously exposed to different ligands. However, it is often unclear how these extracellular signals are integrated. Neogenin (NEO1) acts as an attractive guidance receptor when the Netrin-1 (NET1) ligand binds, but it mediates repulsion via repulsive guidance molecule (RGM) ligands. Here, we show that signal integration occurs through the formation of a ternary NEO1-NET1-RGM complex, which triggers reciprocal silencing of downstream signaling. Our NEO1-NET1-RGM structures reveal a "trimer-of-trimers" super-assembly, which exists in the cell membrane. Super-assembly formation results in inhibition of RGMA-NEO1-mediated growth cone collapse and RGMA- or NET1-NEO1-mediated neuron migration, by preventing formation of signaling-compatible RGM-NEO1 complexes and NET1-induced NEO1 ectodomain clustering. These results illustrate how simultaneous binding of ligands with opposing functions, to a single receptor, does not lead to competition for binding, but to formation of a super-complex that diminishes their functional outputs.


Subject(s)
Cell Adhesion Molecules, Neuronal/metabolism , GPI-Linked Proteins/metabolism , Nerve Tissue Proteins/metabolism , Oncogene Proteins/metabolism , Animals , Cell Adhesion Molecules, Neuronal/chemistry , Cell Movement , DCC Receptor/deficiency , DCC Receptor/genetics , GPI-Linked Proteins/chemistry , Growth Cones/physiology , Humans , Lateral Ventricles/cytology , Mice , Mice, Inbred C57BL , Mice, Knockout , Nerve Tissue Proteins/antagonists & inhibitors , Nerve Tissue Proteins/chemistry , Neurons/cytology , Neurons/metabolism , Oncogene Proteins/chemistry , Oncogene Proteins/genetics , Protein Binding , Protein Multimerization , Protein Structure, Quaternary , RNA Interference , RNA, Small Interfering/metabolism , Signal Transduction
13.
Cell ; 183(1): 110-125.e11, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32888431

ABSTRACT

During respiration, humans breathe in more than 10,000 liters of non-sterile air daily, allowing some pathogens access to alveoli. Interestingly, alveoli outnumber alveolar macrophages (AMs), which favors alveoli devoid of AMs. If AMs, like most tissue macrophages, are sessile, then this numerical advantage would be exploited by pathogens unless neutrophils from the blood stream intervened. However, this would translate to omnipresent persistent inflammation. Developing in vivo real-time intravital imaging of alveoli revealed AMs crawling in and between alveoli using the pores of Kohn. Importantly, these macrophages sensed, chemotaxed, and, with high efficiency, phagocytosed inhaled bacterial pathogens such as P. aeruginosa and S. aureus, cloaking the bacteria from neutrophils. Impairing AM chemotaxis toward bacteria induced superfluous neutrophil recruitment, leading to inappropriate inflammation and injury. In a disease context, influenza A virus infection impaired AM crawling via the type II interferon signaling pathway, and this greatly increased secondary bacterial co-infection.


Subject(s)
Bacteria/immunology , Macrophages, Alveolar/immunology , Macrophages, Alveolar/metabolism , Animals , Female , Homeostasis , Humans , Lung/immunology , Lung/metabolism , Macrophages/immunology , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Neutrophil Infiltration , Neutrophils/immunology , Phagocytosis/immunology , Pseudomonas aeruginosa/immunology , Pseudomonas aeruginosa/pathogenicity , Pulmonary Alveoli , Signal Transduction , Staphylococcus aureus/immunology , Staphylococcus aureus/pathogenicity
14.
Cell ; 180(4): 677-687.e16, 2020 02 20.
Article in English | MEDLINE | ID: mdl-32004458

ABSTRACT

Admixture has played a prominent role in shaping patterns of human genomic variation, including gene flow with now-extinct hominins like Neanderthals and Denisovans. Here, we describe a novel probabilistic method called IBDmix to identify introgressed hominin sequences, which, unlike existing approaches, does not use a modern reference population. We applied IBDmix to 2,504 individuals from geographically diverse populations to identify and analyze Neanderthal sequences segregating in modern humans. Strikingly, we find that African individuals carry a stronger signal of Neanderthal ancestry than previously thought. We show that this can be explained by genuine Neanderthal ancestry due to migrations back to Africa, predominately from ancestral Europeans, and gene flow into Neanderthals from an early dispersing group of humans out of Africa. Our results refine our understanding of Neanderthal ancestry in African and non-African populations and demonstrate that remnants of Neanderthal genomes survive in every modern human population studied to date.


Subject(s)
Black People/genetics , Evolution, Molecular , Neanderthals/genetics , Animals , Gene Flow , Human Migration , Humans , Models, Genetic , Pedigree , Polymorphism, Genetic
15.
Cell ; 183(4): 890-904.e29, 2020 11 12.
Article in English | MEDLINE | ID: mdl-33157037

ABSTRACT

The Eastern Eurasian Steppe was home to historic empires of nomadic pastoralists, including the Xiongnu and the Mongols. However, little is known about the region's population history. Here, we reveal its dynamic genetic history by analyzing new genome-wide data for 214 ancient individuals spanning 6,000 years. We identify a pastoralist expansion into Mongolia ca. 3000 BCE, and by the Late Bronze Age, Mongolian populations were biogeographically structured into three distinct groups, all practicing dairy pastoralism regardless of ancestry. The Xiongnu emerged from the mixing of these populations and those from surrounding regions. By comparison, the Mongols exhibit much higher eastern Eurasian ancestry, resembling present-day Mongolic-speaking populations. Our results illuminate the complex interplay between genetic, sociopolitical, and cultural changes on the Eastern Steppe.


Subject(s)
Genetics, Population , Grassland , Archaeology , Europe , Female , Gene Frequency/genetics , Gene Pool , Genetic Heterogeneity , Genome, Human , Geography , Haplotypes/genetics , History, Ancient , Humans , Male , Mongolia , Principal Component Analysis , Time Factors
16.
Cell ; 182(3): 625-640.e24, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32702313

ABSTRACT

The brain is a site of relative immune privilege. Although CD4 T cells have been reported in the central nervous system, their presence in the healthy brain remains controversial, and their function remains largely unknown. We used a combination of imaging, single cell, and surgical approaches to identify a CD69+ CD4 T cell population in both the mouse and human brain, distinct from circulating CD4 T cells. The brain-resident population was derived through in situ differentiation from activated circulatory cells and was shaped by self-antigen and the peripheral microbiome. Single-cell sequencing revealed that in the absence of murine CD4 T cells, resident microglia remained suspended between the fetal and adult states. This maturation defect resulted in excess immature neuronal synapses and behavioral abnormalities. These results illuminate a role for CD4 T cells in brain development and a potential interconnected dynamic between the evolution of the immunological and neurological systems. VIDEO ABSTRACT.


Subject(s)
Brain/cytology , CD4-Positive T-Lymphocytes/metabolism , Fetus/cytology , Microglia/cytology , Microglia/metabolism , Synapses/metabolism , Adult , Animals , Antigens, CD/metabolism , Antigens, Differentiation, T-Lymphocyte/metabolism , Behavior Rating Scale , Blood Cells/cytology , Blood Cells/metabolism , Brain/embryology , Brain/metabolism , Child , Female , Fetus/embryology , Humans , Lectins, C-Type/metabolism , Lung/cytology , Lung/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Neurogenesis/genetics , Parabiosis , Pyramidal Cells/metabolism , Pyramidal Cells/physiology , Single-Cell Analysis , Spleen/cytology , Spleen/metabolism , Synapses/immunology , Transcriptome
17.
Cell ; 180(2): 323-339.e19, 2020 01 23.
Article in English | MEDLINE | ID: mdl-31928845

ABSTRACT

Teneurins are ancient metazoan cell adhesion receptors that control brain development and neuronal wiring in higher animals. The extracellular C terminus binds the adhesion GPCR Latrophilin, forming a trans-cellular complex with synaptogenic functions. However, Teneurins, Latrophilins, and FLRT proteins are also expressed during murine cortical cell migration at earlier developmental stages. Here, we present crystal structures of Teneurin-Latrophilin complexes that reveal how the lectin and olfactomedin domains of Latrophilin bind across a spiraling beta-barrel domain of Teneurin, the YD shell. We couple structure-based protein engineering to biophysical analysis, cell migration assays, and in utero electroporation experiments to probe the importance of the interaction in cortical neuron migration. We show that binding of Latrophilins to Teneurins and FLRTs directs the migration of neurons using a contact repulsion-dependent mechanism. The effect is observed with cell bodies and small neurites rather than their processes. The results exemplify how a structure-encoded synaptogenic protein complex is also used for repulsive cell guidance.


Subject(s)
Nerve Tissue Proteins/ultrastructure , Receptors, Peptide/metabolism , Tenascin/metabolism , Animals , Cell Adhesion/physiology , Crystallography, X-Ray/methods , HEK293 Cells , Humans , K562 Cells , Leucine-Rich Repeat Proteins , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/ultrastructure , Membrane Proteins/metabolism , Membrane Proteins/ultrastructure , Mice , Mice, Inbred C57BL/embryology , Nerve Tissue Proteins/metabolism , Neurites/metabolism , Neurogenesis/physiology , Neurons/metabolism , Platelet Glycoprotein GPIb-IX Complex/metabolism , Platelet Glycoprotein GPIb-IX Complex/ultrastructure , Protein Binding/physiology , Proteins/metabolism , Proteins/ultrastructure , Receptors, Cell Surface/metabolism , Receptors, Peptide/ultrastructure , Synapses/metabolism , Tenascin/ultrastructure
18.
Annu Rev Cell Dev Biol ; 37: 285-310, 2021 10 06.
Article in English | MEDLINE | ID: mdl-34314591

ABSTRACT

Nonmuscle myosin II (NMII) is a multimeric protein complex that generates most mechanical force in eukaryotic cells. NMII function is controlled at three main levels. The first level includes events that trigger conformational changes that extend the complex to enable its assembly into filaments. The second level controls the ATPase activity of the complex and its binding to microfilaments in extended NMII filaments. The third level includes events that modulate the stability and contractility of the filaments. They all work in concert to finely control force generation inside cells. NMII is a common endpoint of mechanochemical signaling pathways that control cellular responses to physical and chemical extracellular cues. Specific phosphorylations modulate NMII activation in a context-dependent manner. A few kinases control these phosphorylations in a spatially, temporally, and lineage-restricted fashion, enabling functional adaptability to the cellular microenvironment. Here, we review mechanisms that control NMII activity in the context of cell migration and division.


Subject(s)
Cytoskeleton , Myosin Type II , Actin Cytoskeleton/metabolism , Cell Movement/genetics , Cytoskeleton/metabolism , Myosin Type II/chemistry , Myosin Type II/genetics , Myosin Type II/metabolism , Signal Transduction
19.
Cell ; 179(7): 1499-1511.e10, 2019 12 12.
Article in English | MEDLINE | ID: mdl-31835029

ABSTRACT

Natural transformation (NT) is a major mechanism of horizontal gene transfer in microbial species that promotes the spread of antibiotic-resistance determinants and virulence factors. Here, we develop a cell biological approach to characterize the spatiotemporal dynamics of homologous recombination during NT in Vibrio cholerae. Our results directly demonstrate (1) that transforming DNA efficiently integrates into the genome as single-stranded DNA, (2) that the resulting heteroduplexes are resolved by chromosome replication and segregation, and (3) that integrated DNA is rapidly expressed prior to cell division. We show that the combination of these properties results in the nongenetic transfer of gene products within transformed populations, which can support phenotypic inheritance of antibiotic resistance in both V. cholerae and Streptococcus pneumoniae. Thus, beyond the genetic acquisition of novel DNA sequences, NT can also promote the nongenetic inheritance of traits during this conserved mechanism of horizontal gene transfer.


Subject(s)
Gene Transfer, Horizontal , Homologous Recombination , Streptococcus pneumoniae/genetics , Transformation, Genetic , Vibrio cholerae/genetics , DNA Replication , Drug Resistance, Bacterial/genetics
20.
Cell ; 173(1): 53-61.e9, 2018 03 22.
Article in English | MEDLINE | ID: mdl-29551270

ABSTRACT

Anatomically modern humans interbred with Neanderthals and with a related archaic population known as Denisovans. Genomes of several Neanderthals and one Denisovan have been sequenced, and these reference genomes have been used to detect introgressed genetic material in present-day human genomes. Segments of introgression also can be detected without use of reference genomes, and doing so can be advantageous for finding introgressed segments that are less closely related to the sequenced archaic genomes. We apply a new reference-free method for detecting archaic introgression to 5,639 whole-genome sequences from Eurasia and Oceania. We find Denisovan ancestry in populations from East and South Asia and Papuans. Denisovan ancestry comprises two components with differing similarity to the sequenced Altai Denisovan individual. This indicates that at least two distinct instances of Denisovan admixture into modern humans occurred, involving Denisovan populations that had different levels of relatedness to the sequenced Altai Denisovan. VIDEO ABSTRACT.


Subject(s)
Genome, Human , Animals , Asian People/genetics , Humans , Neanderthals/genetics , Selection, Genetic , Exome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL