Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 488
Filter
Add more filters

Publication year range
1.
Annu Rev Biochem ; 89: 443-470, 2020 06 20.
Article in English | MEDLINE | ID: mdl-32569525

ABSTRACT

Manipulation of individual molecules with optical tweezers provides a powerful means of interrogating the structure and folding of proteins. Mechanical force is not only a relevant quantity in cellular protein folding and function, but also a convenient parameter for biophysical folding studies. Optical tweezers offer precise control in the force range relevant for protein folding and unfolding, from which single-molecule kinetic and thermodynamic information about these processes can be extracted. In this review, we describe both physical principles and practical aspects of optical tweezers measurements and discuss recent advances in the use of this technique for the study of protein folding. In particular, we describe the characterization of folding energy landscapes at high resolution, studies of structurally complex multidomain proteins, folding in the presence of chaperones, and the ability to investigate real-time cotranslational folding of a polypeptide.


Subject(s)
Escherichia coli/genetics , Molecular Chaperones/genetics , Optical Tweezers , Protein Biosynthesis , Proteome/chemistry , Ribosomes/genetics , Escherichia coli/metabolism , Humans , Kinetics , Microscopy, Atomic Force , Models, Molecular , Molecular Chaperones/chemistry , Molecular Chaperones/metabolism , Protein Binding , Protein Folding , Protein Interaction Domains and Motifs , Proteome/biosynthesis , Proteome/genetics , Proteostasis/genetics , Ribosomes/metabolism , Ribosomes/ultrastructure , Thermodynamics
2.
Annu Rev Biochem ; 86: 97-122, 2017 06 20.
Article in English | MEDLINE | ID: mdl-28489421

ABSTRACT

A healthy proteome is essential for cell survival. Protein misfolding is linked to a rapidly expanding list of human diseases, ranging from neurodegenerative diseases to aging and cancer. Many of these diseases are characterized by the accumulation of misfolded proteins in intra- and extracellular inclusions, such as amyloid plaques. The clear link between protein misfolding and disease highlights the need to better understand the elaborate machinery that manages proteome homeostasis, or proteostasis, in the cell. Proteostasis depends on a network of molecular chaperones and clearance pathways involved in the recognition, refolding, and/or clearance of aberrant proteins. Recent studies reveal that an integral part of the cellular management of misfolded proteins is their spatial sequestration into several defined compartments. Here, we review the properties, function, and formation of these compartments. Spatial sequestration plays a central role in protein quality control and cellular fitness and represents a critical link to the pathogenesis of protein aggregation-linked diseases.


Subject(s)
Aging/metabolism , Molecular Chaperones/metabolism , Neurodegenerative Diseases/metabolism , Protein Aggregation, Pathological/metabolism , Proteostasis Deficiencies/metabolism , Aging/genetics , Aging/pathology , Amyloidogenic Proteins/chemistry , Amyloidogenic Proteins/genetics , Amyloidogenic Proteins/metabolism , Cell Compartmentation , Gene Expression Regulation , Humans , Molecular Chaperones/genetics , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , Prion Proteins/chemistry , Prion Proteins/genetics , Prion Proteins/metabolism , Protein Aggregation, Pathological/genetics , Protein Aggregation, Pathological/pathology , Protein Biosynthesis , Protein Conformation , Protein Folding , Protein Refolding , Proteolysis , Proteostasis Deficiencies/genetics , Proteostasis Deficiencies/pathology
3.
Mol Cell ; 84(13): 2455-2471.e8, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38908370

ABSTRACT

Protein folding is assisted by molecular chaperones that bind nascent polypeptides during mRNA translation. Several structurally distinct classes of chaperones promote de novo folding, suggesting that their activities are coordinated at the ribosome. We used biochemical reconstitution and structural proteomics to explore the molecular basis for cotranslational chaperone action in bacteria. We found that chaperone binding is disfavored close to the ribosome, allowing folding to precede chaperone recruitment. Trigger factor recognizes compact folding intermediates that expose an extensive unfolded surface, and dictates DnaJ access to nascent chains. DnaJ uses a large surface to bind structurally diverse intermediates and recruits DnaK to sequence-diverse solvent-accessible sites. Neither Trigger factor, DnaJ, nor DnaK destabilize cotranslational folding intermediates. Instead, the chaperones collaborate to protect incipient structure in the nascent polypeptide well beyond the ribosome exit tunnel. Our findings show how the chaperone network selects and modulates cotranslational folding intermediates.


Subject(s)
Escherichia coli Proteins , Escherichia coli , HSP40 Heat-Shock Proteins , HSP70 Heat-Shock Proteins , Protein Biosynthesis , Protein Folding , Ribosomes , Ribosomes/metabolism , Ribosomes/genetics , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/chemistry , HSP70 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/genetics , HSP40 Heat-Shock Proteins/metabolism , HSP40 Heat-Shock Proteins/genetics , Escherichia coli/metabolism , Escherichia coli/genetics , Protein Binding , Molecular Chaperones/metabolism , Molecular Chaperones/genetics , Models, Molecular , Protein Conformation , Peptidylprolyl Isomerase
4.
Mol Cell ; 84(8): 1512-1526.e9, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38508184

ABSTRACT

J-domain proteins (JDPs) constitute a large family of molecular chaperones that bind a broad spectrum of substrates, targeting them to Hsp70, thus determining the specificity of and activating the entire chaperone functional cycle. The malfunction of JDPs is therefore inextricably linked to myriad human disorders. Here, we uncover a unique mechanism by which chaperones recognize misfolded clients, present in human class A JDPs. Through a newly identified ß-hairpin site, these chaperones detect changes in protein dynamics at the initial stages of misfolding, prior to exposure of hydrophobic regions or large structural rearrangements. The JDPs then sequester misfolding-prone proteins into large oligomeric assemblies, protecting them from aggregation. Through this mechanism, class A JDPs bind destabilized p53 mutants, preventing clearance of these oncoproteins by Hsp70-mediated degradation, thus promoting cancer progression. Removal of the ß-hairpin abrogates this protective activity while minimally affecting other chaperoning functions. This suggests the class A JDP ß-hairpin as a highly specific target for cancer therapeutics.


Subject(s)
Neoplasms , Tumor Suppressor Protein p53 , Humans , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , HSP70 Heat-Shock Proteins/metabolism , Protein Folding
5.
Mol Cell ; 84(4): 687-701.e7, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38266641

ABSTRACT

Molecular chaperones are critical for protein homeostasis and are implicated in several human pathologies such as neurodegeneration and cancer. While the binding of chaperones to nascent and misfolded proteins has been studied in great detail, the direct interaction between chaperones and RNA has not been systematically investigated. Here, we provide the evidence for widespread interaction between chaperones and RNA in human cells. We show that the major chaperone heat shock protein 70 (HSP70) binds to non-coding RNA transcribed by RNA polymerase III (RNA Pol III) such as tRNA and 5S rRNA. Global chromatin profiling revealed that HSP70 binds genomic sites of transcription by RNA Pol III. Detailed biochemical analyses showed that HSP70 alleviates the inhibitory effect of cognate tRNA transcript on tRNA gene transcription. Thus, our study uncovers an unexpected role of HSP70-RNA interaction in the biogenesis of a specific class of non-coding RNA with wider implications in cancer therapeutics.


Subject(s)
HSP70 Heat-Shock Proteins , Neoplasms , Humans , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Molecular Chaperones/metabolism , RNA , RNA Polymerase III/genetics , RNA Polymerase III/metabolism , RNA, Transfer/genetics , RNA, Untranslated/genetics
6.
Mol Cell ; 82(4): 741-755.e11, 2022 02 17.
Article in English | MEDLINE | ID: mdl-35148816

ABSTRACT

Stresses such as heat shock trigger the formation of protein aggregates and the induction of a disaggregation system composed of molecular chaperones. Recent work reveals that several cases of apparent heat-induced aggregation, long thought to be the result of toxic misfolding, instead reflect evolved, adaptive biomolecular condensation, with chaperone activity contributing to condensate regulation. Here we show that the yeast disaggregation system directly disperses heat-induced biomolecular condensates of endogenous poly(A)-binding protein (Pab1) orders of magnitude more rapidly than aggregates of the most commonly used misfolded model substrate, firefly luciferase. Beyond its efficiency, heat-induced condensate dispersal differs from heat-induced aggregate dispersal in its molecular requirements and mechanistic behavior. Our work establishes a bona fide endogenous heat-induced substrate for long-studied heat shock proteins, isolates a specific example of chaperone regulation of condensates, and underscores needed expansion of the proteotoxic interpretation of the heat shock response to encompass adaptive, chaperone-mediated regulation.


Subject(s)
Biomolecular Condensates/metabolism , HSP40 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/metabolism , Heat-Shock Proteins/metabolism , Heat-Shock Response , Poly(A)-Binding Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Binding, Competitive , Biomolecular Condensates/genetics , HSP40 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/genetics , Heat-Shock Proteins/genetics , Poly(A)-Binding Proteins/genetics , Protein Aggregates , Protein Binding , Protein Folding , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
7.
Mol Cell ; 82(3): 555-569.e7, 2022 02 03.
Article in English | MEDLINE | ID: mdl-35063133

ABSTRACT

In the eukaryotic cytosol, the Hsp70 and the Hsp90 chaperone machines work in tandem with the maturation of a diverse array of client proteins. The transfer of nonnative clients between these systems is essential to the chaperoning process, but how it is regulated is still not clear. We discovered that NudC is an essential transfer factor with an unprecedented mode of action: NudC interacts with Hsp40 in Hsp40-Hsp70-client complexes and displaces Hsp70. Then, the interaction of NudC with Hsp90 allows the direct transfer of Hsp40-bound clients to Hsp90 for further processing. Consistent with this mechanism, NudC increases client activation in vitro as well as in cells and is essential for cellular viability. Together, our results show the complexity of the cooperation between the major chaperone machineries in the eukaryotic cytosol.


Subject(s)
Cell Cycle Proteins/metabolism , HSP40 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/metabolism , Nuclear Proteins/metabolism , Binding Sites , Cell Cycle Proteins/genetics , Cell Survival , HEK293 Cells , HSP40 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/genetics , Humans , K562 Cells , Kinetics , Molecular Docking Simulation , Nuclear Proteins/genetics , Protein Binding , Protein Folding , Protein Interaction Domains and Motifs , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
8.
Mol Cell ; 81(17): 3496-3508.e5, 2021 09 02.
Article in English | MEDLINE | ID: mdl-34380015

ABSTRACT

The Hsp90 chaperone promotes folding and activation of hundreds of client proteins in the cell through an ATP-dependent conformational cycle guided by distinct cochaperone regulators. The FKBP51 immunophilin binds Hsp90 with its tetratricopeptide repeat (TPR) domain and catalyzes peptidyl-prolyl isomerase (PPIase) activity during folding of kinases, nuclear receptors, and tau. Here we determined the cryoelectron microscopy (cryo-EM) structure of the human Hsp90:FKBP51:p23 complex to 3.3 Å, which, together with mutagenesis and crosslinking analyses, reveals the basis for cochaperone binding to Hsp90 during client maturation. A helix extension in the TPR functions as a key recognition element, interacting across the Hsp90 C-terminal dimer interface presented in the closed, ATP conformation. The PPIase domain is positioned along the middle domain, adjacent to Hsp90 client binding sites, whereas a single p23 makes stabilizing interactions with the N-terminal dimer. With this architecture, FKBP51 is positioned to act on specific client residues presented during Hsp90-catalyzed remodeling.


Subject(s)
HSP90 Heat-Shock Proteins/chemistry , Tacrolimus Binding Proteins/chemistry , Amino Acid Sequence , Binding Sites , Biomarkers, Tumor/chemistry , Biomarkers, Tumor/metabolism , Cryoelectron Microscopy/methods , HSP90 Heat-Shock Proteins/metabolism , Humans , Molecular Chaperones/chemistry , Molecular Chaperones/metabolism , Molecular Conformation , Protein Binding , Tacrolimus Binding Proteins/metabolism , Tumor Protein, Translationally-Controlled 1
9.
Mol Cell ; 81(14): 2914-2928.e7, 2021 07 15.
Article in English | MEDLINE | ID: mdl-34107307

ABSTRACT

Molecular chaperones assist with protein folding by interacting with nascent polypeptide chains (NCs) during translation. Whether the ribosome can sense chaperone defects and, in response, abort translation of misfolding NCs has not yet been explored. Here we used quantitative proteomics to investigate the ribosome-associated chaperone network in E. coli and the consequences of its dysfunction. Trigger factor and the DnaK (Hsp70) system are the major NC-binding chaperones. HtpG (Hsp90), GroEL, and ClpB contribute increasingly when DnaK is deficient. Surprisingly, misfolding because of defects in co-translational chaperone function or amino acid analog incorporation results in recruitment of the non-canonical release factor RF3. RF3 recognizes aberrant NCs and then moves to the peptidyltransferase site to cooperate with RF2 in mediating chain termination, facilitating clearance by degradation. This function of RF3 reduces the accumulation of misfolded proteins and is critical for proteostasis maintenance and cell survival under conditions of limited chaperone availability.


Subject(s)
Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Molecular Chaperones/metabolism , Protein Biosynthesis/physiology , Amino Acids/metabolism , Cell Survival/physiology , HSP70 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/metabolism , Peptide Termination Factors/metabolism , Peptidyl Transferases/metabolism , Protein Binding/physiology , Protein Folding , Proteomics/methods , Proteostasis/physiology , Ribosomes/metabolism
10.
Trends Biochem Sci ; 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39271417

ABSTRACT

Small heat shock proteins (sHsps) are an important part of the cellular system maintaining protein homeostasis under physiological and stress conditions. As molecular chaperones, they form complexes with different non-native proteins in an ATP-independent manner. Many sHsps populate ensembles of energetically similar but different-sized oligomers. Regulation of chaperone activity occurs by changing the equilibrium of these ensembles. This makes sHsps a versatile and adaptive system for trapping non-native proteins in complexes, allowing recycling with the help of ATP-dependent chaperones. In this review, we discuss progress in our understanding of the structural principles of sHsp oligomers and their functional principles, as well as their roles in aging and eye lens transparency.

11.
EMBO J ; 43(5): 719-753, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38177498

ABSTRACT

Effector mechanisms of the unfolded protein response (UPR) in the endoplasmic reticulum (ER) are well-characterised, but how ER proteostasis is sensed is less well understood. Here, we exploited the beta isoform of the UPR transducer IRE1, that is specific to mucin-producing cells in order to gauge the relative regulatory roles of activating ligands and repressing chaperones of the specialised ER of goblet cells. Replacement of the stress-sensing luminal domain of endogenous IRE1α in CHO cells (normally expressing neither mucin nor IRE1ß) with the luminal domain of IRE1ß deregulated basal IRE1 activity. The mucin-specific chaperone AGR2 repressed IRE1 activity in cells expressing the domain-swapped IRE1ß/α chimera, but had no effect on IRE1α. Introduction of the goblet cell-specific client MUC2 reversed AGR2-mediated repression of the IRE1ß/α chimera. In vitro, AGR2 actively de-stabilised the IRE1ß luminal domain dimer and formed a reversible complex with the inactive monomer. These features of the IRE1ß-AGR2 couple suggest that active repression of IRE1ß by a specialised mucin chaperone subordinates IRE1 activity to a proteostatic challenge unique to goblet cells, a challenge that is otherwise poorly recognised by the pervasive UPR transducers.


Subject(s)
Endoribonucleases , Goblet Cells , Mucins , Animals , Cricetinae , Humans , Cricetulus , Goblet Cells/metabolism , Molecular Chaperones/genetics , Mucins/genetics , Mucoproteins/genetics , Oncogene Proteins , Protein Serine-Threonine Kinases/genetics , CHO Cells
12.
Mol Cell ; 76(2): 295-305, 2019 10 17.
Article in English | MEDLINE | ID: mdl-31604601

ABSTRACT

Biomolecular condensation is emerging as an essential process for cellular compartmentalization. The formation of biomolecular condensates can be driven by liquid-liquid phase separation, which arises from weak, multivalent interactions among proteins and nucleic acids. A substantial body of recent work has revealed that diverse cellular processes rely on biomolecular condensation and that aberrant phase separation may cause disease. Many proteins display an intrinsic propensity to undergo phase separation. However, the mechanisms by which cells regulate phase separation to build functional condensates at the appropriate time and location are only beginning to be understood. Here, we review three key cellular mechanisms that enable the control of biomolecular phase separation: membrane surfaces, post-translational modifications, and active processes. We discuss how these mechanisms may function in concert to provide robust control over biomolecular condensates and suggest new research avenues that will elucidate how cells build and maintain these key centers of cellular compartmentalization.


Subject(s)
Cell Compartmentation , Cell Membrane/metabolism , Nucleic Acids/metabolism , Protein Processing, Post-Translational , Protein Transport , Proteins/metabolism , Animals , Cell Membrane/chemistry , Endocytosis , Humans , Intracellular Membranes/metabolism , Molecular Chaperones/metabolism , Nucleic Acid Conformation , Nucleic Acids/chemistry , Protein Conformation , Proteins/chemistry , Solubility , Structure-Activity Relationship
13.
Mol Cell ; 74(1): 73-87.e8, 2019 04 04.
Article in English | MEDLINE | ID: mdl-30876805

ABSTRACT

The Hsp90 chaperone machinery in eukaryotes comprises a number of distinct accessory factors. Cns1 is one of the few essential co-chaperones in yeast, but its structure and function remained unknown. Here, we report the X-ray structure of the Cns1 fold and NMR studies on the partly disordered, essential segment of the protein. We demonstrate that Cns1 is important for maintaining translation elongation, specifically chaperoning the elongation factor eEF2. In this context, Cns1 interacts with the novel co-factor Hgh1 and forms a quaternary complex together with eEF2 and Hsp90. The in vivo folding and solubility of eEF2 depend on the presence of these proteins. Chaperoning of eEF2 by Cns1 is essential for yeast viability and requires a defined subset of the Hsp90 machinery as well as the identified eEF2 recruiting factor Hgh1.


Subject(s)
HSP90 Heat-Shock Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Molecular Chaperones/metabolism , Peptide Chain Elongation, Translational , Peptide Elongation Factor 2/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Crystallography, X-Ray , Peptidyl-Prolyl Isomerase F , Cyclophilins/genetics , Cyclophilins/metabolism , HSP90 Heat-Shock Proteins/chemistry , HSP90 Heat-Shock Proteins/genetics , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/genetics , Models, Molecular , Molecular Chaperones/chemistry , Molecular Chaperones/genetics , Nuclear Magnetic Resonance, Biomolecular , Peptide Elongation Factor 2/chemistry , Peptide Elongation Factor 2/genetics , Protein Binding , Protein Folding , Protein Interaction Domains and Motifs , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Structure-Activity Relationship
14.
Mol Cell ; 74(2): 310-319.e7, 2019 04 18.
Article in English | MEDLINE | ID: mdl-30852061

ABSTRACT

Multi-domain proteins, containing several structural units within a single polypeptide, constitute a large fraction of all proteomes. Co-translational folding is assumed to simplify the conformational search problem for large proteins, but the events leading to correctly folded, functional structures remain poorly characterized. Similarly, how the ribosome and molecular chaperones promote efficient folding remains obscure. Using optical tweezers, we have dissected early folding events of nascent elongation factor G, a multi-domain protein that requires chaperones for folding. The ribosome and the chaperone trigger factor reduce inter-domain misfolding, permitting folding of the N-terminal G-domain. Successful completion of this step is a crucial prerequisite for folding of the next domain. Unexpectedly, co-translational folding does not proceed unidirectionally; emerging unfolded polypeptide can denature an already-folded domain. Trigger factor, but not the ribosome, protects against denaturation. The chaperone thus serves a previously unappreciated function, helping multi-domain proteins overcome inherent challenges during co-translational folding.


Subject(s)
Peptide Elongation Factor G/chemistry , Protein Biosynthesis , Protein Conformation , Protein Folding , Molecular Chaperones/chemistry , Molecular Chaperones/genetics , Optical Tweezers , Peptide Elongation Factor G/genetics , Peptides/chemistry , Peptides/genetics , Protein Domains/genetics , Proteome/chemistry , Proteome/genetics , Ribosomes/chemistry , Ribosomes/genetics
15.
Trends Biochem Sci ; 47(10): 824-838, 2022 10.
Article in English | MEDLINE | ID: mdl-35660289

ABSTRACT

Climate change is increasingly affecting the quality of life of organisms on Earth. More frequent, extreme, and lengthy heat waves are contributing to the sixth mass extinction of complex life forms in the Earth's history. From an anthropocentric point of view, global warming is a major threat to human health because it also compromises crop yields and food security. Thus, achieving agricultural productivity under climate change calls for closer examination of the molecular mechanisms of heat-stress resistance in model and crop plants. This requires a better understanding of the mechanisms by which plant cells can sense rising temperatures and establish effective molecular defenses, such as molecular chaperones and thermoprotective metabolites, as reviewed here, to survive extreme diurnal variations in temperature and seasonal heat waves.


Subject(s)
Hot Temperature , Quality of Life , Climate Change , Heat-Shock Response , Humans
16.
EMBO J ; 41(16): e110410, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35698800

ABSTRACT

Although amyloid fibres are highly stable protein aggregates, a specific combination of human Hsp70 system chaperones can disassemble them, including fibres formed of α-synuclein, huntingtin, or Tau. Disaggregation requires the ATPase activity of the constitutively expressed Hsp70 family member, Hsc70, together with the J domain protein DNAJB1 and the nucleotide exchange factor Apg2. Clustering of Hsc70 on the fibrils appears to be necessary for disassembly. Here we use atomic force microscopy to show that segments of in vitro assembled α-synuclein fibrils are first coated with chaperones and then undergo bursts of rapid, unidirectional disassembly. Cryo-electron tomography and total internal reflection fluorescence microscopy reveal fibrils with regions of densely bound chaperones, preferentially at one end of the fibre. Sub-stoichiometric amounts of Apg2 relative to Hsc70 dramatically increase recruitment of Hsc70 to the fibres, creating localised active zones that then undergo rapid disassembly at a rate of ~ 4 subunits per second. The observed unidirectional bursts of Hsc70 loading and unravelling may be explained by differences between the two ends of the polar fibre structure.


Subject(s)
HSP70 Heat-Shock Proteins , alpha-Synuclein , Amyloid/metabolism , Amyloidogenic Proteins/metabolism , HSC70 Heat-Shock Proteins/metabolism , HSP40 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/metabolism , Humans , Molecular Chaperones/metabolism , Protein Aggregates , Protein Binding , alpha-Synuclein/metabolism
17.
Mol Cell ; 69(2): 227-237.e4, 2018 01 18.
Article in English | MEDLINE | ID: mdl-29290615

ABSTRACT

Efficient targeting of Hsp70 chaperones to substrate proteins depends on J-domain cochaperones, which in synergism with substrates trigger ATP hydrolysis in Hsp70s and concomitant substrate trapping. We present the crystal structure of the J-domain of Escherichia coli DnaJ in complex with the E. coli Hsp70 DnaK. The J-domain interacts not only with DnaK's nucleotide-binding domain (NBD) but also with its substrate-binding domain (SBD) and packs against the highly conserved interdomain linker. Mutational replacement of contacts between J-domain and SBD strongly reduces the ability of substrates to stimulate ATP hydrolysis in the presence of DnaJ and compromises viability at heat shock temperatures. Our data demonstrate that the J-domain and the substrate do not deliver completely independent signals for ATP hydrolysis, but the J-domain, in addition to its direct influence on Hsp70s catalytic center, makes Hsp70 more responsive for the hydrolysis-inducing signal of the substrate, resulting in efficient substrate trapping.


Subject(s)
Escherichia coli Proteins/metabolism , Escherichia coli Proteins/ultrastructure , HSP40 Heat-Shock Proteins/metabolism , HSP40 Heat-Shock Proteins/ultrastructure , HSP70 Heat-Shock Proteins/metabolism , Adenosine Triphosphatases/metabolism , Adenosine Triphosphate/metabolism , Binding Sites , Escherichia coli/metabolism , HSP70 Heat-Shock Proteins/physiology , HSP70 Heat-Shock Proteins/ultrastructure , Heat-Shock Proteins/metabolism , Hydrolysis , Kinetics , Models, Molecular , Molecular Chaperones/metabolism , Protein Domains/physiology
18.
Mol Cell ; 70(3): 545-552.e9, 2018 05 03.
Article in English | MEDLINE | ID: mdl-29706537

ABSTRACT

Protein folding in the cell requires ATP-driven chaperone machines such as the conserved Hsp70 and Hsp90. It is enigmatic how these machines fold proteins. Here, we show that Hsp90 takes a key role in protein folding by breaking an Hsp70-inflicted folding block, empowering protein clients to fold on their own. At physiological concentrations, Hsp70 stalls productive folding by binding hydrophobic, core-forming segments. Hsp90 breaks this deadlock and restarts folding. Remarkably, neither Hsp70 nor Hsp90 alters the folding rate despite ensuring high folding yields. In fact, ATP-dependent chaperoning is restricted to the early folding phase. Thus, the Hsp70-Hsp90 cascade does not fold proteins, but instead prepares them for spontaneous, productive folding. This stop-start mechanism is conserved from bacteria to man, assigning also a general function to bacterial Hsp90, HtpG. We speculate that the decreasing hydrophobicity along the Hsp70-Hsp90 cascade may be crucial for enabling spontaneous folding.


Subject(s)
HSP70 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/metabolism , Molecular Chaperones/metabolism , Adenosine Triphosphate/metabolism , Animals , Escherichia coli/metabolism , Fireflies/metabolism , Humans , Protein Folding , Saccharomyces cerevisiae/metabolism
19.
Proc Natl Acad Sci U S A ; 120(14): e2210745120, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36989307

ABSTRACT

Cells respond to stress by synthesizing chaperone proteins that seek to correct protein misfolding and maintain function. However, abrogation of protein homeostasis is a hallmark of aging, leading to loss of function and the formation of proteotoxic aggregates characteristic of pathology. Consequently, discovering the underlying molecular causes of this deterioration in proteostasis is key to designing effective interventions to disease or to maintaining cell health in regenerative medicine strategies. Here, we examined primary human mesenchymal stem cells, cultured to a point of replicative senescence and subjected to heat shock, as an in vitro model of the aging stress response. Multi -omics analysis showed how homeostasis components were reduced in senescent cells, caused by dysregulation of a functional network of chaperones, thereby limiting proteostatic competence. Time-resolved analysis of the primary response factors, including those regulating heat shock protein 70 kDa (HSPA1A), revealed that regulatory control is essentially translational. Senescent cells have a reduced capacity for chaperone protein translation and misfolded protein (MFP) turnover, driven by downregulation of ribosomal proteins and loss of the E3 ubiquitin ligase CHIP (C-terminus of HSP70 interacting protein) which marks MFPs for degradation. This limits the cell's stress response and subsequent recovery. A kinetic model recapitulated these reduced capacities and predicted an accumulation of MFP, a hypothesis supported by evidence of systematic changes to the proteomic fold state. These results thus establish a specific loss of regulatory capacity at the protein, rather than transcript, level and uncover underlying systematic links between aging and loss of protein homeostasis.


Subject(s)
Mesenchymal Stem Cells , Proteomics , Humans , Aging , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Protein Biosynthesis , Mesenchymal Stem Cells/metabolism
20.
EMBO J ; 40(8): e103811, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33644875

ABSTRACT

HSP27 is a human molecular chaperone that forms large, dynamic oligomers and functions in many aspects of cellular homeostasis. Mutations in HSP27 cause Charcot-Marie-Tooth (CMT) disease, the most common inherited disorder of the peripheral nervous system. A particularly severe form of CMT disease is triggered by the P182L mutation in the highly conserved IxI/V motif of the disordered C-terminal region, which interacts weakly with the structured core domain of HSP27. Here, we observed that the P182L mutation disrupts the chaperone activity and significantly increases the size of HSP27 oligomers formed in vivo, including in motor neurons differentiated from CMT patient-derived stem cells. Using NMR spectroscopy, we determined that the P182L mutation decreases the affinity of the HSP27 IxI/V motif for its own core domain, leaving this binding site more accessible for other IxI/V-containing proteins. We identified multiple IxI/V-bearing proteins that bind with higher affinity to the P182L variant due to the increased availability of the IxI/V-binding site. Our results provide a mechanistic basis for the impact of the P182L mutation on HSP27 and suggest that the IxI/V motif plays an important, regulatory role in modulating protein-protein interactions.


Subject(s)
Charcot-Marie-Tooth Disease/genetics , Heat-Shock Proteins/chemistry , Molecular Chaperones/chemistry , Adult , Binding Sites , Cells, Cultured , HeLa Cells , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Male , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Molecular Dynamics Simulation , Motor Neurons/cytology , Motor Neurons/metabolism , Mutation, Missense , Protein Binding , Protein Multimerization
SELECTION OF CITATIONS
SEARCH DETAIL