Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Clin Cosmet Investig Dermatol ; 17: 1111-1116, 2024.
Article in English | MEDLINE | ID: mdl-38770089

ABSTRACT

Pachyonychia congenita (PC) is a group of rare hereditary disorders, characterised by hypertrophic nails and palmoplantar keratoderma (PPK), particularly localised to the pressure areas of the feet. At a molecular level, it is caused by mutations in genes encoding KRT6A, KRT6B, KRT6C, KRT16, or KRT17. To identify the underlying gene mutation in a Chinese family with PC presenting with disabling palmoplantar keratoderma and subsequent associated acral melanoma. Genomic DNA was extracted from peripheral blood samples of three available individuals in the Chinese family, which included the patient and his two unaffected sisters. The index patient presented with severe palmoplantar keratoderma as well as a newly diagnosed acral malignant melanoma (MM). Whole-exome sequencing (WES) was carried out with amplification of exon 1 of KRT16 by polymerase chain reaction (PCR). PCR products were then sequenced to identify potential mutations. We identified the proline substitution mutation p.Arg127Pro (c.380G>C) in our patient's 1A domain of KRT16. The same mutation was not found in his sisters or unrelated healthy controls. The mutation (p.Arg127Pro (c.380G>C)) in KRT16 has been reported in Dutch patients with PC. However, it is the first such report of a patient with a PC of Chinese origin. In addition, the acral MM occurred under the background of genetic PPK caused by KRT16 mutation in this patient.

2.
Genes (Basel) ; 13(10)2022 10 13.
Article in English | MEDLINE | ID: mdl-36292734

ABSTRACT

Objective: The Beijing strain of Mycobacterium tuberculosis (MTB) is controversially presented as the predominant genotype and is more drug resistant to rifampicin and isoniazid compared to the non-Beijing strain. We aimed to compare the major gene mutations related to rifampicin and isoniazid drug resistance between Beijing and non-Beijing genotypes, and to extract the best evidence using the evidence-based methods for improving the service of TB control programs based on genetics of MTB. Method: Literature was searched in Google Scholar, PubMed and CNKI Database. Data analysis was conducted in R software. The conventional and Bayesian random-effects models were employed for meta-analysis, combining the examinations of publication bias and sensitivity. Results: Of the 8785 strains in the pooled studies, 5225 were identified as Beijing strains and 3560 as non-Beijing strains. The maximum and minimum strain sizes were 876 and 55, respectively. The mutations prevalence of rpoB, katG, inhA and oxyR-ahpC in Beijing strains was 52.40% (2738/5225), 57.88% (2781/4805), 12.75% (454/3562) and 6.26% (108/1724), respectively, and that in non-Beijing strains was 26.12% (930/3560), 28.65% (834/2911), 10.67% (157/1472) and 7.21% (33/458), separately. The pooled posterior value of OR for the mutations of rpoB was 2.72 ((95% confidence interval (CI): 1.90, 3.94) times higher in Beijing than in non-Beijing strains. That value for katG was 3.22 (95% CI: 2.12, 4.90) times. The estimate for inhA was 1.41 (95% CI: 0.97, 2.08) times higher in the non-Beijing than in Beijing strains. That for oxyR-ahpC was 1.46 (95% CI: 0.87, 2.48) times. The principal patterns of the variants for the mutations of the four genes were rpoB S531L, katG S315T, inhA-15C > T and oxyR-ahpC intergenic region. Conclusion: The mutations in rpoB and katG genes in Beijing are significantly more common than that in non-Beijing strains of MTB. We do not have sufficient evidence to support that the prevalence of mutations of inhA and oxyR-ahpC is higher in non-Beijing than in Beijing strains, which provides a reference basis for clinical medication selection.


Subject(s)
Isoniazid , Mycobacterium tuberculosis , Isoniazid/pharmacology , Isoniazid/therapeutic use , Mycobacterium tuberculosis/genetics , Rifampin/pharmacology , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Bayes Theorem , Microbial Sensitivity Tests , Bacterial Proteins/genetics , Bacterial Proteins/pharmacology , Mutation , DNA, Intergenic
SELECTION OF CITATIONS
SEARCH DETAIL