Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
MAGMA ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916681

ABSTRACT

PURPOSE: To develop a new MR coronary angiography (MRCA) technique by employing a zigzag fan-shaped centric ky-kz k-space trajectory combined with high-resolution deep learning reconstruction (HR-DLR). METHODS: All imaging data were acquired from 12 healthy subjects and 2 patients using two clinical 3-T MR imagers, with institutional review board approval. Ten healthy subjects underwent both standard 3D fast gradient echo (sFGE) and centric ky-kz k-space trajectory FGE (cFGE) acquisitions to compare the scan time and image quality. Quantitative measures were also performed for signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) as well as sharpness of the vessel. Furthermore, the feasibility of the proposed cFGE sequence was assessed in two patients. For assessing the feasibility of the centric ky-kz trajectory, the navigator-echo window of a 30-mm threshold was applied in cFGE, whereas sFGE was applied using a standard 5-mm threshold. Image quality of MRCA using cFGE with HR-DLR and sFGE without HR-DLR was scored in a 5-point scale (non-diagnostic = 1, fair = 2, moderate = 3, good = 4, and excellent = 5). Image evaluation of cFGE, applying HR-DLR, was compared with sFGE without HR-DLR. Friedman test, Wilcoxon signed-rank test, or paired t tests were performed for the comparison of related variables. RESULTS: The actual MRCA scan time of cFGE with a 30-mm threshold was acquired in less than 5 min, achieving nearly 100% efficiency, showcasing its expeditious and robustness. In contrast, sFGE was acquired with a 5-mm threshold and had an average scan time of approximately 15 min. Overall image quality for MRCA was scored 3.3 for sFGE and 2.7 for cFGE without HR-DLR but increased to 3.6 for cFGE with HR-DLR and (p < 0.05). The clinical result of patients obtained within 5 min showed good quality images in both patients, even with a stent, without artifacts. Quantitative measures of SNR, CNR, and sharpness of vessel presented higher in cFGE with HR-DLR. CONCLUSION: Our findings demonstrate a robust, time-efficient solution for high-quality MRCA, enhancing patient comfort and increasing clinical throughput.

2.
J Cardiovasc Magn Reson ; 23(1): 127, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34724939

ABSTRACT

BACKGROUND: Recently, we reported a novel neuroimaging technique, unbalanced T1 Relaxation-Enhanced Steady-State (uT1RESS), which uses a tailored 3D unbalanced steady-state free precession (3D uSSFP) acquisition to suppress the blood pool signal while minimizing bulk motion sensitivity. In the present work, we hypothesized that 3D uSSFP might also be useful for dark blood imaging of the chest. To test the feasibility of this approach, we performed a pilot study in healthy subjects and patients undergoing cardiovascular magnetic resonance (CMR). MAIN BODY: The study was approved by the hospital institutional review board. Thirty-one adult subjects were imaged at 1.5 T, including 5 healthy adult subjects and 26 patients (44 to 86 years, 10 female) undergoing a clinically indicated CMR. Breath-holding was used in 29 subjects and navigator gating in 2 subjects. For breath-hold acquisitions, the 3D uSSFP pulse sequence used a high sampling bandwidth, asymmetric readout, and single-shot along the phase-encoding direction, while 3 shots were acquired for navigator-gated scans. To minimize signal dephasing from bulk motion, electrocardiographic (ECG) gating was used to synchronize the data acquisition to the diastolic phase of the cardiac cycle. To further reduce motion sensitivity, the moment of the dephasing gradient was set to one-fifth of the moment of the readout gradient. Image quality using 3D uSSFP was good-to-excellent in all subjects. The blood pool signal in the thoracic aorta was uniformly suppressed with sharp delineation of the aortic wall including two cases of ascending aortic aneurysm and two cases of aortic dissection. Compared with variable flip angle 3D turbo spin-echo, 3D uSSFP showed improved aortic wall sharpness. It was also more efficient, permitting the acquisition of 24 slices in each breath-hold versus 16 slices with 3D turbo spin-echo and a single slice with dual inversion 2D turbo spin-echo. In addition, lung and mediastinal lesions appeared highly conspicuous compared with the low blood pool signals within the heart and blood vessels. In two subjects, navigator-gated 3D uSSFP provided excellent delineation of cardiac morphology in double oblique multiplanar reformations. CONCLUSION: In this pilot study, we have demonstrated the feasibility of using ECG-gated 3D uSSFP for dark blood imaging of the heart, great vessels, and lungs. Further study will be required to fully optimize the technique and to assess clinical utility.


Subject(s)
Image Interpretation, Computer-Assisted , Magnetic Resonance Angiography , Adult , Electrocardiography , Female , Humans , Imaging, Three-Dimensional , Lung , Magnetic Resonance Spectroscopy , Pilot Projects , Predictive Value of Tests
3.
Magn Reson Med ; 84(1): 157-169, 2020 07.
Article in English | MEDLINE | ID: mdl-31815322

ABSTRACT

PURPOSE: Navigator-gated 3D bSSFP whole-heart coronary MRA has been evaluated in several large studies including a multi-center trial. Patient studies have also been performed with more recent self-navigated techniques. In this study, these two approaches are compared side-by-side using a Cartesian navigator-gated and corrected (CNG) and a 3D radial self-navigated (RSN) protocol from published patient studies. METHODS: Sixteen healthy subjects were examined with both sequences on a 1.5T scanner. Assessment of the visibility of coronary ostia and quantitative comparisons of acquisition times, blood pool homogeneity, and visible length and sharpness of the right coronary artery (RCA) and the combined left main (LM)+left anterior descending (LAD) coronary arteries were performed. Paired sample t-tests with P < .05 considered statistically significant were used for all comparisons. RESULTS: The acquisition time was 5:40 ± 0:28 min (mean ± SD) for RSN, being significantly shorter than the 16:59 ± 5:05 min of CNG (P < .001). RSN images showed higher blood pool homogeneity (P < .001). All coronary ostia were visible with both techniques. CNG provided significantly higher vessel sharpness in the RCA (CNG: 50.0 ± 8.6%, RSN: 34.2 ± 6.9%, P < .001) and the LM+LAD (CNG: 48.7 ± 6.7%, RSN: 32.3 ± 7.1%, P < .001). The visible vessel length was significantly longer in the LM+LAD using CNG (CNG: 9.8 ± 2.7 cm, RSN: 8.5 ± 2.6 cm, P < .05) but not in the RCA (CNG: 9.7 ± 2.3 cm, RSN: 9.3 ± 2.9 cm, P = .29). CONCLUSION: CNG provided superior vessel sharpness and might hence be the better option for examining coronary lumina. However, its blood pool inhomogeneity and prolonged and unpredictable acquisition times compared to RSN may make clinical adoption more challenging.


Subject(s)
Coronary Vessels , Magnetic Resonance Angiography , Coronary Vessels/diagnostic imaging , Heart , Humans , Imaging, Three-Dimensional , Multicenter Studies as Topic , Respiration
4.
Magn Reson Med ; 79(1): 195-207, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28266062

ABSTRACT

PURPOSE: To assess the performance of highly accelerated free-breathing aortic four-dimensional (4D) flow MRI acquired in under 2 minutes compared to conventional respiratory gated 4D flow. METHODS: Eight k-t accelerated nongated 4D flow MRI (parallel MRI with extended and averaged generalized autocalibrating partially parallel acquisition kernels [PEAK GRAPPA], R = 5, TRes = 67.2 ms) using four ky -kz Cartesian sampling patterns (linear, center-out, out-center-out, random) and two spatial resolutions (SRes1 = 3.5 × 2.3 × 2.6 mm3 , SRes2 = 4.5 × 2.3 × 2.6 mm3 ) were compared in vitro (aortic coarctation flow phantom) and in 10 healthy volunteers, to conventional 4D flow (16 mm-navigator acceptance window; R = 2; TRes = 39.2 ms; SRes = 3.2 × 2.3 × 2.4 mm3 ). The best k-t accelerated approach was further assessed in 10 patients with aortic disease. RESULTS: The k-t accelerated in vitro aortic peak flow (Qmax), net flow (Qnet), and peak velocity (Vmax) were lower than conventional 4D flow indices by ≤4.7%, ≤ 11%, and ≤22%, respectively. In vivo k-t accelerated acquisitions were significantly shorter but showed a trend to lower image quality compared to conventional 4D flow. Hemodynamic indices for linear and out-center-out k-space samplings were in agreement with conventional 4D flow (Qmax ≤ 13%, Qnet ≤ 13%, Vmax ≤ 17%, P > 0.05). CONCLUSION: Aortic 4D flow MRI in under 2 minutes is feasible with moderate underestimation of flow indices. Differences in k-space sampling patterns suggest an opportunity to mitigate image artifacts by an optimal trade-off between scan time, acceleration, and k-space sampling. Magn Reson Med 79:195-207, 2018. © 2018 International Society for Magnetic Resonance in Medicine.


Subject(s)
Aorta/diagnostic imaging , Magnetic Resonance Imaging/methods , Adult , Aged , Algorithms , Aorta/pathology , Aortic Coarctation/diagnostic imaging , Aortic Coarctation/surgery , Artifacts , Calibration , Female , Healthy Volunteers , Hemodynamics , Humans , Image Enhancement/methods , Imaging, Three-Dimensional/methods , Male , Middle Aged , Reproducibility of Results , Time Factors , Ventricular Function, Left
5.
Magn Reson Med ; 78(5): 1877-1882, 2017 11.
Article in English | MEDLINE | ID: mdl-28074541

ABSTRACT

PURPOSE: The purpose of this work was to assess the impact of respiratory motion and to compare methods for suppression of respiratory motion artifacts in 4D Flow MRI. METHODS: A numerical 3D aorta phantom was designed based on an aorta velocity field obtained by computational fluid mechanics. Motion-distorted 4D Flow MRI measurements were simulated and several different motion-suppression techniques were evaluated: Gating with fixed acceptance window size, gating with different window sizes in inner and outer k-space, and k-space reordering. Additionally, different spatial resolutions were simulated. RESULTS: Respiratory motion reduced the image quality. All motion-suppression techniques improved the data quality. Flow rate errors of up to 30% without gating could be reduced to less than 2.5% with the most successful motion suppression methods. Weighted gating and gating combined with k-space reordering were advantageous compared with conventional fixed-window gating. Spatial resolutions finer than the amount of accepted motion did not lead to improved results. CONCLUSION: Respiratory motion affects 4D Flow MRI data. Several different motion suppression techniques exist that are capable of reducing the errors associated with respiratory motion. Spatial resolutions finer than the degree of accepted respiratory motion do not result in improved data quality. Magn Reson Med 78:1877-1882, 2017. © 2017 International Society for Magnetic Resonance in Medicine.


Subject(s)
Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Respiratory-Gated Imaging Techniques/methods , Aorta/diagnostic imaging , Humans , Models, Biological , Movement , Phantoms, Imaging
6.
J Cardiovasc Magn Reson ; 19(1): 25, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-28245864

ABSTRACT

BACKGROUND: Left ventricular (LV) torsion is an important indicator of cardiac function that is limited by high inter-test variability (50% of the mean value). We hypothesized that this high inter-test variability is partly due to inconsistent breath-hold positions during serial image acquisitions, which could be significantly improved by using a respiratory navigator for cardiovascular magnetic resonance (CMR) based quantification of LV torsion. METHODS: We assessed respiratory-related variability in measured LV torsion with two distinct experimental protocols. First, 17 volunteers were recruited for CMR with cine displacement encoding with stimulated echoes (DENSE) in which a respiratory navigator was used to measure and then enforce variability in end-expiratory position between all LV basal and apical acquisitions. From these data, we quantified the inter-test variability of torsion in the absence and presence of enforced end-expiratory position variability, which established an upper bound for the expected torsion variability. For the second experiment (in 20 new, healthy volunteers), 10 pairs of cine DENSE basal and apical images were each acquired from consecutive breath-holds and consecutive navigator-gated scans (with a single acceptance position). Inter-test variability of torsion was compared between the breath-hold and navigator-gated scans to quantify the variability due to natural breath-hold variation. To demonstrate the importance of these variability reductions, we quantified the reduction in sample size required to detect a clinically meaningful change in LV torsion with the use of a respiratory navigator. RESULTS: The mean torsion was 3.4 ± 0.2°/cm. From the first experiment, enforced variability in end-expiratory position translated to considerable variability in measured torsion (0.56 ± 0.34°/cm), whereas inter-test variability with consistent end-expiratory position was 57% lower (0.24 ± 0.16°/cm, p < 0.001). From the second experiment, natural respiratory variability from consecutive breath-holds translated to a variability in torsion of 0.24 ± 0.10°/cm, which was significantly higher than the variability from navigator-gated scans (0.18 ± 0.06°/cm, p = 0.02). By using a respiratory navigator with DENSE, theoretical sample sizes were reduced from 66 to 16 and 26 to 15 as calculated from the two experiments. CONCLUSIONS: A substantial portion (22-57%) of the inter-test variability of LV torsion can be reduced by using a respiratory navigator to ensure a consistent breath-hold position between image acquisitions.


Subject(s)
Heart Ventricles/diagnostic imaging , Magnetic Resonance Imaging, Cine , Respiratory Mechanics , Respiratory-Gated Imaging Techniques , Ventricular Function, Left , Adult , Aged , Biomechanical Phenomena , Breath Holding , Female , Healthy Volunteers , Humans , Image Interpretation, Computer-Assisted , Male , Middle Aged , Predictive Value of Tests , Reproducibility of Results , Time Factors , Torsion, Mechanical , Young Adult
7.
Magn Reson Med ; 73(1): 214-22, 2015 Jan.
Article in English | MEDLINE | ID: mdl-24554395

ABSTRACT

PURPOSE: To develop a three-dimensional (3D) free-breathing myocardial T1 mapping sequence for assessment of left ventricle diffuse fibrosis after contrast administration. METHODS: In the proposed sequence, multiple 3D inversion recovery images are acquired in an interleaved manner. A mixed prospective/retrospective navigator scheme is used to obtain the 3D Cartesian k-space data with fully sampled center and randomly undersampled outer k-space. The resulting undersampled 3D k-space data are then reconstructed using compressed sensing. Subsequently, T1 maps are generated by voxel-wise curve fitting of the individual interleaved images. In a phantom study, the accuracy of the 3D sequence was evaluated against two-dimensional (2D) modified Look-Locker inversion recovery (MOLLI) and spin-echo sequences. In vivo T1 times of the proposed method were compared with 2D multislice MOLLI T1 mapping. Subsequently, the feasibility of high-resolution 3D T1 mapping with spatial resolution of 1.7 × 1.7 × 4 mm(3) was demonstrated. RESULTS: The proposed method shows good agreement with 2D MOLLI and the spin-echo reference in phantom. No significant difference was found in the in vivo T1 times estimated using the proposed sequence and the 2D MOLLI technique (myocardium, 330 ± 66 ms versus 319 ± 93 ms; blood pools, 211 ± 68 ms versus 210 ± 98 ms). However, improved homogeneity, as measured using standard deviation of the T1 signal, was observed in the 3D T1 maps. CONCLUSION: The proposed sequence enables high-resolution 3D T1 mapping after contrast injection during free-breathing with volumetric left ventricle coverage.


Subject(s)
Algorithms , Heart Ventricles/pathology , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Ventricular Dysfunction, Left/pathology , Adult , Female , Fibrosis , Humans , Image Enhancement/methods , Magnetic Resonance Imaging/methods , Male , Middle Aged , Reproducibility of Results , Respiratory Mechanics , Sensitivity and Specificity
8.
Magn Reson Med ; 73(1): 150-60, 2015 Jan.
Article in English | MEDLINE | ID: mdl-24515952

ABSTRACT

PURPOSE: To develop a method for high-resolution cardiac T1 mapping. METHODS: A new method, accelerated and navigator-gated look-locker imaging for cardiac T1 estimation (ANGIE), was developed. An adaptive acquisition algorithm that accounts for the interplay between navigator gating and undersampling patterns well-suited for compressed sensing was used to minimize scan time. Computer simulations, phantom experiments, and imaging of the left ventricle (LV) were used to optimize and evaluate ANGIE. ANGIE's high spatial resolution was demonstrated by T1 mapping of the right ventricle (RV). Comparisons were made to modified Look-Locker imaging (MOLLI). RESULTS: Retrospective reconstruction of fully sampled datasets demonstrated the advantages of the adaptive algorithm. For the LV, ANGIE measurements of T1 were in good agreement with MOLLI. For the RV, ANGIE achieved a spatial resolution of 1.2 × 1.2 mm(2) with a scan time of 157 ± 53 s per slice, and measured RV T1 values of 980 ± 96 ms versus 1076 ± 157 ms for lower-resolution MOLLI. ANGIE provided lower intrascan variation in the RV T1 estimate compared with MOLLI (P < 0.05). CONCLUSION: ANGIE enables high-resolution cardiac T1 mapping in clinically reasonable scan times. ANGIE opens the prospect of quantitative T1 mapping of thin cardiovascular structures such as the RV wall.


Subject(s)
Algorithms , Cardiac-Gated Imaging Techniques/methods , Heart Ventricles/anatomy & histology , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging, Cine/methods , Adult , Female , Humans , Male , Reproducibility of Results , Sensitivity and Specificity
9.
Magn Reson Med ; 73(4): 1555-61, 2015 Apr.
Article in English | MEDLINE | ID: mdl-24777586

ABSTRACT

PURPOSE: To develop and validate a respiratory motion compensation method for free-breathing cardiac cine imaging. METHODS: A free-breathing navigator-gated cine steady-state free precession acquisition (Cine-Nav) was developed which preserves the equilibrium state of the net magnetization vector, maintains the high spatial and temporal resolutions of standard breath-hold (BH) acquisition, and images entire cardiac cycle. Cine image data is accepted only from cardiac cycles occurring entirely during end-expiration. Prospective validation was performed in 10 patients by obtaining in each three complete ventricular image stacks with different respiratory motion compensation approaches: (1) BH, (2) free-breathing with 3 signal averages (3AVG), and (3) free-breathing with Cine-Nav. RESULTS: The subjective image quality score (1 = worst, 4 = best) for Cine-Nav (3.8 ± 0.4) was significantly better than for 3AVG (2.2 ± 0.5, P = 0.002), and similar to BH (4.0 ± 0.0, P = 0.13). The blood-to-myocardium contrast ratio for Cine-Nav (6.3 ± 1.5) was similar to BH (5.9 ± 1.6, P = 0.52) and to 3AVG (5.6 ± 2.5, P = 0.43). There were no significant differences between Cine-Nav and BH for the ventricular volumes and mass. In contrast, there were significant differences between 3AVG and BH in all of these measurements but right ventricular mass. CONCLUSION: Free-breathing cine imaging with Cine-Nav yielded comparable image quality and ventricular measurements to BH, and was superior to 3AVG.


Subject(s)
Artifacts , Heart Diseases/pathology , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging, Cine/methods , Respiratory-Gated Imaging Techniques/methods , Adult , Algorithms , Breath Holding , Female , Humans , Male , Middle Aged , Reproducibility of Results , Respiratory Mechanics , Sensitivity and Specificity , Young Adult
10.
NMR Biomed ; 27(3): 348-55, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24591124

ABSTRACT

Proton magnetic resonance spectroscopy ((1)H MRS) enables the non-invasive investigation of the human liver; however, because of technical difficulties it is not regularly used for diagnosis of liver diseases in clinical routine. Breathing motion is one of the major challenges, as it decreases spectral quality and leads to misplacement of the spectroscopic voxel. To overcome this problem, real-time navigator gating for spectral acquisition and preparation steps (B0 shimming, water frequency determination, receiver gain optimization, and water suppression) combined with short TE , optimized first order projection based B0 shimming, water suppression, and inner-volume saturated point resolved spectroscopy (PRESS) at 3 T is suggested. Simultaneous lipid and trimethylamine quantification is demonstrated by means of phantom, volunteer, and representative patient measurements. Precise localization of the voxel despite respiratory motion, increased spectral quality (higher signal-to-noise ratio and reduced linewidth) compared with measurements without respiratory gating, and the possibility of acquiring data without additional subject instructions regarding breathing enable robust and accurate liver (1)H MRS measurements with this novel acquisition protocol.


Subject(s)
Algorithms , Liver/pathology , Magnetic Resonance Spectroscopy/methods , Protons , Respiration , Choline/metabolism , Computer Systems , Female , Healthy Volunteers , Humans , Male , Models, Biological , Phantoms, Imaging
11.
Abdom Radiol (NY) ; 42(11): 2615-2622, 2017 11.
Article in English | MEDLINE | ID: mdl-28523414

ABSTRACT

PURPOSE: To demonstrate that fully navigated magnetic resonance spectroscopy (MRS) with inner-volume saturation (IVS) at 3 T results in high-quality spectra that permit evaluating metabolic changes in hepatic metastases without the need for patient compliance. METHODS: Nine patients with untreated, biopsy-proven large hepatic metastases (minimum diameter of 3 cm) were included. In each patient, localized proton MRS was performed in the metastatic lesion and in uninvolved liver parenchyma. To improve quality and consistency of proton MRS, navigator gating was thereby performed not only during acquisition of the spectroscopic data but also during localization imaging and throughout the preparation phases. IVS was utilized to reduce chemical shift displacement between different metabolites and to diminish flow artifacts. Metabolite quantities were normalized relative to the unsuppressed water peak and choline-containing compounds (CCC) to lipid ratios were determined. Wilcoxon signed-rank tests were used to assess differences in the amounts of lipids and CCC as well as the CCC-to-lipid ratios between liver metastases and normal-appearing liver parenchyma. RESULTS: Fully navigated point-resolved spectroscopy with IVS resulted in high-quality spectra in all patients. Navigator gating during localization imaging and spectroscopic acquisition thereby ensured a precise localization of the spectroscopic voxel. Decreased quantities of lipid and CCC were observed in metastatic tissue compared with uninvolved liver parenchyma. However, the latter trend fell short of statistical significance. Moreover, elevated levels of the CCC-to-lipid ratios were detected in metastatic tissue relative to normal-appearing liver parenchyma. CONCLUSIONS: The present study demonstrates that fully navigated MRS of the liver with IVS at 3 T allows for a precise localization of the spectroscopic voxel and results in high-quality spectra that permit evaluating liver metabolism without the need for patient compliance.


Subject(s)
Liver Neoplasms/diagnostic imaging , Liver Neoplasms/secondary , Proton Magnetic Resonance Spectroscopy , Aged , Aged, 80 and over , Biopsy , Female , Humans , Male , Middle Aged
12.
Circ Cardiovasc Imaging ; 10(6)2017 Jun.
Article in English | MEDLINE | ID: mdl-28611116

ABSTRACT

Cardiovascular magnetic resonance imaging has become the gold standard for evaluating myocardial function, volumes, and scarring. Additionally, cardiovascular magnetic resonance imaging is unique in its comprehensive tissue characterization, including assessment of myocardial edema, myocardial siderosis, myocardial perfusion, and diffuse myocardial fibrosis. Cardiovascular magnetic resonance imaging has become an indispensable tool in the evaluation of congenital heart disease, heart failure, cardiac masses, pericardial disease, and coronary artery disease. This review will highlight some recent novel cardiovascular magnetic resonance imaging techniques, concepts, and applications.


Subject(s)
Cardiovascular Diseases/diagnostic imaging , Coronary Circulation , Myocardial Perfusion Imaging/methods , Myocardium/pathology , Cardiomyopathies/diagnostic imaging , Cardiomyopathies/pathology , Cardiomyopathies/physiopathology , Cardiovascular Diseases/pathology , Cardiovascular Diseases/physiopathology , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/pathology , Coronary Artery Disease/physiopathology , Edema, Cardiac/diagnostic imaging , Edema, Cardiac/pathology , Edema, Cardiac/physiopathology , Fibrosis , Humans , Image Processing, Computer-Assisted , Predictive Value of Tests , Prognosis
13.
Magn Reson Imaging ; 33(8): 992-9, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25940391

ABSTRACT

BACKGROUND: Thoracic and abdominal 4D flow MRI is typically acquired in combination with navigator respiration control which can result in highly variable scan efficiency (Seff) and thus total scan time due to inter-individual variability in breathing patterns. The aim of this study was to test the feasibility of an improved respiratory control strategy based on diaphragm navigator gating with fixed Seff, respiratory driven phase encoding, and a navigator training phase. METHODS: 4D flow MRI of the thoracic aorta was performed in 10 healthy subjects at 1.5T and 3T systems for the in-vivo assessment of aortic time-resolved 3D blood flow velocities. For each subject, four 4D flow scans (1: conventional navigator gating, 2-4: new implementation with fixed Seff =60%, 80% and 100%) were acquired. Data analysis included semi-quantitative evaluation of image quality of the 4D flow magnitude images (image quality grading on a four point scale), 3D segmentation of the thoracic aorta, and voxel-by-voxel comparisons of systolic 3D flow velocity vector fields between scans. RESULTS: Conventional navigator gating resulted in variable Seff=74±13% (range=56%-100%) due to inter-individual variability of respiration patterns. For scans 2-4, the new navigator implementation was able to achieve predictable total scan times with stable Seff, only depending on heart rate. Semi- and fully quantitative analysis of image quality in 4D flow magnitude images was similar for the new navigator scheme compared to conventional navigator gating. For aortic systolic 3D velocities, good agreement was found between all new navigator settings (scan 2-4) with the conventional navigator gating (scan 1) with best performance for Seff=80% (mean difference=-0.01 m/s; limits of agreement=0.23 m/s, Pearson's ρ=0.89, p<0.001). No significant differences for image quality or 3D systolic velocities were found for 1.5T compared to 3T. CONCLUSIONS: The findings of this study demonstrate the feasibility of the new navigator scheme to acquire 4D flow data with more predictable scan time while maintaining image quality and 3D velocity information, which may prove beneficial for clinical applications.


Subject(s)
Aorta, Thoracic/physiology , Blood Flow Velocity/physiology , Image Enhancement/methods , Imaging, Three-Dimensional/methods , Magnetic Resonance Angiography/methods , Respiratory-Gated Imaging Techniques/methods , Adult , Aged , Algorithms , Aorta, Thoracic/anatomy & histology , Feasibility Studies , Female , Humans , Image Interpretation, Computer-Assisted/methods , Male , Middle Aged , Reproducibility of Results , Sensitivity and Specificity , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL