Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Mol Divers ; 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39327355

ABSTRACT

Plant-parasitic nematodes are seriously affecting agricultural production worldwide and there are few highly effective and low-risk nematicides to control nematode diseases. In order to discover new nematicides, a series of 1,2,4-oxadiazole derivatives containing amide fragments have been designed and synthesized with the principle of active substructure splicing. The nematicidal activity of the target compounds was evaluated in vitro and it indicated that compound C3 exhibited the most nematicidal activity against Bursaphelenchus xylophilus, Aphelenchoides besseyi, and Ditylenchus destructor with the LC50 values of 37.2, 36.6, and 43.4 µg/mL, respectively, which were superior to positive agent tioxazafen. The preliminary mechanism results revealed that compound C3 not only inhibited the reproduction of B. xylophilus populations, but also affected the production of ROS and the accumulation of lipofuscin and lipids. Furthermore, compound C3 showed good inhibition of succinate dehydrogenase (SDH) with the IC50 value of 45.5 µmol/L. Molecular docking indicated that compound C3 had excellent binding to amino acids around the SDH active pocket. This work indicated that 1,2,4-oxadiazole derivative containing amide fragment is a promising template for the discovery of new nematicides and compound C3 can be used as a potential nematicide candidate.

2.
Int J Mol Sci ; 25(13)2024 Jun 24.
Article in English | MEDLINE | ID: mdl-39000026

ABSTRACT

Bursaphelenchus xylophilus is a dangerous quarantine pest that causes extensive damage to pine ecosystems worldwide. Cyclobutrifluram, a succinate dehydrogenase inhibitor (SDHI), is a novel nematicide introduced by Syngenta in 2013. However, the nematocidal effect of cyclobutrifluram against plant-parasitic nematodes remains underexplored. Therefore, here, we aim to address this knowledge gap by evaluating the toxicity, effects, and mode of action of cyclobutrifluram on B. xylophilus. The result shows that cyclobutrifluram is the most effective agent, with an LC50 value of 0.1078 mg·L-1. At an LC20 dose, it significantly reduced the population size to 10.40 × 103 ± 737.56-approximately 1/23 that of the control group. This notable impact may stem from the agent's ability to diminish egg-laying and hatching rates, as well as to impede the nematodes' development. In addition, it has also performed well in the prevention of pine wilt disease, significantly reducing the incidence in greenhouses and in the field. SDH consists of a transmembrane assembly composed of four protein subunits (SDHA to SDHD). Four sdh genes were characterized and proved by RNAi to regulate the spawning capacity, locomotion ability, and body size of B. xylophilus. The mortality of nematodes treated with sdhc-dsRNA significantly decreased upon cyclobutrifluram application. Molecular docking further confirmed that SDHC, a cytochrome-binding protein, is the target. In conclusion, cyclobutrifluram has a good potential for trunk injection against B. xylophilus. This study provides valuable information for the screening and application of effective agents in controlling and preventing PWD in forests.


Subject(s)
Antinematodal Agents , Succinate Dehydrogenase , Tylenchida , Animals , Succinate Dehydrogenase/genetics , Succinate Dehydrogenase/antagonists & inhibitors , Succinate Dehydrogenase/metabolism , Antinematodal Agents/pharmacology , Tylenchida/drug effects , Tylenchida/genetics , Tylenchida/physiology , Pinus/parasitology , Molecular Docking Simulation , Plant Diseases/parasitology , Mitochondria/drug effects , Mitochondria/metabolism
3.
Molecules ; 29(7)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38611813

ABSTRACT

Over the years, several new medicinal substances have been introduced for the treatment of diseases caused by bacteria and parasites. Unfortunately, due to the production of numerous defense mechanisms by microorganisms and parasites, they still pose a serious threat to humanity around the world. Therefore, laboratories all over the world are still working on finding new, effective methods of pharmacotherapy. This research work aimed to synthesize new compounds derived from 3-trifluoromethylbenzoic acid hydrazide and to determine their biological activity. The first stage of the research was to obtain seven new compounds, including six linear compounds and one derivative of 1,2,4-triazole. The PASS software was used to estimate the potential probabilities of biological activity of the newly obtained derivatives. Next, studies were carried out to determine the nematocidal potential of the compounds with the use of nematodes of the genus Rhabditis sp. and antibacterial activity using the ACCT standard strains. To determine the lack of cytotoxicity, tests were performed on two cell lines. Additionally, an antioxidant activity test was performed due to the importance of scavenging free radicals in infections with pathogenic microorganisms. The conducted research proved the anthelmintic and antibacterial potential of the newly obtained compounds. The most effective were two compounds with a 3-chlorophenyl substituent, both linear and cyclic derivatives. They demonstrated higher efficacy than the drugs used in treatment.


Subject(s)
Anti-Bacterial Agents , Antinematodal Agents , Semicarbazides , Anti-Bacterial Agents/pharmacology , Cell Line , Hydrazines
4.
Int J Mol Sci ; 24(6)2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36982843

ABSTRACT

Plant-parasitic nematodes pose a serious threat to crops and cause substantial financial losses due to control difficulties. Tioxazafen (3-phenyl-5-thiophen-2-yl-1,2,4-oxadiazole) is a novel broad-spectrum nematicide developed by the Monsanto Company, which shows good prevention effects on many kinds of nematodes. To discover compounds with high nematocidal activities, 48 derivatives of 1,2,4-oxadiazole were obtained by introducing haloalkyl at the 5-position of tioxazafen, and their nematocidal activities were systematically evaluated. The bioassays revealed that most of 1,2,4-oxadiazole derivatives showed remarkable nematocidal activities against Bursaphelenchus xylophilus, Aphelenchoides besseyi, and Ditylenchus dipsaci. Notably, compound A1 showed excellent nematocidal activity against B. xylophilus with LC50 values of 2.4 µg/mL, which was superior to that of avermectin (335.5 µg/mL), tioxazafen (>300 µg/mL), and fosthiazate (436.9 µg/mL). The transcriptome and enzyme activity results indicate that the nematocidal activity of compound A1 was mainly related to the compound which affected the acetylcholine receptor of B. xylophilus.


Subject(s)
Nematoda , Tylenchida , Animals , Oxadiazoles/pharmacology , Antinematodal Agents/pharmacology , Crops, Agricultural
5.
J Invertebr Pathol ; 189: 107726, 2022 03.
Article in English | MEDLINE | ID: mdl-35122837

ABSTRACT

The pine wilt disease is caused by the pinewood nematode Bursaphelenchus xylophilus and it results in serious ecological and economic losses. Therefore, effective prevention and control methods for the pinewood nematode are urgently required. Bacillus thuringiensis (Bt), a widely used microbial insecticide, produces toxins that are toxic to several species of parasitic nematodes, however, its effects on B. xylophilus have not been determined. In this study, Cry5Ba3, App6Aa2, Cry12Aa1, Cry13Aa1, Cry14Aa1, Cry21Aa3, Cry21Fa1, Xpp55Aa1, and Cyt8Aa1 toxins' nematocidal activity against B. xylophilus was evaluated, six toxins with high toxicity were identified: App6Aa2 (LC50 = 49.71 µg/mL), Cry13Aa1 (LC50 = 53.17 µg/mL), Cry12Aa1 (LC50 = 58.88 µg/mL), Cry5Ba3 (LC50 = 63.99 µg/mL), Xpp55Aa1 (LC50 = 65.14 µg/mL), and Cyt8Aa1 (LC50 = 96.50 µg/mL). The six toxins caused shrinkage and thinning of the intestinal cells, contraction of the intestine from the body wall, vacuolization, and degenerated appearance of the pinewood nematodes. The results of this study provide basic information to study the action mechanism of nematocidal toxins on the pinewood nematode and direction for the use of nematocidal toxins in the biological control of B. xylophilus.


Subject(s)
Pinus , Rhabditida , Animals , Antinematodal Agents/pharmacology , Bacillus thuringiensis Toxins , Pinus/parasitology , Xylophilus
6.
Int J Mol Sci ; 23(15)2022 Jul 30.
Article in English | MEDLINE | ID: mdl-35955606

ABSTRACT

The antibiotic and nematocidal activities of extracts from two coastal lichen species collected on Lampedusa Island (Sicily), Ramalina implexa Nyl. and Roccella phycopsis Ach., were tested. Methyl orsellinate, orcinol, (+)-montagnetol, and for the first time 4-chlororcinol were isolated from Roccella phycopsis. (+)-Usnic acid was obtained from Ramalina implexa. The crude organic extract of both lichen species showed strong antibiotic activity against some bacterial species and nematocidal activity. Among all the pure metabolites tested against the infective juveniles (J2) of the root-knot nematode (RKN) Meloydogine incognita, (+)-usnic acid, orcinol, and (+)-montagnetol had significant nematocidal activity, comparable with that of the commercial nematocide Velum® Prime, and thus they showed potential application in agriculture as a biopesticide. On the contrary, methyl orsellinate and 4-chlororcinol had no nematocidal effect. These results suggest that the substituent pattern at ortho-para-position in respect to both hydroxyl groups of resorcine moiety, which is present in all metabolites, seems very important for nematocidal activity. The organic extracts of both lichens were also tested against some Gram-positive and Gram-negative bacteria. Both extracts were active against Gram-positive species. The extract of Ramalina implexa showed, among Gram-negative species, activity against Escherichia coli and Acinetobacter baumannii, while that from Roccella phycopsis was effective towards all test strains, with the exception of Pseudomonas aeruginosa. The antimicrobial activity of (+)-usnic acid, methyl orsellinate, and (+)-montagnetol is already known, so tests were focused on orcinol and 4-chlororcinol. The former showed antibacterial activity against all Gram positive and Gram-negative test strains, with the exception of A. baumannii and K. pneumoniae, while the latter exhibited a potent antibacterial activity against Gram-positive test strains and among Gram-negative strains, was effective against A. baumannii and K. pneumonia. These results suggest, for orcinol and 4-chlororcinol, an interesting antibiotic potential against both Gram-positive and Gram-negative bacterial strains.


Subject(s)
Lichens , Anti-Bacterial Agents/metabolism , Antinematodal Agents/metabolism , Antinematodal Agents/pharmacology , Ascomycota , Escherichia coli , Gram-Negative Bacteria , Gram-Positive Bacteria , Microbial Sensitivity Tests , Sicily
7.
J Asian Nat Prod Res ; 23(9): 837-843, 2021 Sep.
Article in English | MEDLINE | ID: mdl-32851866

ABSTRACT

Two new milbemycin metabolites, 13α-hydroxymilbemycin ß13 (1) and 26-methyl-13α-hydroxymilbemycin ß13 (2), were isolated from the fermentation broth of a genetically engineered strain Streptomyces avermitilis AVE-H39. Their structures were determined by the comprehensive spectroscopic data, including 1 D, 2 D NMR, MS spectral analysis and the comparison with data from the literature. Compounds 1 and 2 not only exhibited potent acaricidal activities against Tetranychus cinnabarinus, but also had nematocidal activity against Bursaphelenchus xylophilus.


Subject(s)
Streptomyces , Macrolides/pharmacology , Molecular Structure , Streptomyces/genetics
8.
Bioorg Med Chem Lett ; 30(2): 126814, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31740248

ABSTRACT

A series of α-haloacetophenones and analogues were synthesized. The bioassays show that some target compounds have good antibacterial activity against Xanthomonas oryzae pv. oryzae (Xoo), Xanthomonas axonopodis pv. citri (Xac) and Meloidogyne incognita (M. incognita). Especially, the compound 24 has good in vitro and in vivo antibacterial activities against Xoo, the EC50 value, curative and protection activities are 0.09 mg/L, 48.9%, and 52.3%, respectively, which are better than the thiodiazole copper and bismerthiazol. Meanwhile, the compound 24 has good in vitro antibacterial activity against Xac, and has an EC50 value of 1.6 mg/L. Moreover, the compound 19 exhibits good nematicidal activity M. incognita, with the LC50 value of 1.0 mg/L, which is better than the positive control avermectin. In addition, the compound 24 can inhibit the formation of extracellular polysaccharide and biofilm of Xoo, and change the permeability of cell membrane. α-haloacetophenone and analogues have the advantages of simple structure, high efficiency, broad spectrum of biological activity, and can be used as antibacterial agents and nematicides or lead compounds in the future.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Antinematodal Agents/therapeutic use , Xanthomonas/pathogenicity , Anti-Bacterial Agents/pharmacology , Antinematodal Agents/pharmacology , Structure-Activity Relationship
9.
Molecules ; 25(12)2020 Jun 23.
Article in English | MEDLINE | ID: mdl-32586022

ABSTRACT

With the aim to identify novel inhibitors of parasitic nematode thymidylate synthase (TS), we screened in silico an in-house library of natural compounds, taking advantage of a model of nematode TS three-dimensional (3D) structure and choosing candidate compounds potentially capable of enzyme binding/inhibition. Selected compounds were tested as (i) inhibitors of the reaction catalyzed by TSs of different species, (ii) agents toxic to a nematode parasite model (C. elegans grown in vitro), (iii) inhibitors of normal human cell growth, and (iv) antitumor agents affecting human tumor cells grown in vitro. The results pointed to alvaxanthone as a relatively strong TS inhibitor that causes C. elegans population growth reduction with nematocidal potency similar to the anthelmintic drug mebendazole. Alvaxanthone also demonstrated an antiproliferative effect in tumor cells, associated with a selective toxicity against mitochondria observed in cancer cells compared to normal cells.


Subject(s)
Antinematodal Agents/pharmacology , Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Thymidylate Synthase/antagonists & inhibitors , Xanthones/pharmacology , Adenosine Triphosphate/metabolism , Animals , Caenorhabditis elegans/drug effects , Caspase 3/metabolism , Caspase 7/metabolism , Cell Adhesion/drug effects , Cell Death/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Enzyme Inhibitors/chemistry , Humans , Inhibitory Concentration 50 , Small Molecule Libraries , Thymidylate Synthase/metabolism , Toxicity Tests , Xanthones/chemistry
10.
J Helminthol ; 94: e135, 2020 Mar 04.
Article in English | MEDLINE | ID: mdl-32127057

ABSTRACT

Haemonchus contortus is a haematophagous gastrointestinal nematode (GIN) that causes severe anaemia and even death in small ruminants, negatively impacting the economic viability of farms. Traditionally, this parasite has been controlled with chemical compounds; however, inadequate use of these types of products has favoured the emergence of anthelmintic resistance. Therefore, it is necessary to search for alternatives for GIN control. Previous studies have reported the anthelmintic activity of edible mushroom extracts against H. contortus. A recent study reported that a fraction constituted of different fatty acids and ß-sitosterol isolated from the basidiomata of the edible mushroom Pleurotus djamor ECS-123 has ovicidal and larvicidal activity against H. contortus. Thus, this study aimed to assess the anthelmintic activity of the pure molecules: pentadecanoic acid, palmitic acid, ß-sitosterol, stearic acid and linoleic acid. For this purpose, an egg-hatching inhibition test was carried out in which the compounds were evaluated individually and in combination at a final concentration of 20 mg mL-1. Furthermore, larval mortality was assessed using a combination of the five commercial compounds previously mentioned at different concentrations (1.25-20 mg mL-1). Palmitic acid and stearic acid, in some combinations, inhibited H. contortus egg hatching by 100%. On the other hand, in the larval mortality test, the combination of the five compounds showed dose-dependent behaviour, and 100% mortality was obtained 24 h post-incubation. Pure molecules and their combinations have anthelmintic-like activity against the eggs and larvae of H. contortus.


Subject(s)
Antinematodal Agents/pharmacology , Fatty Acids/pharmacology , Haemonchus/drug effects , Sitosterols/pharmacology , Agaricales/chemistry , Animals , Biological Assay , Fatty Acids/chemistry , Fatty Acids/classification , Gastrointestinal Tract/parasitology , Larva/drug effects , Male , Plant Extracts/pharmacology , Sheep/parasitology
11.
J Helminthol ; 94: e190, 2020 Sep 11.
Article in English | MEDLINE | ID: mdl-32912343

ABSTRACT

The main goal of this work was to evaluate the in vitro biological activity of two ferrocenyl chalcones (FcC-1 and FcC-2) against Haemonchus contortus (third-stage larvae (L3)) and Nacobbus aberrans (second-stage juveniles (J2)). Both compounds were synthesized and characterized by usual spectroscopic methods and their molecular structures were confirmed by single-crystal X-ray diffractometry. Nematode strains were examined in terms of percentage mortality of H. contortus (L3) by the action of FcC-1, which showed an effectivity of 100% at a concentration of 342 µM in 24 h, with EC50 = 20.33 µM and EC90 = 162.76 µM, whereas FcC-2 had an effectivity of 72% at a concentration of 342 µM in 24 h, with EC50 = 167.39 µM and EC90 = 316.21 µM. The effect of FcC-1 against nematode phytoparasite N. aberrans showed a better percentage of 95% at a concentration of 342 µM, with EC50 = 7.18 µM and EC90 = 79.25 µM, whereas the effect of FcC-2 was 87% at 342 µM, with EC50 = 168 µM and EC90 = 319.56 µM at 36 h. After treatment, the scanning electron micrographs revealed deformities in the dorsal flank and posterior part close to the tail of H. contortus L3. They showed moderate in vitro nematicidal activity against H. contortus L3 and N. aberrans J2.


Subject(s)
Antinematodal Agents/pharmacology , Chalcones/pharmacology , Ferrous Compounds/pharmacology , Haemonchus/drug effects , Tylenchoidea/drug effects , Animals , Antinematodal Agents/chemistry , Chalcones/chemistry , Ferrous Compounds/chemistry , Haemonchiasis/parasitology , Larva/drug effects , Plant Extracts/pharmacology
12.
Bioorg Med Chem Lett ; 29(10): 1203-1210, 2019 05 15.
Article in English | MEDLINE | ID: mdl-30902458

ABSTRACT

A series of novel amide derivatives containing 1,3,4-thiadiazole moiety were synthesized and their bioactivities were evaluated. The compound 34 exhibited good nematocidal activities against Meloidogyne incognita in vitro and in vivo, the LC50 value and control effect were 6.5 mg/L and 83.3%, respectively. Meanwhile, it exhibited exciting antibacterial activities against Xanthomonas oryzae pv. oryzae, Xanthomonas campestris pv. citri, and Ralstonia solanacearum, the EC50 values were 0.4, 6.7 and 5.1 mg/L, respectively, which were better than positive controls. The curative and protection activities under the greenhouse conditions of compound 34 against rice bacterial blight were 47.9 and 55.8%, respectively. The structure-activity relationship were analyzed in detail.


Subject(s)
Amides/chemistry , Anti-Bacterial Agents/chemical synthesis , Antinematodal Agents/chemical synthesis , Drug Design , Thiadiazoles/chemistry , Anti-Bacterial Agents/pharmacology , Antinematodal Agents/pharmacology , Microbial Sensitivity Tests , Quantitative Structure-Activity Relationship , Ralstonia solanacearum/drug effects , Thiadiazoles/pharmacology , Xanthomonas/drug effects
13.
Biosci Biotechnol Biochem ; 83(12): 2194-2197, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31357905

ABSTRACT

The nematocidal activities of the fatty acid esters of d-allose were examined using the larvae of C. elegans. Among the fatty acid esters, 6-O-octanoyl-d-allose (3) showed significant activity. 6-O-octanoyl-d-glucose (5) showed no activity, indicating that the D-allose moiety is essential for the nematocidal activity of 3. A nonhydrolyzable alkoxy analog 6-O-octyl-d-allose (6) also showed activity equivalent to that of 3.


Subject(s)
Antinematodal Agents/pharmacology , Caenorhabditis elegans/growth & development , Glucose/pharmacology , Larva/drug effects , Animals , Glucose/chemistry
14.
Exp Parasitol ; 200: 16-23, 2019 May.
Article in English | MEDLINE | ID: mdl-30914262

ABSTRACT

Gastrointestinal nematodes (GIN) are responsible for enormous economic losses worldwide. The use of anthelmintic drugs reduces the parasitic burden in ruminants. However, the excessive use of these drugs triggers anthelmintic resistance in these parasites, which leads to a worrisome inefficacy of most of the commercially available antiparasitic drugs. Caesalpinia coriaria is an arboreal legume possessing medical properties, although the antiparasitic potential of this plant against animal parasitic nematodes has not yet been studied. The aim of this study was to assess the in vitro ovicidal activity of a hydro-alcoholic extract (HA-E) from C. coriaria fruits against GIN and to identify the compounds responsible for this activity through an egg hatch inhibition (EHI) assay. GIN eggs obtained from cattle faeces were used in bio-guided assays. The HA-E was subjected to a liquid-liquid extraction using water and ethyl acetate to obtain two fractions, an organic fraction (EtOAc-F, 27% yield) and an aqueous (Aq-F, 73% yield) fraction. The chromatographic fractionation of the EtOAc-F (2 gr) was performed on a glass column packed with silica gel and eluted with dichloromethane/methanol with 10% ascending polarity. The bioactive compounds were analysed using high-performance liquid chromatography (HPLC) with UV detection, nuclear magnetic resonance (NMR) spectroscopy and mass spectroscopy (MS). The HA-E extract and the EtOAc-F showed ovicidal activity at a LC50 of 0.92 and 0.16 mg/mL, respectively. A concentration-dependant effect was observed in both treatments. Chromatographic fractionation of the EtOAc-F, allowed for the isolation and characterisation of three important compounds: methyl gallate (1), gallic acid (2) and an unidentified compound (UC). The bioactive molecules (2 and UC) displayed an ovicidal activity close to 100% at 1 mg/mL concentration. The results of this work show that gallic acid (2) isolated from C. coriaria fruits is responsible for its ovicidal activity. The use of Caesalpinia coriaria could be explored in future studies as an environmentally-friendly alternative for the control of GIN in ruminants.


Subject(s)
Caesalpinia/chemistry , Cattle Diseases/drug therapy , Intestinal Diseases, Parasitic/drug therapy , Nematode Infections/drug therapy , Plant Extracts/pharmacology , Animals , Cattle , Chromatography, High Pressure Liquid/veterinary , Chromatography, Thin Layer/veterinary , Gallic Acid/chemistry , Gallic Acid/pharmacology , Gallic Acid/therapeutic use , Nematoda/drug effects , Ovum/drug effects , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plant Extracts/therapeutic use
15.
Bioorg Med Chem Lett ; 26(15): 3626-8, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27301365

ABSTRACT

A series of novel chiral fluorinated pyrazole carboxamides derivatives were designed and synthesized. All these title compounds were confirmed by NMR and MS. The primarily nematocidal activity results indicated that some of them exhibited good control efficacy against the tomato root-knot nematode disease caused by Meloidogyne incognita. The docking results indicated that compound 5n interact with amino acid residue Tyr 121, Trp 279 of AchE via hydrogen bond.


Subject(s)
Antinematodal Agents/pharmacology , Molecular Docking Simulation , Pyrazoles/pharmacology , Tylenchoidea/drug effects , Animals , Antinematodal Agents/chemical synthesis , Antinematodal Agents/chemistry , Dose-Response Relationship, Drug , Molecular Structure , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Structure-Activity Relationship
16.
Pathogens ; 13(6)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38921796

ABSTRACT

BACKGROUND: Arthrobotrys species are nematophagous fungi that secrete extracellular nematocidal products (ECP). The individual and combined effects of ECP from Arthrobotrys oligospora (Ao) and A. musiformis (Am) growth in liquid media against Haemonchus contortus L3 (HcL3) were assessed. METHODS: The isolation, morphological (MI) and molecular identification (Mol-I), assessment of nematocidal activity (NA) of fungal liquid culture filtrates (LCF) in two liquid media alone and in combination and the myco-compound profile identification (MCP) were performed. RESULTS: The MI suggested that the fungi corresponded to the species Ao and Am. This result was confirmed by PCR analysis followed by sequencing, alignment and a phylogenetic analysis. Likewise, the highest Hc mortalities were 91.4% with individual LCF of Am and 86.2% with those of Ao at the highest concentration (100 mg/mL) in Czapek-Dox Broth. The combination of both LCF resulted in a similarly high larval mortality with no statistical differences in relation to individual activity (p > 0.05). The MCP showed the presence of alkaloids in both fungi. Coumarins, sterols and saponins were found only in Ao. MAIN CONCLUSIONS: Both fungi produced ECP with a high NA that could be identified and assessed in future studies as potential natural anthelmintic compounds.

17.
Pharmaceutics ; 16(9)2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39339260

ABSTRACT

Background: Strongyloidiasis, a parasitic infection, presents a significant public health challenge in tropical regions due to the limited repertoire of effective treatments. The screening of chemical libraries against the therapeutically relevant third-stage larvae (L3) of the model parasite Strongyloides venezuelensis yielded meager success rates. This situation is reminiscent of Gram-negative bacteria, where drug entry is a limiting factor. Methods: Here, we set out to determine whether similar barriers are in place and establish whether structural and property requirements exist for anti-strongyloides drug discovery. We focused on dyes as their uptake and effects on viability can be independently assessed in the multicellular parasite, thus providing a means to study the possibility of similar entry rules. We tested different dyes in in vitro assays on L3s. Results: We found that staining was necessary to reduce parasite viability, with some dyes achieving anti-strongyloides effects at concentrations similar to those of the reference drug, ivermectin (IV). Some dyes also showed activity against female adults at concentrations well below that of ivermectin. Unfortunately, the most potent dye, Methylene Blue, was unable to prevent the infection in a preliminary in vivo mouse model assay, presumably due to fast dye clearance. Structural analysis showed that positive charges facilitated the access of the compounds to the L3 tissue, thus providing a structural tool for the introduction of activity. For female adults, low globularity is additionally required. As a proof of concept, we added a positive charge to an inactive compound of one of our chemical libraries and re-determined the activity. Conclusions: These findings allow us to establish structural rules for parasite entry that could be of interest for future drug screening or drug development campaigns. These rules might also be applicable to other related parasites.

18.
Bioorg Med Chem Lett ; 23(20): 5710-3, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-23992860

ABSTRACT

Two nemadectin congeners 1 and 2 were isolated from the fermentation broth of a mutant strain (Y-3) of Streptomyces microflavus neau3. Their structures were determined on the basis of extensive spectroscopic analysis and comparison with data from the literature. Compound 2 possessed a 5-membered ring lactone that is unprecedented among known milbemycins and avermectins. Both compounds 1 and 2 exhibited potent acaricidal activity and nematocidal activity. Especially, compound 2 demonstrated impressive acaricidal activity against adult mites with an IC50 of 2.3±0.9 µg/mL and mite eggs with an IC50 of 17.5±2.1 µg/mL and nematocidal activity against Caenorhabditis elegans with an IC50 of 0.7±0.2 µg/mL, which are higher than those of nemadectin and the known commercial acaricide and nematocide milbemycin A3/A4.


Subject(s)
Macrolides/chemistry , Streptomyces/chemistry , Acaricides/chemistry , Acaricides/isolation & purification , Acaricides/toxicity , Animals , Antinematodal Agents/chemistry , Antinematodal Agents/isolation & purification , Antinematodal Agents/toxicity , Caenorhabditis elegans/drug effects , Macrolides/isolation & purification , Macrolides/toxicity , Magnetic Resonance Spectroscopy , Mites/drug effects , Molecular Conformation , Streptomyces/metabolism
19.
Plants (Basel) ; 12(19)2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37836145

ABSTRACT

Researchers are looking for the most effective ways to extract the bioactive substances of Juniperus communis L. berries, which are capable of displaying the greatest range of biological activity, namely antimicrobial potential "against phytopathogens", antioxidant activity and nematocidal activity. This study provides detailed information on the chemical activity, group composition and biological activity of the extracts of juniper berries of 1- and 2-year maturity (JB1 and JB2), which were obtained by using different solvents (pentane, chloroform, acetone, methanol and 70% ethanol) under various extraction conditions (maceration and ultrasound-assisted maceration (US)). Seventy percent ethanol and acetone extracts of juniper berries were analyzed via gas chromatography-mass spectrometry, and they contained monoterpenes, sesquiterpenes, polysaccharides, steroids, fatty acid esters and bicyclic monoterpenes. The antimicrobial activity was higher in the berries of 1-year maturity, while the acetone extract obtained via ultrasound-assisted maceration was the most bioactive in relation to the phytopathogens. Depending on the extraction method and the choice of solvent, the antioxidant activity with the use of US decreased by 1.5-1.9 times compared to the extracts obtained via maceration. An analysis of the nematocidal activity showed that the sensitivity to the action of extracts in Caenorhabditis elegans was significantly higher than in Caenorhabditis briggsae, particularly for the acetone extract obtained from the juniper berries of 1-year maturity.

20.
Nat Prod Res ; 37(7): 1212-1216, 2023 Apr.
Article in English | MEDLINE | ID: mdl-34623207

ABSTRACT

A new ß-class milbemycin, 13α-hydroxy milbemycin ß6 (1), was isolated from the fermentation broth of a mutant of genetically engineered strain Streptomyces avermitilis AVE-H39. Its structure and absolute configuration were elucidated by extensive spectroscopic methods and confirmed by single crystal X-ray diffraction.


Subject(s)
Acaricides , Acaricides/chemistry , Molecular Structure , Macrolides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL