Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Nanotechnology ; 35(43)2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39105490

ABSTRACT

Ammonia (NH3) is a versatile and important compound with a wide range of uses, which is currently produced through the demanding Haber-Bosch process. Electrocatalytic nitrate reduction into ammonia (NRA) has recently emerged as a sustainable approach for NH3synthesis under ambient conditions. However, the NRA catalysis is a complex multistep electrochemical process with competitive hydrogen evolution reaction that usually results in poor selectivity and low yield rate for NH3synthesis. With maximum atom utilization and well-defined catalytic sites, single atom catalysts (SACs) display high activity, selectivity and stability toward various catalytic reactions. Very recently, a number of SACs have been developed as promising NRA electrocatalysts, but systematical discussion about the key factors that affect their NRA performance is not yet to be summarized to date. This review focuses on the latest breakthroughs of SACs toward NRA catalysis, including catalyst preparation, catalyst characterization and theoretical insights. Moreover, the challenges and opportunities for improving the NRA performance of SACs are discussed, with an aim to achieve further advancement in developing high-performance SACs for efficient NH3synthesis.

2.
Angew Chem Int Ed Engl ; 63(4): e202315109, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38059554

ABSTRACT

Electrochemical reduction of nitrate waste is promising for environmental remediation and ammonia preparation. This process includes multiple hydrogenation steps, and thus the active hydrogen behavior on the surface of the catalyst is crucial. The crystal phase referred to the atomic arrangements in crystals has a great effect on active hydrogen, but the influence of the crystal phase on nitrate reduction is still unclear. Herein, enzyme-mimicking MoS2 in different crystal phases (1T and 2H) are used as models. The Faradaic efficiency of ammonia reaches ≈90 % over 1T-MoS2 , obviously outperforming that of 2H-MoS2 (27.31 %). In situ Raman spectra and theoretical calculations reveal that 1T-MoS2 produces more active hydrogen on edge S sites at a more positive potential and conducts an effortless pathway from nitrate to ammonia instead of multiple energetically demanding hydrogenation steps (such as *HNO to *HNOH) performed on 2H-MoS2 .

3.
Angew Chem Int Ed Engl ; 63(30): e202404819, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-38728151

ABSTRACT

Interfacial engineering of synergistic catalysts is one of the keys to achieving multiple proton-coupled electron transfer processes in nitrate-to-ammonia conversion. Herein, by joining ultrathin nickel-based metal-organic framework (denoted Ni-MOF) nanosheets with few-layered hydrogen-substituted graphdiyne-supported copper single atoms and clusters (denoted HsGDY@Cu), a tandem catalyst of Ni-MOFs@HsGDY@Cu with dual-active interfaces was developed for the concerted catalysis of nitrate-to-ammonia. In such a system, the sandwiched HsGDY layer could serve as a bridge to connect the coordinated unsaturated Ni2+ sites with Cu single atoms/clusters in a limited range of 0 to 3.6 nm. From Ni2+ to Cu, via the hydrogen spillover process, the hydrogen radicals (H⋅) generated at the unsaturated Ni2+ sites could migrate across HsGDY to the Cu sites to participate in the transformation of *HNO3 to NH3. From Cu to Ni2+, bypassing the higher reaction energy for *HNO3 formation on the Ni2+ sites, the NO2 - detached from the Cu sites could diffuse onto the unsaturated Ni2+ sites to form NH3 as well. The combined results make this hybrid a tandem catalyst with dual active sites for the catalysis of nitrate-to-ammonia conversion with improved Faradaic efficiency at lower overpotentials.

4.
Angew Chem Int Ed Engl ; 63(31): e202406046, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-38771293

ABSTRACT

The electrochemical nitrate reduction reaction (NO3RR) is able to convert nitrate (NO3 -) into reusable ammonia (NH3), offering a green treatment and resource utilization strategy of nitrate wastewater and ammonia synthesis. The conversion of NO3 - to NH3 undergoes water dissociation to generate active hydrogen atoms and nitrogen-containing intermediates hydrogenation tandemly. The two relay processes compete for the same active sites, especially under pH-neutral condition, resulting in the suboptimal efficiency and selectivity in the electrosynthesis of NH3 from NO3 -. Herein, we constructed a Cu1-Fe dual-site catalyst by anchoring Cu single atoms on amorphous iron oxide shell of nanoscale zero-valent iron (nZVI) for the electrochemical NO3RR, achieving an impressive NO3 - removal efficiency of 94.8 % and NH3 selectivity of 99.2 % under neutral pH and nitrate concentration of 50 mg L-1 NO3 --N conditions, greatly surpassing the performance of nZVI counterpart. This superior performance can be attributed to the synergistic effect of enhanced NO3 - adsorption on Fe sites and strengthened water activation on single-atom Cu sites, decreasing the energy barrier for the rate-determining step of *NO-to-*NOH. This work develops a novel strategy of fabricating dual-site catalysts to enhance the electrosynthesis of NH3 from NO3 -, and presents an environmentally sustainable approach for neutral nitrate wastewater treatment.

5.
Angew Chem Int Ed Engl ; 63(18): e202401924, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38366134

ABSTRACT

Nitrate electroreduction reaction (eNO3 -RR) to ammonia (NH3) provides a promising strategy for nitrogen utilization, while achieving high selectivity and durability at an industrial scale has remained challenging. Herein, we demonstrated that the performance of eNO3 -RR could be significantly boosted by introducing two-dimensional Cu plates as electrocatalysts and eliminating the general carrier gas to construct a steady fluid field. The developed eNO3 -RR setup provided superior NH3 Faradaic efficiency (FE) of 99 %, exceptional long-term electrolysis for 120 h at 200 mA cm-2, and a record-high yield rate of 3.14 mmol cm-2 h-1. Furthermore, the proposed strategy was successfully extended to the Zn-nitrate battery system, providing a power density of 12.09 mW cm-2 and NH3 FE of 85.4 %, outperforming the state-of-the-art eNO3 -RR catalysts. Coupled with the COMSOL multiphysics simulations and in situ infrared spectroscopy, the main contributor for the high-efficiency NH3 production could be the steady fluid field to timely rejuvenate the electrocatalyst surface during the electrocatalysis.

6.
Angew Chem Int Ed Engl ; 63(27): e202406750, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38651747

ABSTRACT

Electrocatalytic reduction of nitrate to ammonia provides a green alternate to the Haber-Bosch method, yet it suffers from sluggish kinetics and a low yield rate. The nitrate reduction follows a tandem reaction of nitrate reduction to nitrite and subsequent nitrite hydrogenation to generate ammonia, and the ammonia Faraday efficiency (FE) is limited by the competitive hydrogen evolution reaction. Herein, we design a heterostructure catalyst to remedy the above issues, which consists of Ni nanosphere core and Ni(OH)2 nanosheet shell (Ni/Ni(OH)2). In situ Raman spectroscopy reveals Ni and Ni(OH)2 are interconvertible according to the applied potential, facilitating the cascade nitrate reduction synergistically. Consequently, it attains superior electrocatalytic nitrate reduction performance with an ammonia FE of 98.50 % and a current density of 0.934 A cm-2 at -0.476 V versus reversible hydrogen electrode, and exhibits an average ammonia yield rate of 84.74 mg h-1 cm-2 during the 102-hour stability test, which is highly superior to the reported catalysts tested under similar conditions. Density functional theory calculations corroborate the synergistic effect of Ni and Ni(OH)2 in the tandem reaction of nitrate reduction. Moreover, the Ni/Ni(OH)2 catalyst also possesses good capability for methanol oxidation and thus is used to establish a system coupling with nitrate reduction.

7.
Angew Chem Int Ed Engl ; : e202411796, 2024 Oct 11.
Article in English | MEDLINE | ID: mdl-39394644

ABSTRACT

Cuprous oxide (Cu2O)-based catalysts present a promising activity for the electrochemical nitrate (NO3-) reduction to ammonia (eNO3RA), but the electrochemical instability of Cu+ species may lead to an unsatisfactory durability, hindering the exploration of the structure-performance relationship. Herein, we propose an efficient strategy to stabilize Cu+ through the incorporation of Cr4+ into the Cu2O matrix to construct a Cr4+-O-Cu+ network structure. In situ and quasi-in situ characterizations reveal that the Cu+ species are well maintained via the strong Cr4+-O-Cu+ interaction that inhibits the leaching of lattice oxygen. Importantly, in situ generated Cr3+-O-Cu+ from Cr4+-O-Cu+ is identified as a dual-active site for eNO3RA, wherein the Cu+ sites are responsible for the activation of N-containing intermediates, while the assisting Cr3+ centers serve as the electron-proton mediators for rapid water dissociation. Theoretical investigations further demonstrated that the metastable state Cr3+-O-Cu+ favors the conversion from the endoergic hydrogenation of the key *ON intermediate to an exoergic reaction in an ONH pathway, and facilitates the subsequent NH3 desorption with a low energy barrier. The superior eNO3RA with a maximum 91.6% Faradaic efficiency could also be coupled with anodic sulfion oxidation to achieve concurrent NH3 production and sulfur recovery with reduced energy input.

8.
Small ; 19(27): e2300530, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36971299

ABSTRACT

Nitrate is a reasonable alternative instead of nitrogen for ammonia production due to the low bond energy, large water-solubility, and high chemical polarity for good absorption. Nitrate electroreduction reaction (NO3 RR) is an effective and green strategy for both nitrate treatment and ammonia production. As an electrochemical reaction, the NO3 RR requires an efficient electrocatalyst for achieving high activity and selectivity. Inspired by the enhancement effect of heterostructure on electrocatalysis, Au nanowires decorated ultrathin Co3 O4 nanosheets (Co3 O4 -NS/Au-NWs) nanohybrids are proposed for improving the efficiency of nitrate-to-ammonia electroreduction. Theoretical calculation reveals that Au heteroatoms can effectively adjust the electron structure of Co active centers and reduce the energy barrier of the determining step (*NO → *NOH) during NO3 RR. As the result, the Co3 O4 -NS/Au-NWs nanohybrids achieve an outstanding catalytic performance with high yield rate (2.661 mg h-1 mgcat -1 ) toward nitrate-to-ammonia. Importantly, the Co3 O4 -NS/Au-NWs nanohybrids show an obviously plasmon-promoted activity for NO3 RR due to the localized surface plasmon resonance (LSPR) property of Au-NWs, which can achieve an enhanced NH3 yield rate of 4.045 mg h-1 mgcat -1 . This study reveals the structure-activity relationship of heterostructure and LSPR-promotion effect toward NO3 RR, which provide an efficient nitrate-to-ammonia reduction with high efficiency.

9.
Small ; 19(5): e2205625, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36449575

ABSTRACT

Electrochemical nitrate reduction to ammonia (NRA) provides an efficient, sustainable approach to convert the nitrate pollutants into value-added products, which is regarded as a promising alternative to the industrial Haber-Bosch process. Recent studies have shown that oxygen vacancies of oxide catalysts can adjust the adsorption energies of intermediates and affect their catalytic performance. Compared with other metal oxides, perovskite oxides can allow their metal cations to exist in abnormal or mixed valence states, thereby resulting in enriched oxygen vacancies in their crystal structures. Here, the catalytic activities of perovskite oxides toward NRA catalysis with respect to the amount of oxygen vacancies are explored, where four perovskite oxides with different crystal structures (including cubic LaCrO3 , orthorhombic LaMnO3 and LaFeO3 , hexagonal LaCoO3 ) are chosen and investigated. By combining X-ray photoelectron spectroscopy, electron paramagnetic resonance spectroscopy and electrochemical measurements, it is found that the amount of oxygen vacancies in these perovskite oxides surprisingly follow the same order as their activities toward NRA catalysis (LaCrO3  < LaMnO3  < LaFeO3  < LaCoO3 ). Further theoretical studies reveal that the existence of oxygen vacancies in LaCoO3 perovskite can decrease the energy barriers for reduction of *HNO3 to *NO2 , leading to its superior NRA performance.

10.
Environ Sci Technol ; 57(39): 14726-14736, 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37721968

ABSTRACT

Electrochemical reduction of nitrate is a promising method for the removal of nitrate from contaminated groundwater. However, the presence of hardness cations (Ca2+ and Mg2+) in groundwaters hampers the electroreduction of nitrate as a result of the precipitation of carbonate-containing solids of these elements on the cathode surface. Thus, some pretreatment process is required to remove unwanted hardness cations. Herein, we present a proof-of-concept of a novel three-chambered flow electrode unit, constituting a flow electrode capacitive deionization (FCDI) unit and a flow cathode (FC) unit, which achieves cation removal, nitrate capture and reduction, and ammonia generation in a single cell without the need for any additional chemicals/electrolyte. The addition of the FCDI unit not only achieves removal of hardness cations but also concentrates the nitrate ions and other anions, which facilitates nitrate reduction in the subsequent FC unit. Results show that the FCDI cell voltage influences electrode stability but has a minimal impact on the overall nitrate removal performance. The concentration of coexisting anions influences the nitrate removal due to competitive sorption of anions on the electrode surface. Our results further show that stable electrochemical performance was obtained over 26 h of operation. Overall, this study provides a scalable strategy for continuous nitrate electroreduction and ammonia generation from nitrate contaminated groundwaters containing hardness ions.

11.
Small ; 18(42): e2203335, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36114155

ABSTRACT

Selective electrocatalytic nitrate-to-ammonia conversion holds significant potential in treatment of nitrate wastewater and simultaneously produces high-value-added ammonia. However, today's development of nitrate-to-ammonia technology remains hindered by the lack of electrocatalysts with high activity and selectivity. In this work, metal-organic framework-derived CuPd bimetallic nanoparticles/nitrogen-doped carbon (CuPd/CN) hybrid nanoarrays for efficient ammonia electrosynthesis from nitrate are designed and synthesized. Systematic characterization reveals that the electronic metal-support interaction between the CuPd nanoparticles and N-doped nanocarbon matrix could trigger interfacial charge polarization over the CuPd/CN composite and make Cu sites electron deficient, which is conducive to the adsorption of nitrate ions. Moreover, the Pd atom sites separate by Cu atoms and could catalyze the dissociation of H2 O molecules to form adsorbed H species, which evolves into hydrogen radicals and behaves as the dominant reactive species in accelerating nitrate-to-ammonia electrocatalysis. These advantages endow the CuPd/CN nanoarrays with high faradaic efficiency (96.16%), selectivity (92.08%) as well as excellent catalytic stability for electroreduction of nitrate to ammonia.

12.
Environ Sci Technol ; 56(23): 17298-17309, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36394539

ABSTRACT

The presence of excessive concentrations of nitrate in industrial wastewaters, agricultural runoff, and some groundwaters constitutes a serious issue for both environmental and human health. As a result, there is considerable interest in the possibility of converting nitrate to the valuable product ammonia by electrochemical means. In this work, we demonstrate the efficacy of a novel flow cathode system coupled with ammonia stripping for effective nitrate removal and ammonia generation and recovery. A copper-loaded activated carbon slurry (Cu@AC), made by a simple, low-cost wet impregnation method, is used as the flow cathode in this novel electrochemical reactor. Use of a 3 wt % Cu@AC suspension at an applied current density of 20 mA cm-2 resulted in almost complete nitrate removal, with 97% of the nitrate reduced to ammonia and 70% of the ammonia recovered in the acid-receiving chamber. A mathematical kinetic model was developed that satisfactorily describes the kinetics and mechanism of the overall nitrate electroreduction process. Minimal loss of Cu to solution and maintenance of nitrate removal performance over extended use of Cu@AC flow electrode augers well for long-term use of this technology. Overall, this study sheds light on an efficient, low-cost water treatment technology for simultaneous nitrate removal and ammonia generation and recovery.


Subject(s)
Ammonia , Nitrates , Humans , Electrodes , Nitrogen Oxides , Copper
13.
J Environ Manage ; 305: 114420, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34998066

ABSTRACT

Drinking-water contamination with nitrate ions is inevitable and wide spreading, which demands feasible removal. Water de-nitration by potentiostatic electroreduction is described here. A novel electrocatalyst based on nano-copper particles, supported onto multi-walled carbon nanotubes (MWCNTs), and spray-deposited onto fluorine doped tin oxide-glass substrates, is described. The Cu/MWCNT/FTO electrode has been characterized by several methods and assessed as a working electrode in aqueous nitrate ion electroreduction, in comparison with MWCNT sprayed on FTO (MWCNT/FTO) with no copper. Comparison with earlier reported electrodes is also described. XRD patterns confirm the presence of nano-copper crystallites, in the electrode, with average size ⁓45 nm. Within 2 h of electrolysis, Cu/MWVNT/FTO exhibits more than 65% removal of nitrate at -1.80 V (vs. SCE). In longer time (7 h) the electrode completely converts the nitrate into N2 (∼65%) and (NH4+) ∼35% with no NO2- ions. The kinetics show 0.76 order with respect to nitrate, and a rate constant 4.53 × 10-2 min-1 higher than earlier counterparts. The new electrode functions under various conditions of temperature, pH, electrolyte type and concentration and inter-electrode spacing, only at ambient applied potential. Moreover, the electrode exhibits stability under nitrate electroreduction conditions, and can be recovered and reused for multiple times without efficiency loss. XRD and EDS results also confirm the electrode stability after multiple reuse. Compared to earlier systems, the Cu/MWCNT/FTO is environmentally stable, safe, non-costly with high nitrate removal efficiency and selectivity.


Subject(s)
Nanotubes, Carbon , Nitrates , Catalysis , Copper , Electrodes , Water
14.
Angew Chem Int Ed Engl ; 61(19): e202202604, 2022 May 02.
Article in English | MEDLINE | ID: mdl-35231157

ABSTRACT

Electrochemical reduction of nitrate pollutants to ammonia has emerged as an attractive alternative for ammonia synthesis. Currently, many strategies have been developed for enhancing nitrate reduction to ammonia (NRA) efficiency, but the influence of the degree of structural disorder is still unexplored. Here, carbon-supported RuO2 nanosheets with adjustable crystallinity are synthesized by a facile molten salt method. The as-synthesized amorphous RuO2 displays high ammonia Faradaic efficiency (97.46 %) and selectivity (96.42 %), greatly outperforming the crystalline counterparts. The disordered structure with abundant oxygen vacancies is revealed to modulate the d-band center and hydrogen affinity, thus lowering the energy of the potential-determining step (NH2 *→NH3 *).

15.
Angew Chem Int Ed Engl ; 59(13): 5350-5354, 2020 Mar 23.
Article in English | MEDLINE | ID: mdl-31965695

ABSTRACT

Unveiling the active phase of catalytic materials under reaction conditions is important for the construction of efficient electrocatalysts for selective nitrate reduction to ammonia. The origin of the prominent activity enhancement for CuO (Faradaic efficiency: 95.8 %, Selectivity: 81.2 %) toward selective nitrate electroreduction to ammonia was probed. 15 N isotope labeling experiments showed that ammonia originated from nitrate reduction. 1 H NMR spectroscopy and colorimetric methods were performed to quantify ammonia. In situ Raman and ex situ experiments revealed that CuO was electrochemically converted into Cu/Cu2 O, which serves as an active phase. The combined results of online differential electrochemical mass spectrometry (DEMS) and DFT calculations demonstrated that the electron transfer from Cu2 O to Cu at the interface could facilitate the formation of *NOH intermediate and suppress the hydrogen evolution reaction, leading to high selectivity and Faradaic efficiency.

16.
ACS Nano ; 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39066738

ABSTRACT

High-entropy perovskite oxides are promising materials in the field of electrocatalysis due to their advantages such as large spatial composition regulation, entropy effects, and tunable material properties. However, the preparation of high-entropy perovskite oxides with stable and controllable structures still remains challenging. Herein, we fabricated a series of high-entropy perovskite oxide porous nanotubes (PNTs) by electrospinning as efficient electrocatalysts for the nitrate reduction reaction (NO3RR). We further revealed that the different diffusion and decomposition behaviors of metal ions and polymers during the calcination process are the key to the formation of high-entropy perovskite oxide PNTs. Especially, LaSrNiCoMnFeCuO3 PNTs show excellent performance of the NO3RR, achieving the maximum NH3 Faradaic efficiency of almost 100%, yield rate of 1657.5 µg h-1 mgcat.-1, and durable stability after successive cycling, being one of the best electrocatalysts for the NO3RR. The mechanism studies show that the charge redistribution induced by the multisite synergistic effect and abundant unsaturated sites in the high-entropy perovskite oxide PNTs favors the adsorption of NO3- and key intermediates and reduces the catalytic energy barrier, thus further achieving high NO3- conversion efficiency.

17.
Adv Mater ; 36(25): e2400396, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38528795

ABSTRACT

The oligomers of carbon suboxide, known as red carbon, exhibit a highly conjugated structure and semiconducting properties. Upon mild heat treatment, it transforms into a carbonaceous framework rich in oxygen surface terminations, called oxocarbon. In this study, the abundant oxygen functionalities are harnessed as anchors to create oxocarbon-supported nanohybrid electrocatalysts. Starting with single atomic Cu (II) strongly coordinated to oxygen atoms on red carbon, the Fehling reaction leads to the formation of Cu2O clusters. Simultaneously, a covalent oxocarbon framework emerges via cross-linking, providing robust support for Cu2O clusters. Notably, the oxocarbon support effectively stabilizes Cu2O clusters of very small size, ensuring their high durability in acidic conditions and the presence of ammonia. The synthesized material exhibits a superior electrocatalytic activity for nitrate reduction under acidic electrolyte conditions, with a high yield rate of ammonium (NH4 +) at 3.31 mmol h-1 mgcat -1 and a Faradaic efficiency of 92.5% at a potential of -0.4 V (vs RHE).

18.
ACS Appl Mater Interfaces ; 16(19): 24483-24493, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38691769

ABSTRACT

This study investigates the effect of surface modifications of the titanium substrate on the growth of electrochemically deposited copper. These materials are intended to serve as cathodes in the electroreduction of nitrates in aqueous solutions. Surface modifications included the use of hydrogen fluoride for titanium etching and anodization to promote the growth of a structured titania nanotube array. The effect of an intermediate calcination step for the nanotubes before deposition was assessed along with a comparison to an untreated substrate electrode. The materials were comprehensively characterized by SEM, XRD, contact angle, potentiodynamic tests, EIS, and cyclic voltammetry. Their electrocatalytic ability was tested in the reduction of aqueous solutions containing nitrates. The results reveal that surface finishing impacted the shape and size of the Cu microparticles, as well as the nucleation mechanism enabling a crystal-facet-controllable synthesis. All the materials exhibited microsized copper particles with a spherical shape with some clusters. On the etched titanium surface, a high number of heterogeneous submicroscopic particles were also present. The thermally treated anodized substrate promoted the development of a combination of sparse microparticles corresponding to defect sites in amorphous titanium and the presence of a diffuse coating of octahedral nanosized particles whose growth was promoted by the tetragonal structure of anatase crystals. Electrochemical tests display reduced charge transfer resistance upon copper deposition on the modified substrates, which is indicative of the enhanced conductivity of the coated materials. Additionally, cyclic voltammetry and electrolysis experiments reveal the electrodes' potential for nitrate reduction, showing a better response for the etched titanium substrate (30% nitrate removal, after 2 h at 25 mA cm-2).

19.
Adv Mater ; 35(10): e2209855, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36651132

ABSTRACT

Electroreduction of nitrate into ammonia (NRA) provides a sustainable route to convert the widespread nitrate pollutants into high-value-added products under ambient conditions, which unfortunately suffers from unsatisfactory selectivity due to the competitive hydrogen evolution reaction (HER). Previous strategies of modifying the metal sites of catalysts often met a dilemma for simultaneously promoting activity and selectivity toward NRA. Here, a general strategy is reported to enable an efficient and selective NRA process through coordination modulation of single-atom catalysts to tailor the local proton concentration at the catalyst surface. By contrast, two analogous Ni-single-atom enriched conjugated coordination polymers (NiO4 -CCP and NiN4 -CCP) with different coordination motifs are investigated for the proof-of-concept study. The NiO4 -CCP catalyst exhibits an ammonia yield rate as high as 1.83 mmol h-1 mg-1 with a Faradaic efficiency of 94.7% under a current density of 125 mA cm-2 , outperforming the NiN4 -CCP catalyst. These experimental and theoretical studies both suggest that the strategy of coordination modulation can not only accelerate the NRA by adjusting the adsorption energies of NRA intermediates on the metal sites but also inhibit the HER through regulating the proton migration with contributions from the metal-hydrated cations adsorbed at the catalyst surface, thus achieving simultaneous enhancement of NRA selectivity and activity.

20.
ChemSusChem ; 16(22): e202300202, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-36971488

ABSTRACT

The electroreduction of nitrate (NO3 - ) to valuable ammonia (NH3 ) is a green and appealing alternative to the Haber-Bosch process. Nevertheless, this process suffers from low performance for NH3 due to the sluggish multi-electron/proton-involved steps. In this work, a CuPd nanoalloy catalyst was developed toward NO3 - electroreduction at ambient conditions. By modulating the atomic ratio of Cu to Pd, the hydrogenation steps of NH3 synthesis during NO3 - electroreduction can be effectively controlled. At -0.7 V versus reversible hydrogen electrode (vs. RHE), the optimized CuPd electrocatalysts achieved a Faradaic efficiency for NH3 of 95.5 %, which was 1.3 and 1.8 times higher than that of Cu and Pd, respectively. Notably, at -0.9 V vs. RHE, the CuPd electrocatalysts showed a high yield rate of 36.2 mg h-1 cm-2 for NH3 with a corresponding partial current density of -430.6 mA cm-2 . Mechanism investigation revealed the enhanced performance originated from the synergistic catalytic cooperation between Cu and Pd sites. The H-atoms adsorbed on the Pd sites prefer to transfer to adjacent nitrogen intermediates adsorbed on the Cu sites, thereby promoting the hydrogenation of intermediates and the formation of NH3 .

SELECTION OF CITATIONS
SEARCH DETAIL