Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 552
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39127037

ABSTRACT

The nuclear pore complex (NPC) is the sole mediator of nucleocytoplasmic transport. Despite great advances in understanding its conserved core architecture, the peripheral regions can exhibit considerable variation within and between species. One such structure is the cage-like nuclear basket. Despite its crucial roles in mRNA surveillance and chromatin organization, an architectural understanding has remained elusive. Using in-cell cryo-electron tomography and subtomogram analysis, we explored the NPC's structural variations and the nuclear basket across fungi (yeast; S. cerevisiae), mammals (mouse; M. musculus), and protozoa (T. gondii). Using integrative structural modeling, we computed a model of the basket in yeast and mammals that revealed how a hub of nucleoporins (Nups) in the nuclear ring binds to basket-forming Mlp/Tpr proteins: the coiled-coil domains of Mlp/Tpr form the struts of the basket, while their unstructured termini constitute the basket distal densities, which potentially serve as a docking site for mRNA preprocessing before nucleocytoplasmic transport.

2.
Cell ; 185(26): 4954-4970.e20, 2022 12 22.
Article in English | MEDLINE | ID: mdl-36493774

ABSTRACT

Nuclear pore complexes (NPCs) are channels for nucleocytoplasmic transport of proteins and RNAs. However, it remains unclear whether composition, structure, and permeability of NPCs dynamically change during the cleavage period of vertebrate embryos and affect embryonic development. Here, we report that the comprehensive NPC maturity (CNM) controls the onset of zygotic genome activation (ZGA) during zebrafish early embryogenesis. We show that more nucleoporin proteins are recruited to and assembled into NPCs with development, resulting in progressive increase of NPCs in size and complexity. Maternal transcription factors (TFs) transport into nuclei more efficiently with increasing CNM. Deficiency or dysfunction of Nup133 or Ahctf1/Elys impairs NPC assembly, maternal TFs nuclear transport, and ZGA onset, while nup133 overexpression promotes these processes. Therefore, CNM may act as a molecular timer for ZGA by controlling nuclear transport of maternal TFs that reach nuclear concentration thresholds at a given time to initiate ZGA.


Subject(s)
Nuclear Pore , Zebrafish , Animals , Embryonic Development/genetics , Gene Expression Regulation, Developmental , Nuclear Pore/metabolism , Nuclear Pore Complex Proteins/genetics , Nuclear Pore Complex Proteins/metabolism , Transcription Factors/metabolism , Zebrafish/metabolism , Zygote/metabolism , Genome
3.
Cell ; 185(2): 361-378.e25, 2022 01 20.
Article in English | MEDLINE | ID: mdl-34982960

ABSTRACT

Nuclear pore complexes (NPCs) mediate the nucleocytoplasmic transport of macromolecules. Here we provide a structure of the isolated yeast NPC in which the inner ring is resolved by cryo-EM at sub-nanometer resolution to show how flexible connectors tie together different structural and functional layers. These connectors may be targets for phosphorylation and regulated disassembly in cells with an open mitosis. Moreover, some nucleoporin pairs and transport factors have similar interaction motifs, which suggests an evolutionary and mechanistic link between assembly and transport. We provide evidence for three major NPC variants that may foreshadow functional specializations at the nuclear periphery. Cryo-electron tomography extended these studies, providing a model of the in situ NPC with a radially expanded inner ring. Our comprehensive model reveals features of the nuclear basket and central transporter, suggests a role for the lumenal Pom152 ring in restricting dilation, and highlights structural plasticity that may be required for transport.


Subject(s)
Adaptation, Physiological , Nuclear Pore/metabolism , Saccharomyces cerevisiae/physiology , Amino Acid Motifs , Amino Acid Sequence , Fluorescence , Molecular Docking Simulation , Nuclear Envelope/metabolism , Nuclear Pore/chemistry , Nuclear Pore Complex Proteins/chemistry , Nuclear Pore Complex Proteins/metabolism , Protein Domains , Reproducibility of Results , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism
4.
Cell ; 184(11): 2860-2877.e22, 2021 05 27.
Article in English | MEDLINE | ID: mdl-33964210

ABSTRACT

Most human embryos are aneuploid. Aneuploidy frequently arises during the early mitotic divisions of the embryo, but its origin remains elusive. Human zygotes that cluster their nucleoli at the pronuclear interface are thought to be more likely to develop into healthy euploid embryos. Here, we show that the parental genomes cluster with nucleoli in each pronucleus within human and bovine zygotes, and clustering is required for the reliable unification of the parental genomes after fertilization. During migration of intact pronuclei, the parental genomes polarize toward each other in a process driven by centrosomes, dynein, microtubules, and nuclear pore complexes. The maternal and paternal chromosomes eventually cluster at the pronuclear interface, in direct proximity to each other, yet separated. Parental genome clustering ensures the rapid unification of the parental genomes on nuclear envelope breakdown. However, clustering often fails, leading to chromosome segregation errors and micronuclei, incompatible with healthy embryo development.


Subject(s)
Embryo, Mammalian/metabolism , Embryonic Development/genetics , Aneuploidy , Animals , Cattle , Cell Nucleolus/metabolism , Cell Nucleus/metabolism , Centrosome/metabolism , Chromosome Segregation/physiology , Chromosomes/metabolism , Fertilization/genetics , Humans , Male , Microtubules/metabolism , Mitosis , Oocytes/metabolism , Spermatozoa/metabolism , Zygote/metabolism
5.
Cell ; 184(4): 1032-1046.e18, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33571428

ABSTRACT

Human immunodeficiency virus (HIV-1) remains a major health threat. Viral capsid uncoating and nuclear import of the viral genome are critical for productive infection. The size of the HIV-1 capsid is generally believed to exceed the diameter of the nuclear pore complex (NPC), indicating that capsid uncoating has to occur prior to nuclear import. Here, we combined correlative light and electron microscopy with subtomogram averaging to capture the structural status of reverse transcription-competent HIV-1 complexes in infected T cells. We demonstrated that the diameter of the NPC in cellulo is sufficient for the import of apparently intact, cone-shaped capsids. Subsequent to nuclear import, we detected disrupted and empty capsid fragments, indicating that uncoating of the replication complex occurs by breaking the capsid open, and not by disassembly into individual subunits. Our data directly visualize a key step in HIV-1 replication and enhance our mechanistic understanding of the viral life cycle.


Subject(s)
Capsid/metabolism , HIV-1/metabolism , Nuclear Pore/metabolism , Active Transport, Cell Nucleus , Capsid/ultrastructure , Cryoelectron Microscopy , HEK293 Cells , HIV Infections/virology , HIV-1/ultrastructure , Humans , Models, Biological , Nuclear Pore/ultrastructure , Nuclear Pore/virology , Reverse Transcription , Virion/metabolism , Virus Internalization , mRNA Cleavage and Polyadenylation Factors/metabolism
6.
Cell ; 183(7): 1785-1800.e26, 2020 12 23.
Article in English | MEDLINE | ID: mdl-33333025

ABSTRACT

All proteins interact with other cellular components to fulfill their function. While tremendous progress has been made in the identification of protein complexes, their assembly and dynamics remain difficult to characterize. Here, we present a high-throughput strategy to analyze the native assembly kinetics of protein complexes. We apply our approach to characterize the co-assembly for 320 pairs of nucleoporins (NUPs) constituting the ≈50 MDa nuclear pore complex (NPC) in yeast. Some NUPs co-assemble fast via rapid exchange whereas others require lengthy maturation steps. This reveals a hierarchical principle of NPC biogenesis where individual subcomplexes form on a minute timescale and then co-assemble from center to periphery in a ∼1 h-long maturation process. Intriguingly, the NUP Mlp1 stands out as joining very late and associating preferentially with aged NPCs. Our approach is readily applicable beyond the NPC, making it possible to analyze the intracellular dynamics of a variety of multiprotein assemblies.


Subject(s)
Macromolecular Substances/metabolism , Multiprotein Complexes/metabolism , Saccharomyces cerevisiae/metabolism , Staining and Labeling , Biological Assay , Kinetics , Models, Biological , Nuclear Pore/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Time Factors
7.
Annu Rev Biochem ; 88: 725-783, 2019 06 20.
Article in English | MEDLINE | ID: mdl-30883195

ABSTRACT

The nuclear pore complex (NPC) serves as the sole bidirectional gateway of macromolecules in and out of the nucleus. Owing to its size and complexity (∼1,000 protein subunits, ∼110 MDa in humans), the NPC has remained one of the foremost challenges for structure determination. Structural studies have now provided atomic-resolution crystal structures of most nucleoporins. The acquisition of these structures, combined with biochemical reconstitution experiments, cross-linking mass spectrometry, and cryo-electron tomography, has facilitated the determination of the near-atomic overall architecture of the symmetric core of the human, fungal, and algal NPCs. Here, we discuss the insights gained from these new advances and outstanding issues regarding NPC structure and function. The powerful combination of bottom-up and top-down approaches toward determining the structure of the NPC offers a paradigm for uncovering the architectures of other complex biological machines to near-atomic resolution.


Subject(s)
Models, Molecular , Nuclear Pore Complex Proteins/metabolism , Nuclear Pore/metabolism , Active Transport, Cell Nucleus , Animals , Cell Nucleus/metabolism , Cryoelectron Microscopy , Crystallography, X-Ray , Eukaryota/metabolism , Eukaryota/ultrastructure , Humans , Nuclear Pore/ultrastructure , Nuclear Pore Complex Proteins/chemistry , Protein Conformation , Protein Subunits , RNA, Messenger/metabolism
8.
Cell ; 179(3): 671-686.e17, 2019 10 17.
Article in English | MEDLINE | ID: mdl-31626769

ABSTRACT

The molecular events that direct nuclear pore complex (NPC) assembly toward nuclear envelopes have been conceptualized in two pathways that occur during mitosis or interphase, respectively. In gametes and embryonic cells, NPCs also occur within stacked cytoplasmic membrane sheets, termed annulate lamellae (AL), which serve as NPC storage for early development. The mechanism of NPC biogenesis at cytoplasmic membranes remains unknown. Here, we show that during Drosophila oogenesis, Nucleoporins condense into different precursor granules that interact and progress into NPCs. Nup358 is a key player that condenses into NPC assembly platforms while its mRNA localizes to their surface in a translation-dependent manner. In concert, Microtubule-dependent transport, the small GTPase Ran and nuclear transport receptors regulate NPC biogenesis in oocytes. We delineate a non-canonical NPC assembly mechanism that relies on Nucleoporin condensates and occurs away from the nucleus under conditions of cell cycle arrest.


Subject(s)
Drosophila Proteins/metabolism , Molecular Chaperones/metabolism , Nuclear Pore Complex Proteins/metabolism , Nuclear Pore/metabolism , Oogenesis , Active Transport, Cell Nucleus , Animals , Drosophila Proteins/genetics , Drosophila melanogaster , Female , Microtubules/metabolism , Molecular Chaperones/genetics , Nuclear Pore Complex Proteins/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , ran GTP-Binding Protein/genetics , ran GTP-Binding Protein/metabolism
9.
Cell ; 174(1): 202-217.e9, 2018 06 28.
Article in English | MEDLINE | ID: mdl-29958108

ABSTRACT

Nuclear pore complexes (NPCs) conduct nucleocytoplasmic transport through an FG domain-controlled barrier. We now explore how surface-features of a mobile species determine its NPC passage rate. Negative charges and lysines impede passage. Hydrophobic residues, certain polar residues (Cys, His), and, surprisingly, charged arginines have striking translocation-promoting effects. Favorable cation-π interactions between arginines and FG-phenylalanines may explain this apparent paradox. Application of these principles to redesign the surface of GFP resulted in variants that show a wide span of transit rates, ranging from 35-fold slower than wild-type to ∼500 times faster, with the latter outpacing even naturally occurring nuclear transport receptors (NTRs). The structure of a fast and particularly FG-specific GFPNTR variant illustrates how NTRs can expose multiple regions for binding hydrophobic FG motifs while evading non-specific aggregation. Finally, we document that even for NTR-mediated transport, the surface-properties of the "passively carried" cargo can strikingly affect the translocation rate.


Subject(s)
Active Transport, Cell Nucleus/physiology , Nuclear Pore Complex Proteins/metabolism , Nuclear Pore/metabolism , Amino Acid Motifs , Binding Sites , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HeLa Cells , Humans , Hydrophobic and Hydrophilic Interactions , Microscopy, Confocal , Mutagenesis, Site-Directed , Nuclear Pore Complex Proteins/chemistry , Nuclear Pore Complex Proteins/genetics , Protein Domains , Protein Structure, Quaternary , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Surface Properties
10.
Annu Rev Biochem ; 86: 637-657, 2017 06 20.
Article in English | MEDLINE | ID: mdl-28471691

ABSTRACT

Eukaryotic cells possess a remarkably diverse range of organelles that provide compartmentalization for distinct cellular functions and are likely responsible for the remarkable success of these organisms. The origins and subsequent elaboration of these compartments represent a key aspect in the transition between prokaryotic and eukaryotic cellular forms. The protein machinery required to build, maintain, and define many membrane-bound compartments is encoded by several paralog families, including small GTPases, coiled-bundle proteins, and proteins with ß-propeller and α-solenoid secondary structures. Together these proteins provide the membrane coats and control systems to structure and coordinate the endomembrane system. Mechanistically and evolutionarily, they unite not only secretory and endocytic organelles but also the flagellum and nucleus. The ancient origins for these families have been revealed by recent findings, providing new perspectives on the deep evolutionary processes and relationships that underlie eukaryotic cell structure.


Subject(s)
Cell Membrane/ultrastructure , Clathrin/chemistry , Coat Protein Complex I/chemistry , Coated Vesicles/ultrastructure , Eukaryotic Cells/ultrastructure , Monomeric GTP-Binding Proteins/chemistry , Active Transport, Cell Nucleus , Cell Membrane/chemistry , Cell Membrane/metabolism , Clathrin/genetics , Clathrin/metabolism , Coat Protein Complex I/genetics , Coat Protein Complex I/metabolism , Coated Vesicles/chemistry , Coated Vesicles/metabolism , Eukaryotic Cells/chemistry , Eukaryotic Cells/metabolism , Evolution, Molecular , Flagella/chemistry , Flagella/metabolism , Flagella/ultrastructure , Gene Expression , Models, Molecular , Monomeric GTP-Binding Proteins/genetics , Monomeric GTP-Binding Proteins/metabolism , Nuclear Pore/chemistry , Nuclear Pore/metabolism , Nuclear Pore/ultrastructure , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Domains
11.
Annu Rev Biochem ; 86: 873-896, 2017 06 20.
Article in English | MEDLINE | ID: mdl-28426242

ABSTRACT

Electron cryotomography (ECT) provides three-dimensional views of macromolecular complexes inside cells in a native frozen-hydrated state. Over the last two decades, ECT has revealed the ultrastructure of cells in unprecedented detail. It has also allowed us to visualize the structures of macromolecular machines in their native context inside intact cells. In many cases, such machines cannot be purified intact for in vitro study. In other cases, the function of a structure is lost outside the cell, so that the mechanism can be understood only by observation in situ. In this review, we describe the technique and its history and provide examples of its power when applied to cell biology. We also discuss the integration of ECT with other techniques, including lower-resolution fluorescence imaging and higher-resolution atomic structure determination, to cover the full scale of cellular processes.


Subject(s)
Cryoelectron Microscopy/methods , Electron Microscope Tomography/methods , Fimbriae, Bacterial/ultrastructure , Nuclear Pore/chemistry , Optical Imaging/methods , Prokaryotic Cells/ultrastructure , Archaea/metabolism , Archaea/ultrastructure , Bacteria/metabolism , Bacteria/ultrastructure , Bacterial Secretion Systems/metabolism , Bacterial Secretion Systems/ultrastructure , Cryoelectron Microscopy/history , Cryoelectron Microscopy/instrumentation , Electron Microscope Tomography/history , Electron Microscope Tomography/instrumentation , Fimbriae, Bacterial/metabolism , Flagella/metabolism , Flagella/ultrastructure , History, 20th Century , History, 21st Century , Models, Molecular , Nuclear Pore/metabolism , Nuclear Pore/ultrastructure , Optical Imaging/history , Optical Imaging/instrumentation , Prokaryotic Cells/metabolism , Protein Domains , Protein Structure, Secondary
12.
Cell ; 171(4): 904-917.e19, 2017 Nov 02.
Article in English | MEDLINE | ID: mdl-29033133

ABSTRACT

Nuclear pore complexes (NPCs) are ∼100 MDa transport channels assembled from multiple copies of ∼30 nucleoporins (Nups). One-third of these Nups contain phenylalanine-glycine (FG)-rich repeats, forming a diffusion barrier, which is selectively permeable for nuclear transport receptors that interact with these repeats. Here, we identify an additional function of FG repeats in the structure and biogenesis of the yeast NPC. We demonstrate that GLFG-containing FG repeats directly bind to multiple scaffold Nups in vitro and act as NPC-targeting determinants in vivo. Furthermore, we show that the GLFG repeats of Nup116 function in a redundant manner with Nup188, a nonessential scaffold Nup, to stabilize critical interactions within the NPC scaffold needed for late steps of NPC assembly. Our results reveal a previously unanticipated structural role for natively unfolded GLFG repeats as Velcro to link NPC subcomplexes and thus add a new layer of connections to current models of the NPC architecture.


Subject(s)
Nuclear Pore/chemistry , Saccharomyces cerevisiae/cytology , Nuclear Pore/metabolism , Nuclear Pore Complex Proteins/metabolism , Organelle Biogenesis , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism
13.
Mol Cell ; 84(12): 2304-2319.e8, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38838666

ABSTRACT

Circular RNAs (circRNAs) are upregulated during neurogenesis. Where and how circRNAs are localized and what roles they play during this process have remained elusive. Comparing the nuclear and cytoplasmic circRNAs between H9 cells and H9-derived forebrain (FB) neurons, we identify that a subset of adenosine (A)-rich circRNAs are restricted in H9 nuclei but exported to cytosols upon differentiation. Such a subcellular relocation of circRNAs is modulated by the poly(A)-binding protein PABPC1. In the H9 nucleus, newly produced (A)-rich circRNAs are bound by PABPC1 and trapped by the nuclear basket protein TPR to prevent their export. Modulating (A)-rich motifs in circRNAs alters their subcellular localization, and introducing (A)-rich circRNAs in H9 cytosols results in mRNA translation suppression. Moreover, decreased nuclear PABPC1 upon neuronal differentiation enables the export of (A)-rich circRNAs, including circRTN4(2,3), which is required for neurite outgrowth. These findings uncover subcellular localization features of circRNAs, linking their processing and function during neurogenesis.


Subject(s)
Active Transport, Cell Nucleus , Adenosine , Cell Nucleus , Neurogenesis , Neurons , Poly(A)-Binding Protein I , RNA, Circular , RNA , RNA, Circular/metabolism , RNA, Circular/genetics , Neurons/metabolism , Adenosine/metabolism , Cell Nucleus/metabolism , Humans , Poly(A)-Binding Protein I/metabolism , Poly(A)-Binding Protein I/genetics , Animals , RNA/metabolism , RNA/genetics , Cell Line , Cell Differentiation , Cytoplasm/metabolism , Prosencephalon/metabolism
14.
Cell ; 167(7): 1839-1852.e21, 2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27984731

ABSTRACT

Many essential cellular processes, such as gene control, employ elaborate mechanisms involving the coordination of large, multi-component molecular assemblies. Few structural biology tools presently have the combined spatial-temporal resolution and molecular specificity required to capture the movement, conformational changes, and subunit association-dissociation kinetics, three fundamental elements of how such intricate molecular machines work. Here, we report a 3D single-molecule super-resolution imaging study using modulation interferometry and phase-sensitive detection that achieves <2 nm axial localization precision, well below the few-nanometer-sized individual protein components. To illustrate the capability of this technique in probing the dynamics of complex macromolecular machines, we visualize the movement of individual multi-subunit E. coli RNA polymerases through the complete transcription cycle, dissect the kinetics of the initiation-elongation transition, and determine the fate of σ70 initiation factors during promoter escape. Modulation interferometry sets the stage for single-molecule studies of several hitherto difficult-to-investigate multi-molecular transactions that underlie genome regulation.


Subject(s)
Interferometry/methods , Single Molecule Imaging/methods , Transcription, Genetic , DNA-Directed RNA Polymerases/metabolism , Escherichia coli/metabolism , Humans , Imaging, Three-Dimensional/methods
15.
Cell ; 167(5): 1215-1228.e25, 2016 11 17.
Article in English | MEDLINE | ID: mdl-27839866

ABSTRACT

The last steps in mRNA export and remodeling are performed by the Nup82 complex, a large conserved assembly at the cytoplasmic face of the nuclear pore complex (NPC). By integrating diverse structural data, we have determined the molecular architecture of the native Nup82 complex at subnanometer precision. The complex consists of two compositionally identical multiprotein subunits that adopt different configurations. The Nup82 complex fits into the NPC through the outer ring Nup84 complex. Our map shows that this entire 14-MDa Nup82-Nup84 complex assembly positions the cytoplasmic mRNA export factor docking sites and messenger ribonucleoprotein (mRNP) remodeling machinery right over the NPC's central channel rather than on distal cytoplasmic filaments, as previously supposed. We suggest that this configuration efficiently captures and remodels exporting mRNP particles immediately upon reaching the cytoplasmic side of the NPC.


Subject(s)
Nuclear Pore Complex Proteins/chemistry , Nuclear Pore/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Yeasts/metabolism , Active Transport, Cell Nucleus , Fungal Proteins , Nuclear Pore Complex Proteins/ultrastructure , RNA, Messenger , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae Proteins/ultrastructure
16.
Cell ; 167(7): 1705-1718.e13, 2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27984722

ABSTRACT

Metformin has utility in cancer prevention and treatment, though the mechanisms for these effects remain elusive. Through genetic screening in C. elegans, we uncover two metformin response elements: the nuclear pore complex (NPC) and acyl-CoA dehydrogenase family member-10 (ACAD10). We demonstrate that biguanides inhibit growth by inhibiting mitochondrial respiratory capacity, which restrains transit of the RagA-RagC GTPase heterodimer through the NPC. Nuclear exclusion renders RagC incapable of gaining the GDP-bound state necessary to stimulate mTORC1. Biguanide-induced inactivation of mTORC1 subsequently inhibits growth through transcriptional induction of ACAD10. This ancient metformin response pathway is conserved from worms to humans. Both restricted nuclear pore transit and upregulation of ACAD10 are required for biguanides to reduce viability in melanoma and pancreatic cancer cells, and to extend C. elegans lifespan. This pathway provides a unified mechanism by which metformin kills cancer cells and extends lifespan, and illuminates potential cancer targets. PAPERCLIP.


Subject(s)
Metformin/pharmacology , Acyl-CoA Dehydrogenase/genetics , Aging , Animals , Body Size , Caenorhabditis elegans/growth & development , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Cell Line, Tumor , DNA-Binding Proteins/metabolism , Humans , Longevity , Mechanistic Target of Rapamycin Complex 1 , Mitochondria/metabolism , Monomeric GTP-Binding Proteins/metabolism , Multiprotein Complexes/metabolism , Neoplasms/drug therapy , Nuclear Pore/metabolism , Oxidative Phosphorylation , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism , Transcription Factors/metabolism
17.
Mol Cell ; 83(18): 3283-3302.e5, 2023 09 21.
Article in English | MEDLINE | ID: mdl-37738963

ABSTRACT

Nuclear pore complexes (NPCs) direct the nucleocytoplasmic transport of macromolecules. Here, we provide a composite multiscale structure of the yeast NPC, based on improved 3D density maps from cryogenic electron microscopy and AlphaFold2 models. Key features of the inner and outer rings were integrated into a comprehensive model. We resolved flexible connectors that tie together the core scaffold, along with equatorial transmembrane complexes and a lumenal ring that anchor this channel within the pore membrane. The organization of the nuclear double outer ring reveals an architecture that may be shared with ancestral NPCs. Additional connections between the core scaffold and the central transporter suggest that under certain conditions, a degree of local organization is present at the periphery of the transport machinery. These connectors may couple conformational changes in the scaffold to the central transporter to modulate transport. Collectively, this analysis provides insights into assembly, transport, and NPC evolution.


Subject(s)
Nuclear Pore , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Membrane Transport Proteins
18.
Mol Cell ; 82(20): 3856-3871.e6, 2022 10 20.
Article in English | MEDLINE | ID: mdl-36220102

ABSTRACT

To determine which transcripts should reach the cytoplasm for translation, eukaryotic cells have established mechanisms to regulate selective mRNA export through the nuclear pore complex (NPC). The nuclear basket, a substructure of the NPC protruding into the nucleoplasm, is thought to function as a stable platform where mRNA-protein complexes (mRNPs) are rearranged and undergo quality control prior to export, ensuring that only mature mRNAs reach the cytoplasm. Here, we use proteomic, genetic, live-cell, and single-molecule resolution microscopy approaches in budding yeast to demonstrate that basket formation is dependent on RNA polymerase II transcription and subsequent mRNP processing. We further show that while all NPCs can bind Mlp1, baskets assemble only on a subset of nucleoplasmic NPCs, and these basket-containing NPCs associate a distinct protein and RNA interactome. Taken together, our data point toward NPC heterogeneity and an RNA-dependent mechanism for functionalization of NPCs in budding yeast through nuclear basket assembly.


Subject(s)
Nuclear Pore , Saccharomycetales , Nuclear Pore/genetics , Nuclear Pore/metabolism , Saccharomycetales/genetics , Saccharomycetales/metabolism , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Proteomics , Active Transport, Cell Nucleus/physiology , Cell Nucleus/genetics , Cell Nucleus/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Nuclear Pore Complex Proteins/genetics , Nuclear Pore Complex Proteins/metabolism
19.
Mol Cell ; 81(1): 153-165.e7, 2021 01 07.
Article in English | MEDLINE | ID: mdl-33333016

ABSTRACT

Cellular processes are largely carried out by macromolecular assemblies, most of which are dynamic, having components that are in constant flux. One such assembly is the nuclear pore complex (NPC), an ∼50 MDa assembly comprised of ∼30 different proteins called Nups that mediates selective macromolecular transport between the nucleus and cytoplasm. We developed a proteomics method to provide a comprehensive picture of the yeast NPC component dynamics. We discovered that, although all Nups display uniformly slow turnover, their exchange rates vary considerably. Surprisingly, this exchange rate was relatively unrelated to each Nup's position, accessibility, or role in transport but correlated with its structural role; scaffold-forming Nups exchange slowly, whereas flexible connector Nups threading throughout the NPC architecture exchange more rapidly. Targeted perturbations in the NPC structure revealed a dynamic resilience to damage. Our approach opens a new window into macromolecular assembly dynamics.


Subject(s)
Nuclear Pore Complex Proteins/metabolism , Nuclear Pore/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/metabolism , Nuclear Pore/genetics , Nuclear Pore Complex Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Schizosaccharomyces/genetics , Schizosaccharomyces pombe Proteins/genetics
20.
Mol Cell ; 81(11): 2417-2427.e5, 2021 06 03.
Article in English | MEDLINE | ID: mdl-33838103

ABSTRACT

mRNA translation is coupled to multiprotein complex assembly in the cytoplasm or to protein delivery into intracellular compartments. Here, by combining systematic RNA immunoprecipitation and single-molecule RNA imaging in yeast, we have provided a complete depiction of the co-translational events involved in the biogenesis of a large multiprotein assembly, the nuclear pore complex (NPC). We report that binary interactions between NPC subunits can be established during translation, in the cytoplasm. Strikingly, the nucleoporins Nup1/Nup2, together with a number of nuclear proteins, are instead translated at nuclear pores, through a mechanism involving interactions between their nascent N-termini and nuclear transport receptors. Uncoupling this co-translational recruitment further triggers the formation of cytoplasmic foci of unassembled polypeptides. Altogether, our data reveal that distinct, spatially segregated modes of co-translational interactions foster the ordered assembly of NPC subunits and that localized translation can ensure the proper delivery of proteins to the pore and the nucleus.


Subject(s)
Nuclear Pore Complex Proteins/genetics , Protein Biosynthesis , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Active Transport, Cell Nucleus , Cytoplasm/genetics , Cytoplasm/metabolism , Gene Expression Regulation, Fungal , Karyopherins/genetics , Karyopherins/metabolism , Nuclear Pore/genetics , Nuclear Pore/metabolism , Nuclear Pore Complex Proteins/classification , Nuclear Pore Complex Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/classification , Saccharomyces cerevisiae Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL