Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.860
Filter
Add more filters

Publication year range
1.
Cell ; 187(9): 2143-2157.e15, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38670072

ABSTRACT

A central question for regenerative neuroscience is whether synthetic neural circuits, such as those built from two species, can function in an intact brain. Here, we apply blastocyst complementation to selectively build and test interspecies neural circuits. Despite approximately 10-20 million years of evolution, and prominent species differences in brain size, rat pluripotent stem cells injected into mouse blastocysts develop and persist throughout the mouse brain. Unexpectedly, the mouse niche reprograms the birth dates of rat neurons in the cortex and hippocampus, supporting rat-mouse synaptic activity. When mouse olfactory neurons are genetically silenced or killed, rat neurons restore information flow to odor processing circuits. Moreover, they rescue the primal behavior of food seeking, although less well than mouse neurons. By revealing that a mouse can sense the world using neurons from another species, we establish neural blastocyst complementation as a powerful tool to identify conserved mechanisms of brain development, plasticity, and repair.


Subject(s)
Neurons , Animals , Mice , Rats , Neurons/metabolism , Neurons/cytology , Neurons/physiology , Blastocyst/metabolism , Blastocyst/cytology , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Brain/cytology , Brain/physiology , Female , Hippocampus/cytology , Hippocampus/physiology , Species Specificity , Mice, Inbred C57BL , Male
2.
Cell ; 186(14): 3079-3094.e17, 2023 07 06.
Article in English | MEDLINE | ID: mdl-37321218

ABSTRACT

Ants communicate via large arrays of pheromones and possess expanded, highly complex olfactory systems, with antennal lobes in the brain comprising up to ∼500 glomeruli. This expansion implies that odors could activate hundreds of glomeruli, which would pose challenges for higher-order processing. To study this problem, we generated transgenic ants expressing the genetically encoded calcium indicator GCaMP in olfactory sensory neurons. Using two-photon imaging, we mapped complete glomerular responses to four ant alarm pheromones. Alarm pheromones robustly activated ≤6 glomeruli, and activity maps for the three pheromones inducing panic alarm in our study species converged on a single glomerulus. These results demonstrate that, rather than using broadly tuned combinatorial encoding, ants employ precise, narrowly tuned, and stereotyped representations of alarm pheromones. The identification of a central sensory hub glomerulus for alarm behavior suggests that a simple neural architecture is sufficient to translate pheromone perception into behavioral outputs.


Subject(s)
Ants , Animals , Ants/genetics , Brain/physiology , Odorants , Pheromones , Smell/physiology , Behavior, Animal
3.
Cell ; 185(17): 3104-3123.e28, 2022 08 18.
Article in English | MEDLINE | ID: mdl-35985288

ABSTRACT

Aedes aegypti mosquitoes are a persistent human foe, transmitting arboviruses including dengue when they feed on human blood. Mosquitoes are intensely attracted to body odor and carbon dioxide, which they detect using ionotropic chemosensory receptors encoded by three large multi-gene families. Genetic mutations that disrupt the olfactory system have modest effects on human attraction, suggesting redundancy in odor coding. The canonical view is that olfactory sensory neurons each express a single chemosensory receptor that defines its ligand selectivity. We discovered that Ae. aegypti uses a different organizational principle, with many neurons co-expressing multiple chemosensory receptor genes. In vivo electrophysiology demonstrates that the broad ligand-sensitivity of mosquito olfactory neurons depends on this non-canonical co-expression. The redundancy afforded by an olfactory system in which neurons co-express multiple chemosensory receptors may increase the robustness of the mosquito olfactory system and explain our long-standing inability to disrupt the detection of humans by mosquitoes.


Subject(s)
Aedes , Olfactory Receptor Neurons , Aedes/genetics , Animals , Humans , Ligands , Odorants
4.
Cell ; 185(22): 4099-4116.e13, 2022 10 27.
Article in English | MEDLINE | ID: mdl-36261039

ABSTRACT

Some people are more attractive to mosquitoes than others, but the mechanistic basis of this phenomenon is poorly understood. We tested mosquito attraction to human skin odor and identified people who are exceptionally attractive or unattractive to mosquitoes. These differences were stable over several years. Chemical analysis revealed that highly attractive people produce significantly more carboxylic acids in their skin emanations. Mutant mosquitoes lacking the chemosensory co-receptors Ir8a, Ir25a, or Ir76b were severely impaired in attraction to human scent, but retained the ability to differentiate highly and weakly attractive people. The link between elevated carboxylic acids in "mosquito-magnet" human skin odor and phenotypes of genetic mutations in carboxylic acid receptors suggests that such compounds contribute to differential mosquito attraction. Understanding why some humans are more attractive than others provides insights into what skin odorants are most important to the mosquito and could inform the development of more effective repellents.


Subject(s)
Aedes , Anopheles , Insect Repellents , Animals , Humans , Carboxylic Acids/pharmacology , Odorants/analysis , Insect Repellents/pharmacology , Insect Repellents/analysis
5.
Cell ; 184(26): 6326-6343.e32, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34879231

ABSTRACT

Animals traversing different environments encounter both stable background stimuli and novel cues, which are thought to be detected by primary sensory neurons and then distinguished by downstream brain circuits. Here, we show that each of the ∼1,000 olfactory sensory neuron (OSN) subtypes in the mouse harbors a distinct transcriptome whose content is precisely determined by interactions between its odorant receptor and the environment. This transcriptional variation is systematically organized to support sensory adaptation: expression levels of more than 70 genes relevant to transforming odors into spikes continuously vary across OSN subtypes, dynamically adjust to new environments over hours, and accurately predict acute OSN-specific odor responses. The sensory periphery therefore separates salient signals from predictable background via a transcriptional rheostat whose moment-to-moment state reflects the past and constrains the future; these findings suggest a general model in which structured transcriptional variation within a cell type reflects individual experience.


Subject(s)
Olfactory Receptor Neurons/metabolism , Sensation/genetics , Transcription, Genetic , Animals , Brain/metabolism , Gene Expression Regulation , Mice, Inbred C57BL , Mice, Knockout , Odorants , Olfactory Bulb/metabolism , Receptors, Odorant/metabolism , Transcriptome/genetics
6.
Cell ; 181(4): 749-753, 2020 05 14.
Article in English | MEDLINE | ID: mdl-32413294

ABSTRACT

In 1991, Buck and Axel published a landmark study in Cell for work that was awarded the 2004 Nobel Prize. The identification of the olfactory receptors as the largest family of GPCRs catapulted olfaction into mainstream neurobiology. This BenchMark revisits Buck's experimental innovation and its surprising success at the time.


Subject(s)
Receptors, Odorant/metabolism , Smell/physiology , Awards and Prizes , History, 20th Century , Humans , Neurobiology , Nobel Prize , Olfactory Receptor Neurons , Receptors, G-Protein-Coupled/metabolism
7.
Cell ; 178(1): 60-75.e19, 2019 06 27.
Article in English | MEDLINE | ID: mdl-31230716

ABSTRACT

Animals rely on the relative timing of events in their environment to form and update predictive associations, but the molecular and circuit mechanisms for this temporal sensitivity remain incompletely understood. Here, we show that olfactory associations in Drosophila can be written and reversed on a trial-by-trial basis depending on the temporal relationship between an odor cue and dopaminergic reinforcement. Through the synchronous recording of neural activity and behavior, we show that reversals in learned odor attraction correlate with bidirectional neural plasticity in the mushroom body, the associative olfactory center of the fly. Two dopamine receptors, DopR1 and DopR2, contribute to this temporal sensitivity by coupling to distinct second messengers and directing either synaptic depression or potentiation. Our results reveal how dopamine-receptor signaling pathways can detect the order of events to instruct opposing forms of synaptic and behavioral plasticity, allowing animals to flexibly update their associations in a dynamic environment.


Subject(s)
Association Learning/physiology , Drosophila Proteins/metabolism , Drosophila/physiology , Mushroom Bodies/physiology , Receptors, Dopamine D1/metabolism , Receptors, Dopamine/metabolism , Animals , Behavior, Animal/physiology , Conditioning, Classical/physiology , Dopamine/metabolism , Dopaminergic Neurons/metabolism , Neuronal Plasticity , Odorants , Reward , Smell/physiology , Synaptic Potentials/physiology , Time Factors
8.
Cell ; 175(1): 57-70.e17, 2018 09 20.
Article in English | MEDLINE | ID: mdl-30220455

ABSTRACT

Neurons in Caenorhabditis elegans and other nematodes have been thought to lack classical action potentials. Unexpectedly, we observe membrane potential spikes with defining characteristics of action potentials in C. elegans AWA olfactory neurons recorded under current-clamp conditions. Ion substitution experiments, mutant analysis, pharmacology, and modeling indicate that AWA fires calcium spikes, which are initiated by EGL-19 voltage-gated CaV1 calcium channels and terminated by SHK-1 Shaker-type potassium channels. AWA action potentials result in characteristic signals in calcium imaging experiments. These calcium signals are also observed when intact animals are exposed to odors, suggesting that natural odor stimuli induce AWA spiking. The stimuli that elicit action potentials match AWA's specialized function in climbing odor gradients. Our results provide evidence that C. elegans neurons can encode information through regenerative all-or-none action potentials, expand the computational repertoire of its nervous system, and inform future modeling of its neural coding and network dynamics.


Subject(s)
Action Potentials/physiology , Olfactory Nerve/physiology , Smell/physiology , Animals , Caenorhabditis elegans/physiology , Caenorhabditis elegans Proteins/metabolism , Calcium/metabolism , Calcium Channels/physiology , Chemotaxis/physiology , Membrane Potentials/physiology , Odorants , Olfactory Receptor Neurons/metabolism
9.
Cell ; 174(3): 730-743.e22, 2018 07 26.
Article in English | MEDLINE | ID: mdl-30033368

ABSTRACT

Drosophila melanogaster has a rich repertoire of innate and learned behaviors. Its 100,000-neuron brain is a large but tractable target for comprehensive neural circuit mapping. Only electron microscopy (EM) enables complete, unbiased mapping of synaptic connectivity; however, the fly brain is too large for conventional EM. We developed a custom high-throughput EM platform and imaged the entire brain of an adult female fly at synaptic resolution. To validate the dataset, we traced brain-spanning circuitry involving the mushroom body (MB), which has been extensively studied for its role in learning. All inputs to Kenyon cells (KCs), the intrinsic neurons of the MB, were mapped, revealing a previously unknown cell type, postsynaptic partners of KC dendrites, and unexpected clustering of olfactory projection neurons. These reconstructions show that this freely available EM volume supports mapping of brain-spanning circuits, which will significantly accelerate Drosophila neuroscience. VIDEO ABSTRACT.


Subject(s)
Brain Mapping/methods , Connectome/methods , Nerve Net/anatomy & histology , Animals , Brain/anatomy & histology , Brain/diagnostic imaging , Dendrites , Drosophila melanogaster/anatomy & histology , Female , Microscopy, Electron/methods , Mushroom Bodies , Neurons , Smell/physiology , Software
10.
Cell ; 173(4): 894-905.e13, 2018 05 03.
Article in English | MEDLINE | ID: mdl-29706545

ABSTRACT

Perceptual decisions require the accumulation of sensory information to a response criterion. Most accounts of how the brain performs this process of temporal integration have focused on evolving patterns of spiking activity. We report that subthreshold changes in membrane voltage can represent accumulating evidence before a choice. αß core Kenyon cells (αßc KCs) in the mushroom bodies of fruit flies integrate odor-evoked synaptic inputs to action potential threshold at timescales matching the speed of olfactory discrimination. The forkhead box P transcription factor (FoxP) sets neuronal integration and behavioral decision times by controlling the abundance of the voltage-gated potassium channel Shal (KV4) in αßc KC dendrites. αßc KCs thus tailor, through a particular constellation of biophysical properties, the generic process of synaptic integration to the demands of sequential sampling.


Subject(s)
Dendrites/metabolism , Drosophila Proteins/metabolism , Drosophila/physiology , Action Potentials/drug effects , Animals , Barium/pharmacology , Behavior, Animal/drug effects , Brain/metabolism , Brain/pathology , Cyclohexanols/pharmacology , Drosophila Proteins/genetics , Female , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Male , Neurons/cytology , Neurons/metabolism , Patch-Clamp Techniques , Receptors, Odorant/metabolism , Shal Potassium Channels/genetics , Shal Potassium Channels/metabolism , Smell , Synapses/metabolism
11.
Physiol Rev ; 103(1): 855-918, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36409650

ABSTRACT

Taste and smell play a key role in our ability to perceive foods. Overconsumption of highly palatable energy-dense foods can lead to increased caloric intake and obesity. Thus there is growing interest in the study of the biological mediators of fat taste and associated olfaction as potential targets for pharmacologic and nutritional interventions in the context of obesity and health. The number of studies examining mechanisms underlying fat taste and smell has grown rapidly in the last 5 years. Therefore, the purpose of this systematic review is to summarize emerging evidence examining the biological mechanisms of fat taste and smell. A literature search was conducted of studies published in English between 2014 and 2021 in adult humans and animal models. Database searches were conducted using PubMed, EMBASE, Scopus, and Web of Science for key terms including fat/lipid, taste, and olfaction. Initially, 4,062 articles were identified through database searches, and a total of 84 relevant articles met inclusion and exclusion criteria and are included in this review. Existing literature suggests that there are several proteins integral to fat chemosensation, including cluster of differentiation 36 (CD36) and G protein-coupled receptor 120 (GPR120). This systematic review will discuss these proteins and the signal transduction pathways involved in fat detection. We also review neural circuits, key brain regions, ingestive cues, postingestive signals, and genetic polymorphism that play a role in fat perception and consumption. Finally, we discuss the role of fat taste and smell in the context of eating behavior and obesity.


Subject(s)
Smell , Taste Buds , Taste , Animals , Humans , Feeding Behavior , Obesity/metabolism , Smell/physiology , Taste/physiology
12.
Physiol Rev ; 103(4): 2759-2766, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37342077

ABSTRACT

Anosmia, the loss of the sense of smell, is one of the main neurological manifestations of COVID-19. Although the SARS-CoV-2 virus targets the nasal olfactory epithelium, current evidence suggests that neuronal infection is extremely rare in both the olfactory periphery and the brain, prompting the need for mechanistic models that can explain the widespread anosmia in COVID-19 patients. Starting from work identifying the non-neuronal cell types that are infected by SARS-CoV-2 in the olfactory system, we review the effects of infection of these supportive cells in the olfactory epithelium and in the brain and posit the downstream mechanisms through which sense of smell is impaired in COVID-19 patients. We propose that indirect mechanisms contribute to altered olfactory system function in COVID-19-associated anosmia, as opposed to neuronal infection or neuroinvasion into the brain. Such indirect mechanisms include tissue damage, inflammatory responses through immune cell infiltration or systemic circulation of cytokines, and downregulation of odorant receptor genes in olfactory sensory neurons in response to local and systemic signals. We also highlight key unresolved questions raised by recent findings.


Subject(s)
Anosmia , COVID-19 , Anosmia/virology , Humans , COVID-19/complications , Olfactory Receptor Neurons/physiology , Animals , SARS-CoV-2
13.
Physiol Rev ; 102(1): 61-154, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34254835

ABSTRACT

The biological olfactory system is the sensory system responsible for the detection of the chemical composition of the environment. Several attempts to mimic biological olfactory systems have led to various artificial olfactory systems using different technical approaches. Here we provide a parallel description of biological olfactory systems and their technical counterparts. We start with a presentation of the input to the systems, the stimuli, and treat the interface between the external world and the environment where receptor neurons or artificial chemosensors reside. We then delineate the functions of receptor neurons and chemosensors as well as their overall input-output (I/O) relationships. Up to this point, our accounts of the systems go along similar lines. The next processing steps differ considerably: whereas in biology the processing step following the receptor neurons is the "integration" and "processing" of receptor neuron outputs in the olfactory bulb, this step has various realizations in electronic noses. For a long period of time, the signal processing stages beyond the olfactory bulb, i.e., the higher olfactory centers, were little studied. Only recently has there been a marked growth of studies tackling the information processing in these centers. In electronic noses, a third stage of processing has virtually never been considered. In this review, we provide an up-to-date overview of the current knowledge of both fields and, for the first time, attempt to tie them together. We hope it will be a breeding ground for better information, communication, and data exchange between very related but so far little-connected fields.


Subject(s)
Olfactory Bulb/physiology , Olfactory Receptor Neurons/physiology , Sensory Receptor Cells/physiology , Smell/physiology , Animals , Humans , Odorants , Vertebrates/physiology
14.
Annu Rev Neurosci ; 43: 277-295, 2020 07 08.
Article in English | MEDLINE | ID: mdl-32640927

ABSTRACT

Olfaction is fundamentally distinct from other sensory modalities. Natural odor stimuli are complex mixtures of volatile chemicals that interact in the nose with a receptor array that, in rodents, is built from more than 1,000 unique receptors. These interactions dictate a peripheral olfactory code, which in the brain is transformed and reformatted as it is broadcast across a set of highly interconnected olfactory regions. Here we discuss the problems of characterizing peripheral population codes for olfactory stimuli, of inferring the specific functions of different higher olfactory areas given their extensive recurrence, and of ultimately understanding how odor representations are linked to perception and action. We argue that, despite the differences between olfaction and other sensory modalities, addressing these specific questions will reveal general principles underlying brain function.


Subject(s)
Brain/physiology , Nerve Net/physiology , Olfactory Pathways/physiology , Olfactory Perception/physiology , Smell/physiology , Animals , Humans , Odorants
15.
Proc Natl Acad Sci U S A ; 121(21): e2316799121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38753511

ABSTRACT

The mammalian brain implements sophisticated sensory processing algorithms along multilayered ("deep") neural networks. Strategies that insects use to meet similar computational demands, while relying on smaller nervous systems with shallow architectures, remain elusive. Using Drosophila as a model, we uncover the algorithmic role of odor preprocessing by a shallow network of compartmentalized olfactory receptor neurons. Each compartment operates as a ratiometric unit for specific odor-mixtures. This computation arises from a simple mechanism: electrical coupling between two differently sized neurons. We demonstrate that downstream synaptic connectivity is shaped to optimally leverage amplification of a hedonic value signal in the periphery. Furthermore, peripheral preprocessing is shown to markedly improve novel odor classification in a higher brain center. Together, our work highlights a far-reaching functional role of the sensory periphery for downstream processing. By elucidating the implementation of powerful computations by a shallow network, we provide insights into general principles of efficient sensory processing algorithms.


Subject(s)
Odorants , Olfactory Receptor Neurons , Smell , Animals , Odorants/analysis , Olfactory Receptor Neurons/physiology , Smell/physiology , Drosophila melanogaster/physiology , Algorithms , Drosophila/physiology , Olfactory Pathways/physiology , Models, Neurological , Nerve Net/physiology
16.
Proc Natl Acad Sci U S A ; 121(13): e2320277121, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38507450

ABSTRACT

Proper expression of odor receptor genes is critical for the function of olfactory systems. In this study, we identified exitrons (exonic introns) in four of the 39 Odorant receptor (Or) genes expressed in the Drosophila antenna. Exitrons are sequences that can be spliced out from within a protein-coding exon, thereby altering the encoded protein. We focused on Or88a, which encodes a pheromone receptor, and found that exitron splicing of Or88a is conserved across five Drosophila species over 20 My of evolution. The exitron was spliced out in 15% of Or88a transcripts. Removal of this exitron creates a non-coding RNA rather than an RNA that encodes a stable protein. Our results suggest the hypothesis that in the case of Or88a, exitron splicing could act in neuronal modulation by decreasing the level of functional Or transcripts. Activation of Or88a-expressing olfactory receptor neurons via either optogenetics or pheromone stimulation increased the level of exitron-spliced transcripts, with optogenetic activation leading to a 14-fold increase. A fifth Or can also undergo an alternative splicing event that eliminates most of the canonical open reading frame. Besides these cases of alternative splicing, we found alternative polyadenylation of four Ors, and exposure of Or67c to its ligand ethyl lactate in the antenna downregulated all of its 3' isoforms. Our study reveals mechanisms by which neuronal activity could be modulated via regulation of the levels of Or isoforms.


Subject(s)
Drosophila , Receptors, Odorant , Animals , Drosophila/genetics , Odorants , RNA Splicing/genetics , Alternative Splicing/genetics , Protein Isoforms/genetics , Receptors, Odorant/genetics
17.
Trends Biochem Sci ; 47(4): 284-286, 2022 04.
Article in English | MEDLINE | ID: mdl-34922796

ABSTRACT

In a landmark paper, del Mármol et al. describe cryo-electron microscopy (cryo-EM) structures of an insect olfactory receptor (OR) ion channel, detailing the mechanism by which odorants can directly gate ion flow and providing insights into how this incredibly diverse family of receptors have evolved to support insects navigating complex olfactory landscapes.


Subject(s)
Receptors, Odorant , Smell , Animals , Cryoelectron Microscopy , Insecta , Odorants , Receptors, Odorant/chemistry
18.
Trends Genet ; 39(2): 154-166, 2023 02.
Article in English | MEDLINE | ID: mdl-36414481

ABSTRACT

Gene-editing technologies have revolutionized the field of mosquito sensory biology. These technologies have been used to knock in reporter genes in-frame with neuronal genes and tag specific mosquito neurons to detect their activities using binary expression systems. Despite these advances, novel tools still need to be developed to elucidate the transmission of olfactory signals from the periphery to the brain. Here, we propose the development of a set of tools, including novel driver lines as well as sensors of neuromodulatory activities, which can advance our knowledge of how sensory input triggers behavioral outputs. This information can change our understanding of mosquito neurobiology and lead to the development of strategies for mosquito behavioral manipulation to reduce bites and disease transmission.


Subject(s)
Culicidae , Animals , Culicidae/genetics , Smell/genetics , Gene Editing , Neurons
19.
Development ; 150(2)2023 01 15.
Article in English | MEDLINE | ID: mdl-36661357

ABSTRACT

Olfactory sensory neurons (OSNs) form embryonically and mature perinatally, innervating glomeruli and extending dendrites with multiple cilia. This process and its timing are crucial for odor detection and perception and continues throughout life. In the olfactory epithelium (OE), differentiated OSNs proceed from an immature (iOSN) to a mature (mOSN) state through well-defined sequential morphological and molecular transitions, but the precise mechanisms controlling OSN maturation remain largely unknown. We have identified that a GTPase, ARL13B, has a transient and maturation state-dependent expression in OSNs marking the emergence of a primary cilium. Utilizing an iOSN-specific Arl13b-null murine model, we examined the role of ARL13B in the maturation of OSNs. The loss of Arl13b in iOSNs caused a profound dysregulation of the cellular homeostasis and development of the OE. Importantly, Arl13b null OSNs demonstrated a delay in the timing of their maturation. Finally, the loss of Arl13b resulted in severe deformation in the structure and innervation of glomeruli. Our findings demonstrate a previously unknown role of ARL13B in the maturation of OSNs and development of the OE.


Subject(s)
ADP-Ribosylation Factors , GTP Phosphohydrolases , Olfactory Receptor Neurons , Animals , Mice , Cilia , Neurogenesis , Olfactory Mucosa , ADP-Ribosylation Factors/genetics
20.
Proc Natl Acad Sci U S A ; 120(29): e2117484120, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37428907

ABSTRACT

One major question in neuroscience is how to relate connectomes to neural activity, circuit function, and learning. We offer an answer in the peripheral olfactory circuit of the Drosophila larva, composed of olfactory receptor neurons (ORNs) connected through feedback loops with interconnected inhibitory local neurons (LNs). We combine structural and activity data and, using a holistic normative framework based on similarity-matching, we formulate biologically plausible mechanistic models of the circuit. In particular, we consider a linear circuit model, for which we derive an exact theoretical solution, and a nonnegative circuit model, which we examine through simulations. The latter largely predicts the ORN [Formula: see text] LN synaptic weights found in the connectome and demonstrates that they reflect correlations in ORN activity patterns. Furthermore, this model accounts for the relationship between ORN [Formula: see text] LN and LN-LN synaptic counts and the emergence of different LN types. Functionally, we propose that LNs encode soft cluster memberships of ORN activity, and partially whiten and normalize the stimulus representations in ORNs through inhibitory feedback. Such a synaptic organization could, in principle, autonomously arise through Hebbian plasticity and would allow the circuit to adapt to different environments in an unsupervised manner. We thus uncover a general and potent circuit motif that can learn and extract significant input features and render stimulus representations more efficient. Finally, our study provides a unified framework for relating structure, activity, function, and learning in neural circuits and supports the conjecture that similarity-matching shapes the transformation of neural representations.


Subject(s)
Connectome , Olfactory Receptor Neurons , Animals , Drosophila , Olfactory Receptor Neurons/physiology , Smell/physiology , Larva
SELECTION OF CITATIONS
SEARCH DETAIL