Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 195
Filter
Add more filters

Publication year range
1.
Immunity ; 55(5): 895-911.e10, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35483356

ABSTRACT

Different effector arms of the immune system are optimized to protect from different classes of pathogens. In some cases, pathogens manipulate the host immune system to promote the wrong type of effector response-a phenomenon known as immune deviation. Typically, immune deviation helps pathogens to avoid destructive immune responses. Here, we report on a type of immune deviation whereby an opportunistic pathogen, Pseudomonas aeruginosa (P. aeruginosa), induces the type 2 immune response resulting in mucin production that is used as an energy source by the pathogen. Specifically, P. aeruginosa-secreted toxin, LasB, processed and activated epithelial amphiregulin to induce type 2 inflammation and mucin production. This "niche remodeling" by P. aeruginosa promoted colonization and, as a by-product, allergic sensitization. Our study thus reveals a type of bacterial immune deviation by increasing nutrient supply. It also uncovers a mechanism of allergic sensitization by a bacterial virulence factor.


Subject(s)
Pseudomonas Infections , Pseudomonas aeruginosa , Bacterial Proteins , Humans , Inflammation , Mucins
2.
Arch Biochem Biophys ; 758: 110079, 2024 08.
Article in English | MEDLINE | ID: mdl-38969195

ABSTRACT

Streptococcus oralis an opportunistic bacterium has been reported to be involved in various blood borne infections like subacute bacterial endocarditis, septicemia, bacterial meningitis and in some cases dental caries too. Among various targets the peptide deformylase, of S.oralis appears to be most potent druggable target as it is involved in protein synthesis is opted for the current study. Due to unavailability of PDB structure of peptide deformylase from S. oralis the study initiates with homology modelling of the protein and 6OW2 of S pneumoniae is considered as the template. Thereafter, Molecular docking, Molecular dynamic simulation, ADME analysis, and MMPBSA analysis was carried out to explore the inhibitory potential of phyto-constituents as potential inhibitors for Peptide deformylase from S.oralis. Actinonin was considered as reference drug. Among 2370 phyto compounds the best observations were recorded for A1-Barrigenol (IMPHY010984) with binding affinity of -8.5 kcal/mol. Calculated RMSD, RMSF, Binding Free Energy for IMPHY010984 averaged at about 0.10 ± 0.03 nm, 0.08 ± 0.05 nm, 131 ± 21 kJ/mol respectively whereas the RMSD, RMSF, Binding Free Energy recorded for reference drug averaged at about 0.19 ± 0.04 nm, 0.11 ± 0.08 nm, -94 ± 18 kJ/mol respectively. Based on in silico observations IMPHY010984 is proved out as superior candidate over reference drug. The study reflects the potential of IMPHY010984 as prophylactic therapeutics for S.oralis.


Subject(s)
Amidohydrolases , Molecular Docking Simulation , Molecular Dynamics Simulation , Streptococcus oralis , Amidohydrolases/antagonists & inhibitors , Amidohydrolases/metabolism , Amidohydrolases/chemistry , Streptococcus oralis/enzymology , Streptococcus oralis/drug effects , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Phytochemicals/chemistry , Phytochemicals/pharmacology , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Hydroxamic Acids
3.
Int Microbiol ; 27(2): 411-422, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37479959

ABSTRACT

Morganella morganii is a bacterium belonging to the normal intestinal microbiota and the environment; however, in immunocompromised individuals, this bacterium can become an opportunistic pathogen, causing a series of diseases, both in hospitals and in the community, being urinary tract infections more prevalent. Therefore, the objective of this study was to evaluate the prevalence, virulence profile, and resistance to antimicrobials and the clonal relationship of isolates of urinary tract infections (UTI) caused by M. morganii, both in the hospital environment and in the community of the municipality of Londrina-PR, in southern Brazil, in order to better understand the mechanisms for the establishment of the disease caused by this bacterium. Our study showed that M. morganii presents a variety of virulence factors in the studied isolates. Hospital strains showed a higher prevalence for the virulence genes zapA, iutA, and fimH, while community strains showed a higher prevalence for the ireA and iutA genes. Hospital isolates showed greater resistance compared to community isolates, as well as a higher prevalence of multidrug-resistant (MDR) and extended-spectrum beta lactamase (ESBL)-producing isolates. Several M. morganii isolates from both sources showed high genetic similarity. The most prevalent plasmid incompatibility groups detected were FIB and I1, regardless of the isolation source. Thus, M. morganii isolates can accumulate virulence factors and antimicrobial resistance, making them a neglected opportunistic pathogen.


Subject(s)
Community-Acquired Infections , Morganella morganii , Urinary Tract Infections , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Morganella morganii/genetics , Virulence/genetics , Community-Acquired Infections/drug therapy , Drug Resistance, Bacterial/genetics , Urinary Tract Infections/microbiology , Virulence Factors/genetics , beta-Lactamases/genetics , Microbial Sensitivity Tests
4.
Eur J Clin Microbiol Infect Dis ; 43(2): 383-387, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37996728

ABSTRACT

Two episodes of bacteremia of cutaneous origin in a female patient were caused by two unrelated Streptococcus canis isolates within 1-year interval between the two infection episodes. The most likelihood transmission route in both episodes was a dog pet that habitually licked patient´s legs. Isolates were characterised by antimicrobial susceptibility test and whole genome sequencing. They belonged to sequence type (ST) 40 and 43, respectively. The ST40 isolate harboured antimicrobial resistance genes aadE, ermB and tetO, displaying resistance to erythromycin, clindamycin and tetracyclines, while ST43 isolate did not presented any known antimicrobial resistance determinant and was susceptible to all antibiotics tested. S. canis infections are rare in human; however, attention is needed for patients at risk with companion animals.


Subject(s)
Bacterial Zoonoses , Streptococcal Infections , Streptococcus , Animals , Dogs , Female , Humans , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Microbial Sensitivity Tests , Streptococcal Infections/veterinary , Streptococcal Infections/microbiology , Bacterial Zoonoses/diagnosis
5.
Avian Pathol ; 53(2): 124-133, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38126360

ABSTRACT

Mortality of chicken embryos and first-week chickens was reported in a commercial incubator company in Costa Rica. Six 1-day-old Cobb chickens and twenty-four embryonated chicken eggs were examined in the Laboratory of Avian Pathology and the Laboratory of Bacteriology of the National University of Costa Rica. Twelve dead-in-shell embryos showed maceration and were immersed in a putrid, turbid, slightly thick brown liquid. Additionally, the other 12 embryonated eggs had milky yellow-orange content. The livers of those embryos had congestion, haemorrhages and multifocal cream foci of necrosis. Granulocytic infiltration was observed in the bursa of Fabricius, myocardium, liver, lung and kidney. Livers and egg yolks from six embryonated chickens and all 1-day-old chickens were aseptically collected and cultured. In addition, tissues from six better conserved embryos and all 1-day-old chickens were fixed in buffered formalin and embedded in paraffin. Biochemical and molecular tests identified Comamonas testosteroni as the cause of the early, middle and late embryo mortality. As all the eggshells from the sampled embryonated eggs were dirty with soiled a fecal matter, contamination after manipulating the eggs was considered the source of infection. C. testosteroni is an environmental microorganism that has rarely been reported to cause human disease. To our knowledge, this is the first report of C. testosteroni causing mortality in a hatchery. Cleaning and disinfection using ozone were implemented in the hatchery to eliminate the embryo mortality associated with C. testosteroni.


Subject(s)
Comamonas testosteroni , Poultry Diseases , Humans , Chick Embryo , Animals , Female , Chickens , Costa Rica , Poultry Diseases/microbiology , Liver/pathology
6.
Ann Clin Microbiol Antimicrob ; 23(1): 54, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886694

ABSTRACT

BACKGROUND: Achromobacter spp. are opportunistic pathogens, mostly infecting immunocompromised patients and patients with cystic fibrosis (CF) and considered as difficult-to-treat pathogens due to both intrinsic resistance and the possibility of acquired antimicrobial resistance. Species identification remains challenging leading to imprecise descriptions of resistance in each taxon. Cefiderocol is a broad-spectrum siderophore cephalosporin increasingly used in the management of Achromobacter infections for which susceptibility data remain scarce. We aimed to describe the susceptibility to cefiderocol of a collection of Achromobacter strains encompassing different species and isolation sources from CF or non-CF (NCF) patients. METHODS: We studied 230 Achromobacter strains (67 from CF, 163 from NCF patients) identified by nrdA gene-based analysis, with available susceptibility data for piperacillin-tazobactam, meropenem and trimethoprim-sulfamethoxazole. Minimal inhibitory concentrations (MICs) of cefiderocol were determined using the broth microdilution reference method according to EUCAST guidelines. RESULTS: Strains belonged to 15 species. A. xylosoxidans represented the main species (71.3%). MICs ranged from ≤ 0.015 to 16 mg/L with MIC50/90 of ≤ 0.015/0.5 mg/L overall and 0.125/2 mg/L against 27 (11.7%) meropenem-non-susceptible strains. Cefiderocol MICs were not related to CF/NCF origin or species although A. xylosoxidans MICs were statistically lower than those of other species considered as a whole. Considering the EUCAST non-species related breakpoint (2 mg/L), 228 strains (99.1%) were susceptible to cefiderocol. The two cefiderocol-resistant strains (A. xylosoxidans from CF patients) represented 3.7% of meropenem-non-susceptible strains and 12.5% of MDR strains. CONCLUSIONS: Cefiderocol exhibited excellent in vitro activity against a large collection of accurately identified Achromobacter strains, irrespective of species and origin.


Subject(s)
Achromobacter , Anti-Bacterial Agents , Cefiderocol , Cephalosporins , Cystic Fibrosis , Gram-Negative Bacterial Infections , Microbial Sensitivity Tests , Humans , Achromobacter/drug effects , Achromobacter/genetics , Achromobacter/isolation & purification , Achromobacter/classification , Anti-Bacterial Agents/pharmacology , Cephalosporins/pharmacology , Cystic Fibrosis/microbiology , Gram-Negative Bacterial Infections/microbiology
7.
Environ Res ; 263(Pt 1): 120040, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39305975

ABSTRACT

Within One Health framework, the dissemination of antibiotic resistance genes (ARGs) and pathogenic bacteria by wild birds has attracted increasing attention. In this study, gut samples of wild birds opportunistically collected in Tianjin, China, situated along the East Asian-Australasian Flyway, were used to ascertain the realistic distribution of bacteria and ARGs in their intestinal tracts. These birds have different dietary habits (herbivore, carnivore, and omnivore) and residency statuses (resident and migratory birds). Using 16S rRNA gene sequencing and qPCR, we analyzed microbial communities and the abundance of high-risk ARGs and mobile genetic elements (MGEs). Birds with distinct ecological traits exhibited significant variations in gut bacterial composition, yet similar microbial diversity. Shigella sp. emerged as the core intestinal pathogen, with a mean relative abundance 2.57 to 1466 times higher than that of other pathogenic bacteria, and its concentration correlated with the host's trophic level as indicated by the δ15N values. The distribution of ARGs and MGEs also varied with bird ecological traits. All 10 targeted high-risk ARGs were detected in carnivores or passage migrants, while migratory birds carried significantly greater abundance of intI1 than residents (p < 0.05). The potential of migratory birds to harbor and disseminate pathogenic bacteria and ARGs cannot be ignored. Network analysis revealed blaTEM-1 presence in multiple core microorganisms, positively associated with Clostridioides difficile, emphasizing its risk potential. Positive dfrA12-intI1 correlation across trophic levels suggests potential for intI1-mediated transmission. Our study underscores the high potential risk posed by wild birds in carrying ARGs and pathogenic microorganisms, emphasizing the importance of further research and surveillance in this field.

8.
Appl Microbiol Biotechnol ; 108(1): 294, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38598011

ABSTRACT

Understanding the dynamic change in abundance of both fecal and opportunistic waterborne pathogens in urban surface water under different abiotic and biotic factors helps the prediction of microbiological water quality and protection of public health during recreational activities, such as swimming. However, a comprehensive understanding of the interaction among various factors on pathogen behavior in surface water is missing. In this study, the effect of salinity, light, and temperature and the presence of indigenous microbiota, on the decay/persistence of Escherichia coli and Pseudomonas aeruginosa in Rhine River water were tested during 7 days of incubation with varying salinity (0.4, 5.4, 9.4, and 15.4 ppt), with light under a light/dark regime (light/dark) and without light (dark), temperature (3, 12, and 20 °C), and presence/absence of indigenous microbiota. The results demonstrated that light, indigenous microbiota, and temperature significantly impacted the decay of E. coli. Moreover, a significant (p<0.01) four-factor interactive impact of these four environmental conditions on E. coli decay was observed. However, for P. aeruginosa, temperature and indigenous microbiota were two determinate factors on the decay or growth. A significant three-factor interactive impact between indigenous microbiota, temperature, and salinity (p<0.01); indigenous microbiota, light, and temperature (p<0.01); and light, temperature, and salinity (p<0.05) on the decay of P. aeruginosa was found. Due to these interactive effects, caution should be taken when predicting decay/persistence of E. coli and P. aeruginosa in surface water based on a single environmental condition. In addition, the different response of E. coli and P. aeruginosa to the environmental conditions highlights that E. coli monitoring alone underestimates health risks of surface water by non-fecal opportunistic pathogens, such as P. aeruginosa. KEY POINTS: Abiotic and biotic factors interactively affect decay of E. coli and P. aeruginosa E.coli and P.aeruginosa behave significantly different under the given conditions Only E. coli as an indicator underestimates the microbiological water quality.


Subject(s)
Escherichia coli , Pseudomonas aeruginosa , Rivers , Feces , Fresh Water
9.
Appl Environ Microbiol ; 89(5): e0010523, 2023 05 31.
Article in English | MEDLINE | ID: mdl-37067412

ABSTRACT

Compelling evidence suggests a contribution of the sink environment to the transmission of opportunistic pathogens from the hospital environment to patients in neonatal intensive care units (NICU). In this study, the distribution of the opportunistic pathogen Serratia marcescens in the sink environment and newborns in a NICU was investigated. More than 500 sink drain and faucet samples were collected over the course of five sampling campaigns undertaken over 3 years. Distribution and diversity of S. marcescens were examined with a modified MacConkey medium and a high-throughput short-sequence typing (HiSST) method. Sink drains were an important reservoir of S. marcescens, with an average of 44% positive samples, whereas no faucet sample was positive. The genotypic diversity of S. marcescens was moderate, with an average of two genotypes per drain, while the spatial distribution of S. marcescens was heterogeneous. The genotypic profiles of 52 clinical isolates were highly heterogeneous, with 27 unique genotypes, of which 71% of isolates were found in more than one patient. S. marcescens acquisition during the first outbreaks was mainly caused by horizontal transmissions. HiSST analyses revealed 10 potential cases of patient-to-patient transmission of S. marcescens, five cases of patient-to-sink transmission, and one bidirectional transfer between sink and patient. Environmental and clinical isolates were found in sink drains up to 1 year after the first detection, supporting persisting drain colonization. This extensive survey suggests multiple reservoirs of S. marcescens within the NICU, including patients and sink drains, but other external sources should also be considered. IMPORTANCE The bacterium Serratia marcescens is an important opportunistic human pathogen that thrives in many environments, can become multidrug resistant, and is often involved in nosocomial outbreaks in neonatal intensive care units (NICU). We evaluated the role of sinks during five suspected S. marcescens outbreaks in a NICU. An innovative approach combining molecular and culture methods was used to maximize the detection and typing of S. marcescens in the sink environment. Our results indicate multiple reservoirs of S. marcescens within the NICU, including patients, sink drains, and external sources. These results highlight the importance of sinks as a major reservoir of S. marcescens and potential sources of future outbreaks.


Subject(s)
Cross Infection , Serratia Infections , Humans , Infant, Newborn , Intensive Care Units, Neonatal , Cross Infection/microbiology , Serratia marcescens/genetics , Serratia Infections/epidemiology , Disease Outbreaks
10.
Environ Sci Technol ; 57(48): 20360-20369, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37970641

ABSTRACT

Increases in phosphate availability in drinking water distribution systems (DWDSs) from the use of phosphate-based corrosion control strategies may result in nutrient and microbial community composition shifts in the DWDS. This study assessed the year-long impacts of full-scale DWDS orthophosphate addition on both the microbial ecology and density of drinking-water-associated pathogens that infect the immunocompromised (DWPIs). Using 16S rRNA gene amplicon sequencing and droplet digital PCR, drinking water microbial community composition and DWPI density were examined. Microbial community composition analysis suggested significant compositional changes after the orthophosphate addition. Significant increases in total bacterial density were observed after orthophosphate addition, likely driven by a 2 log 10 increase in nontuberculous mycobacteria (NTM). Linear effect models confirmed the importance of phosphate addition with phosphorus concentration explaining 17% and 12% of the variance in NTM and L. pneumophila density, respectively. To elucidate the impact of phosphate on NTM aggregation, a comparison of planktonic and aggregate fractions of NTM cultures grown at varying phosphate concentrations was conducted. Aggregation assay results suggested that higher phosphate concentrations cause more disaggregation, and the interaction between phosphate and NTM is species specific. This work reveals new insight into the consequences of orthophosphate application on the DWDS microbiome and highlights the importance of proactively monitoring the DWDS for DWPIs.


Subject(s)
Drinking Water , Drinking Water/microbiology , RNA, Ribosomal, 16S/genetics , Corrosion , Nontuberculous Mycobacteria/genetics , Phosphates , Water Microbiology
11.
Environ Res ; 219: 115069, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36549489

ABSTRACT

Contamination of antibiotic resistomes due to animal carcass decay has become a serious environmental concern. However, the relationship between main metabolite compounds of corpse decomposition (i.e., putrescine and cadaverine) and antibiotic resistomes remains unclear. To tackle this issue, the response of antibiotic resistance genes (ARGs) and microbiome in aquatic environment to excess putrescine, cadaverine and a mixture of both based on laboratory simulation experiment was investigated by high-throughput quantitative PCR and amplicon sequencing methods. Our results showed putrescine and cadaverine led to the increasing of TC (total carbon) and TN (total nitrogen) both in water and sediment. Under the exposure of putrescine and cadaverine, the total abundance of mobile genetic elements (MGEs) and most ARGs in water was higher than in sediment. In particular, putrescine and cadaverine caused significantly different decreases in alpha diversity of microbial community in water and sediment compared with the control group. Microbial community structures both in water and sediment were also significantly affected by cadaverine and putrescine. Furthermore, putrescine and cadaverine led to different degrees of increases of high-risk ARGs (like mecA) and opportunistic pathogens (like Delftia) in sediment, promoting the prevalence of antibiotic resistant bacteria. In conclusion, our findings revealed the influences of main metabolites of carcass decay on microbiome and resistomes, providing references for risk assessment and pollution management.


Subject(s)
Genes, Bacterial , Putrescine , Animals , Cadaverine , Water , Rivers , Multiomics , Anti-Bacterial Agents
12.
Environ Res ; 227: 115802, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37003554

ABSTRACT

The extensive use of antibiotics in medicine and agriculture has resulted in the accumulation of antibiotic-resistant microorganisms and antibiotic resistance genes (ARGs) in environments, which threaten human health and contaminate environment. Nematicide avermectin is widely applied to control root-knot nematodes. The effect of five-years application of avermectin on rhizosphere microbiome and resistome of sick tobacco plants in farmland were investigated in present study. The environmental risks of avermectin was assessed adequately. Metagenomic method was used to analyze antibiotic-resistant bacteria and antibiotic resistance genes in the avermectin-treated soil. The abundance and distribution of antibiotic-resistant bacteria and their antibiotic resistance genes were affected by avermectin application. The antibiotic resistant Proteobacteria occupied the highest percentage (36%) in rhizosphere soil and carried 530 ARGs. Opportunistic human pathogens carrying antibiotic resistance genes were enriched in the avermectin-treated soil. Avermectin application increased the counts of many types of antibiotic resistance genes. The relative abundances of genes adeF, BahA, fusH, ileS, and tlrB in the avermectin-treated soil were significantly greater than in the untreated control soil. Different resistance mechanisms were revealed in the avermectin-treated soil. The efflux of antibiotic (670 ARGs), inactivation of antibiotic (475 ARGs), and alteration of antibiotic target (267 ARGs) were the main resistance mechanisms. Rigid control the avermectin dose and use frequency and other pesticides can decrease soil antibiotic resistance genes and protect agricultural products' safety and public health. Overall, application of nematicide avermectin enriched antibiotic-resistant bacteria and antibiotic resistance genes in farmland soil, which should be on the alert for environment protection.


Subject(s)
Genes, Bacterial , Soil , Humans , Farms , Anti-Bacterial Agents/pharmacology , Soil Microbiology , Bacteria/genetics , Drug Resistance, Microbial/genetics , Manure
13.
Biochem Genet ; 61(3): 1086-1096, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36451050

ABSTRACT

BACKGROUND: Delftia acidovorans is distributed widely in the environment and has the potential to promote the growth of plants and degrade organic pollutants. However, it is also an opportunistic pathogen for human and many reports demonstrated that D. acidovorans has strong resistance to aminoglycosides and polymyxins. OBJECTIVE: The aim of this work was to reveal the antibiotic resistance genes and pathogenic genes in a novel conditional pathogenic strain-D. acidovorans B804, which was isolated from the radiation-polluted soil from Xinjiang Uyghur Autonomous Region, China. METHODS: The antibiotic resistance test was performed according to the Kirby-Bauer disk diffusion method and evaluated by the standards of the Clinical and Laboratory Standards Institute guidelines. The genome of D. acidovorans B804 was sequenced by a PacBio RS II and Illumina HiSeq 4000 platform in Shanghai Majorbio Biopharm Technology Co., Ltd. (Shanghai, China). RESULTS: The multidrug resistance phenotypes of D. acidovorans B804 was experimentally confirmed and its genome was sequenced. The total size of D. acidovorans B804 genome was 6,661,314 bp with a GC content of 66.73%. 403 genes associated with antibiotic resistances were predicted. Meanwhile, 89 pathogenic genes were also predicted and 17 of these genes might be capable of causing diseases to human, such as infections and salmonellosis. CONCLUSIONS: This genomic information can be used as a reference sequence for comparative genomic studies. The results provided more insights regarding the pathogenesis and drug resistance mechanism of D. acidovorans, which will be meaningful for developing more effective therapies toward D. acidovorans-related diseases.


Subject(s)
Delftia acidovorans , Humans , Delftia acidovorans/genetics , Delftia acidovorans/metabolism , China , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Whole Genome Sequencing , Base Sequence
14.
Ultrastruct Pathol ; 47(5): 451-459, 2023 Sep 03.
Article in English | MEDLINE | ID: mdl-37533314

ABSTRACT

A 34-year-old male presented with lung shadow and was asymptomatic during medical examination. The patient had a prior history of thyroid tumors. Imaging manifestation showed a nodule in the medial segment of the right middle lobe, with partial obstruction of the distal bronchus within the lesion. Ground-glass and inflammatory nodules were observed in the anterior segment of the right upper lobe, as well as chronic inflammatory changes in the lower lobe of the right lung. Lung histopathological examination suggested invasive adenocarcinoma. A morphological examination of the bronchoalveolar lavage fluid revealed the presence of Tropheryma whipplei (TW) and Nocardia. Although TW infection has been reported in cancer patients, co-infection with Nocardia is a unique occurrence in this case. Opportunistic pathogens are common in immunocompromised patients but in this case, the patient was a young adult with normal immunity and an early-stage tumor with TW and Nocardia co-infection. We demonstrated the presence of rare microorganisms through imaging findings, combined with different staining methods of bronchoalveolar lavage fluid and lung tissue sections and evaluation of morphological characteristics. The aim of the present study was to provide early diagnosis and treatment of patients by improving microbial morphological detection.


Subject(s)
Coinfection , Lung Neoplasms , Nocardia , Male , Young Adult , Humans , Adult , Tropheryma , Lung
15.
BMC Biol ; 20(1): 236, 2022 10 20.
Article in English | MEDLINE | ID: mdl-36266645

ABSTRACT

BACKGROUND: The Fusarium solani species complex (FSSC) comprises fungal pathogens responsible for mortality in a diverse range of animals and plants, but their genome diversity and transcriptome responses in animal pathogenicity remain to be elucidated. We sequenced, assembled and annotated six chromosome-level FSSC clade 3 genomes of aquatic animal and plant host origins. We established a pathosystem and investigated the expression data of F. falciforme and F. keratoplasticum in Chinese softshell turtle (Pelodiscus sinensis) host. RESULTS: Comparative analyses between the FSSC genomes revealed a spectrum of conservation patterns in chromosomes categorised into three compartments: core, fast-core (FC), and lineage-specific (LS). LS chromosomes contribute to variations in genomes size, with up to 42.2% of variations between F. vanettenii strains. Each chromosome compartment varied in structural architectures, with FC and LS chromosomes contain higher proportions of repetitive elements with genes enriched in functions related to pathogenicity and niche expansion. We identified differences in both selection in the coding sequences and DNA methylation levels between genome features and chromosome compartments which suggest a multi-speed evolution that can be traced back to the last common ancestor of Fusarium. We further demonstrated that F. falciforme and F. keratoplasticum are opportunistic pathogens by inoculating P. sinensis eggs and identified differentially expressed genes also associated with plant pathogenicity. These included the most upregulated genes encoding the CFEM (Common in Fungal Extracellular Membrane) domain. CONCLUSIONS: The high-quality genome assemblies provided new insights into the evolution of FSSC chromosomes, which also serve as a resource for studies of fungal genome evolution and pathogenesis. This study also establishes an animal model for fungal pathogens of trans-kingdom hosts.


Subject(s)
Fusarium , Animals , Fusarium/genetics , Transcriptome , Plant Diseases/genetics , Plant Diseases/microbiology , Phylogeny , Genomics , Plants/genetics
16.
Plant Dis ; 107(8): 2325-2334, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37596715

ABSTRACT

Banana (Musa spp.) is an important fruit and food crop worldwide. In recent years, banana sheath rot has become a major problem in banana cultivation, causing plant death and substantial economic losses. Nevertheless, the pathogen profile of this disease has not been fully characterized. Klebsiella variicola is a versatile bacterium capable of colonizing different hosts, such as plants, humans, insects, and animals, and is recognized as an emerging pathogen in various hosts. In this study, we obtained 12 bacterial isolates from 12 different banana samples showing banana sheath rot in Guangdong and Guangxi Provinces, China. Phylogenetic analysis based on 16S rRNA sequences confirmed that all 12 isolates were K. variicola strains. We sequenced the genomes of these strains, performed comparative genomic analysis with other sequenced K. variicola strains, and found a lack of consistency in accessory gene content among these K. variicola strains. However, prediction based on the pan-genome of K. variicola revealed 22 unique virulence factors carried by the 12 pathogenic K. variicola isolates. Microbiome and microbial interaction network analysis of endophytes between the healthy tissues of diseased plants and healthy plants of two cultivars showed that Methanobacterium negatively interacts with Klebsiella in banana plants and that Herbaspirillum might indirectly inhibit Methanobacterium to promote Klebsiella growth. These results suggest that banana sheath rot is caused by the imbalance of plant endophytes and opportunistic pathogenic bacteria, providing an important basis for research and control of this disease.[Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Musa , Animals , Humans , Phylogeny , RNA, Ribosomal, 16S/genetics , China , Klebsiella/genetics , Endophytes
17.
J Wound Care ; 32(12): 811-820, 2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38060419

ABSTRACT

OBJECTIVE: To investigate Corynebacterium striatum as a nosocomial pathogen infecting hard-to-heal peripheral wounds, such as skin wounds, soft tissue abscesses and osteomyelitis. As of 2023, the medical community were alerted against the risk of emerging systemic and central infections; on the other hand literature on peripheral cutaneous regions is still scarce. METHOD: In this study, two groups of patients with similar lesions which were infected were compared: one group with the presence of the coryneform rod, the other without. RESULTS: In total, Corynebacterium striatum was cultured from 62 patients and 131 samples. Corynebacterium striatum infection correlated well with the presence of: foot ulcer; venous leg ulcer; altered ambulation and/or altered foot loading; peripheral vascular and arterial disease; hospitalisation; malignancy; spinal cord injury; and recent administration of antibiotics (p<0.05 for all associations). Patients with Corynebacterium striatum had a lower overall survival rate compared to patients in the non-Corynebacterium striatum group (28.6 versus 31.6 months, respectively; p=0.0285). Multivariate analysis revealed that Corynebacterium striatum infection was an independent factor for poor prognosis (p<0.0001). CONCLUSION: In view of the findings of our study, Corynebacterium striatum appears to be an important opportunistic pathogen infecting peripheral tissues and complicating wound healing. Given its numerous and worrying virulence factors (such as multidrug resistance and biofilm production), particular attention should be given to this pathogen by professional wound care providers in nosocomial and outpatient environments.


Subject(s)
Corynebacterium Infections , Cross Infection , Humans , Prospective Studies , Corynebacterium , Corynebacterium Infections/microbiology , Wound Healing , Cross Infection/microbiology
18.
BMC Microbiol ; 22(1): 303, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36510131

ABSTRACT

BACKGROUND: Iron is essential for almost all bacterial pathogens and consequently it is actively withheld by their hosts. However, the production of extracellular siderophores enables iron sequestration by pathogens, increasing their virulence. Another function of siderophores is extracellular detoxification of non-ferrous metals. Here, we experimentally link the detoxification and virulence roles of siderophores by testing whether the opportunistic pathogen Pseudomonas aeruginosa displays greater virulence after exposure to copper. To do this, we incubated P. aeruginosa under different environmentally relevant copper regimes for either two or twelve days. Subsequent growth in a copper-free environment removed phenotypic effects, before we quantified pyoverdine production (the primary siderophore produced by P. aeruginosa), and virulence using the Galleria mellonella infection model. RESULTS: Copper selected for increased pyoverdine production, which was positively correlated with virulence. This effect increased with time, such that populations incubated with high copper for twelve days were the most virulent. Replication of the experiment with a non-pyoverdine producing strain of P. aeruginosa demonstrated that pyoverdine production was largely responsible for the change in virulence. CONCLUSIONS: We here show a direct link between metal stress and bacterial virulence, highlighting another dimension of the detrimental effects of metal pollution on human health.


Subject(s)
Pseudomonas aeruginosa , Siderophores , Humans , Virulence , Iron
19.
Mol Ecol ; 31(20): 5402-5418, 2022 10.
Article in English | MEDLINE | ID: mdl-35917247

ABSTRACT

Viruses are key actors of ecosystems and have major impacts on global biogeochemical cycles. Prophages deserve particular attention as they are ubiquitous in bacterial genomes and can enter a lytic cycle when triggered by environmental conditions. We explored how temperature affects the interactions between prophages and other biological levels using an opportunistic pathogen, the bacterium Serratia marcescens, which harbours several prophages and that had undergone an evolution experiment under several temperature regimes. We found that the release of one of the prophages was temperature-sensitive and malleable to evolutionary changes. We further discovered that the virulence of the bacterium in an insect model also evolved and was positively correlated with phage release rates. We determined through analysis of genetic and epigenetic data that changes in the bacterial outer cell wall structure possibly explain this phenomenon. We hypothezise that the temperature-dependent phage release rate acted as a selection pressure on S. marcescens and that it resulted in modified bacterial virulence in the insect host. Our study system illustrates how viruses can mediate the influence of abiotic environmental changes to other biological levels and thus be involved in ecosystem feedback loops.


Subject(s)
Bacteriophages , Prophages , Bacteriophages/genetics , Ecosystem , Genome, Bacterial/genetics , Prophages/genetics , Temperature , Virulence/genetics
20.
Arch Microbiol ; 204(3): 178, 2022 Feb 17.
Article in English | MEDLINE | ID: mdl-35174425

ABSTRACT

Genome analysis of strains placed in the NCBI genome database as Burkholderia cenocepacia defined nine genomic species groups. The largest group (259 strains) corresponds to B. cenocepacia and the second largest group (58 strains) was identified as "Burkholderia servocepacia", a Burkholderia species classification which has not been validly published. The publication of "B. servocepacia" did not comply with Rule 27 and Recommendation 30 from the International Code of Nomenclature of Prokaryotes (ICNP) and have errors in the type strain name and the protologue describing the novel species. Here, we correct the position of this species by showing essential information that meets the criteria defined by ICNP. After additional analysis complying with taxonomic criteria, we propose that the invalid "B. servocepacia" be renamed as Burkholderia orbicola sp. nov. The original study proposing "B. servocepacia" was misleading, because this name derives from the Latin "servo" meaning "to protect/watch over", and the authors proposed this based on the beneficial biocontrol properties of several strains within the group. However, it is clear that "B. servocepacia" isolates are capable of opportunistic infection, and the proposed name Burkholderia orbicola sp. nov. takes into account these diverse phenotypic traits. The type strain is TAtl-371 T (= LMG 30279 T = CM-CNRG 715 T).


Subject(s)
Burkholderia cepacia complex , Burkholderia , Burkholderia cepacia complex/genetics , DNA, Bacterial/genetics , Phenotype , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL