Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.231
Filter
Add more filters

Publication year range
1.
Nano Lett ; 24(4): 1205-1213, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38214250

ABSTRACT

Amorphous nanomaterials have drawn extensive attention owing to their unique features, while amorphization on noble metal nanomaterials still remains formidably challenging. Herein, we demonstrate a universal strategy to synthesize amorphous Pd-based nanomaterials from unary to quinary metals through the introduction of phosphorus (P). The amorphous Pd-based nanoparticles (NPs) exhibit generally promoted oxygen reduction reaction (ORR) activity and durability compared with their crystalline counterparts. Significantly, the quinary P-PdCuNiInSn NPs, benefiting from the amorphous structure and multimetallic component effect, exhibit mass activities as high as 1.04 A mgPd-1 and negligible activity decays of 1.8% among the stability tests, which are much better than values for original Pd NPs (0.134 A mgPd-1 and 28.4%). Experimental and theoretical analyses collectively reveal that the synergy of P-induced amorphization and the expansion of metallic components can considerably lower the free energy changes in the rate-determined step, thereby explaining the positive correlation with the catalytic activity.

2.
Nano Lett ; 24(30): 9360-9367, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39012487

ABSTRACT

The application of scattered light via an antenna-reactor configuration is promising for converting thermocatalysts into photocatalysts. However, the efficiency of dielectric antennas in photon-to-chemical conversion remains suboptimal. Herein, we present an effective approach to promote light utilization efficiency by designing dielectric antenna-hybrid bilayered reactors. Experimental studies and finite-difference time-domain simulations demonstrate that the engineered SiO2-carbon/metal dielectric antenna-hybrid bilayered reactors exhibit a synergy of absorption superposition and electric field confinement between carbon and metals, leading to the improved absorption of scattered light, upgraded charge carriers density, and ultimately promoted photoactivity in hydrogenating chlorobenzene with an average benzene formation rate of 18 258 µmol g-1 h-1, outperforming the reported results. Notably, the carbon interlayer proves to be more effective than the commonly explored dielectric TiO2 interlayer in boosting the benzene formation rate by over 3 times. This research paves the way for promoting near-field scattered photon-to-chemical conversion through a dielectric antenna-hybrid reactor configuration.

3.
Nano Lett ; 24(25): 7637-7644, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38874010

ABSTRACT

Revealing the effect of surface structure changes on the electrocatalytic performance is beneficial to the development of highly efficient catalysts. However, precise regulation of the catalyst surface at the atomic level remains challenging. Here, we present a continuous strain regulation of palladium (Pd) on gold (Au) via a mechanically controllable surface strain (MCSS) setup. It is found that the structural changes induced by the strain setup can accelerate electron transfer at the solid-liquid interface, thus achieving a significantly improved performance toward hydrogen evolution reaction (HER). In situ X-ray diffraction (XRD) experiments further confirm that the enhanced activity is attributed to the increased interplanar spacing resulting from the applied strain. Theoretical calculations reveal that the tensile strain modulates the electronic structure of the Pd active sites and facilitates the desorption of the hydrogen intermediates. This work provides an effective approach for revealing the relationships between the electrocatalyst surface structure and catalytic activity.

4.
Small ; 20(4): e2304325, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37726239

ABSTRACT

The rising costs of pharmaceutical research are currently limiting the productivity of drug discovery and development, but can potentially be diminished via miniaturization of the synthesis and screening of new compounds. As droplet microarrays already present themselves as a versatile tool for highly miniaturized biological screening of various targets, their use for chemical synthesis is still limited. In this study, the influential palladium-catalyzed Suzuki-Miyaura reaction is successfully implemented at the nanoliter scale on droplet microarrays for the synthesis of an 800-compound library of biphenyls. Each reaction is carried out in individual 150 nL droplets. Remarkably, the synthesis of these 800 compounds requires a minimal amount of reagents, totaling 80 µmol, and a solvent volume of 400 µL. Furthermore, the cleavage kinetics and purity of the obtained biphenylic compounds are investigated. Via the solid-phase synthesis approach, the compounds could be purified from excess reactants and catalyst prior to the analysis and a UV-cleavable linker allows for fast and additive-free cleavage of each compound into the individual 100 nL droplet. This novel approach expands the toolbox of the droplet microarray for miniaturized high-throughput chemical synthesis and paves the way for future synthesis and screening of chemical compounds in a single platform.

5.
Small ; : e2401184, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38884188

ABSTRACT

An interplay between Pd and PdO and their spatial distribution inside the particles are relevant for numerous catalytic reactions. Using in situ time-resolved X-ray absorption spectroscopy (XAS) supported by theoretical simulations, a mechanistic picture of the structural evolution of 2.3 nm palladium nanoparticles upon their exposure to molecular oxygen is provided. XAS analysis revealed the restructuring of the fcc-like palladium surface into the 4-coordinated structure of palladium oxide upon absorption of oxygen from the gas phase and formation of core@shell Pd@PdO structures. The reconstruction starts from the low-coordinated sites at the edges of palladium nanoparticles. Formation of the PdO shell does not affect the average Pd‒Pd coordination numbers, since the decrease of the size of the metallic core is compensated by a more spherical shape of the oxidized nanoparticles due to a weaker interaction with the support. The metallic core is preserved below 200 °C even after continuous exposure to oxygen, with its size decreasing insignificantly upon increasing the temperature, while above 200 °C, bulk oxidation proceeds. The Pd‒Pd distances in the metallic phase progressively decrease upon increasing the fraction of the Pd oxide due to the alignment of the cell parameters of the two phases.

6.
Small ; 20(29): e2309490, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38651888

ABSTRACT

The confinement effect of catalytic nanoreactors containing metal catalysts within nanometer-sized volumes has attracted significant attention for their potential to enhance reaction rate and selectivity. Nevertheless, unregulated catalyst loading, aggregation, leaching, and limited reusability remain obstacles to achieving an efficient nanoreactor. A robust and durable catalytic membrane nanoreactor prepared by incorporating palladium nanocatalysts within a 3D-continuous nanoporous covalent framework membrane is presented. The reduction of palladium precursor occurs on the pore surface within 3D nanochannels, producing ultrafine palladium nanoparticles (Pd NPs) with their number density adjustable by varying metal precursor concentrations. The precise catalyst loading enables controlling the catalytic activity of the reactor while preventing excess metal usage. The facile preparation of Pd NP-loaded free-standing membrane materials allows hydrodechlorination in both batch and continuous flow modes. In batch mode, the catalytic activity is proportional to the loaded Pd amount and membrane area, while the membrane retains its activity upon repeated use. In continuous mode, the conversion remains above 95% for over 100 h, with the reactant solution passing through a single 50 µm-thick Pd-loaded membrane. The efficient nanoporous film-type catalytic nanoreactor may find applications in catalytic reactions for small chemical devices as well as in conventional chemistry and processes.

7.
Small ; 20(32): e2309744, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38507730

ABSTRACT

The development of hydrogen (H2) gas sensors is essential for the safe and efficient adoption of H2 gas as a clean, renewable energy source in the challenges against climate change, given its flammability and associated safety risks. Among various H2 sensors, gasochromic sensors have attracted great interest due to their highly intuitive and low power operation, but slow kinetics, especially slow recovery rate limited its further practical application. This study introduces Pd-decorated amorphous WO3 nanorods (Pd-WO3 NRs) as an innovative gasochromic H2 sensor, demonstrating rapid and highly reversible color changes for H2 detection. In specific, the amorphous nanostructure exhibits notable porosity, enabling rapid detection and recovery by facilitating effective H2 gas interaction and efficient diffusion of hydrogen ions (H+) dissociated from the Pd nanoparticles (Pd NPs). The optimized Pd-WO3 NRs sensor achieves an impressive response time of 14 s and a recovery time of 1 s to 5% H2. The impressively fast recovery time of 1 s is observed under a wide range of H2 concentrations (0.2-5%), making this study a fundamental solution to the challenged slow recovery of gasochromic H2 sensors.

8.
Small ; 20(35): e2401230, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38698589

ABSTRACT

Control over the morphology of nanomaterials to have a 2D structure and manipulating the surface strain of nanostructures through defect control have proved to be promising for developing efficient catalysts for sustainable chemical and energy conversion. Here a one-pot aqueous synthesis route of freestanding Pd nanosheets with a penta-twinned structure (PdPT NSs) is presented. The generation of the penta-twinned nanosheet structure can be succeeded by directing the anisotropic growth of Pd under the controlled reduction kinetics of Pd precursors. Experimental and computational investigations showed that the surface atoms of the PdPT NSs are effectively under a compressive environment due to the strain imposed by their twin boundary defects. Due to the twin boundary-induced surface strain as well as the 2D structure of the PdPT NSs, they exhibited highly enhanced electrocatalytic activity for oxygen reduction reaction compared to Pd nanosheets without a twin boundary, 3D Pd nanocrystals, and commercial Pd/C and Pt/C catalysts.

9.
Small ; 20(34): e2400939, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38618653

ABSTRACT

Heterodimers of metal nanocrystals (NCs) with tailored elemental distribution have emerged as promising candidates in the field of electrocatalysis, owing to their unique structures featuring heterogeneous interfaces with distinct components. Despite this, the rational synthesis of heterodimer NCs with similar elemental composition remains a formidable challenge, and their impact on electrocatalysis has remained largely elusive. In this study, Pd@Bi-PdBi heterodimer NCs are synthesized through an underpotential deposition (UPD)-directed growth pathway. In this pathway, the UPD of Bi promotes a Volmer-Weber growth mode, allowing for judicious modulation of core-satellite to heterodimer structures through careful control of supersaturation and growth kinetics. Significantly, the heterodimer NCs are employed in the electrocatalytic process of ethylene glycol (EG) with high activity and selectivity. Compared with pristine Pd octahedra and common PdBi alloy NC, the unique heterodimer structure of the Pd@Bi-PdBi heterodimer NCs endows them with the highest electrocatalytic performance of EG and the best selectivity (≈93%) in oxidizing EG to glycolic acid (GA). Taken together, this work not only heralds a new strategy for UPD-directed synthesis of bimetallic NCs, but also provides a new design paradigm for steering the selectivity of electrocatalysts.

10.
Small ; 20(26): e2308593, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38326100

ABSTRACT

Herein, aqueous nitrate (NO3 -) reduction is used to explore composition-selectivity relationships of randomly alloyed ruthenium-palladium nanoparticle catalysts to provide insights into the factors affecting selectivity during this and other industrially relevant catalytic reactions. NO3 - reduction proceeds through nitrite (NO2 -) and then nitric oxide (NO), before diverging to form either dinitrogen (N2) or ammonium (NH4 +) as final products, with N2 preferred in potable water treatment but NH4 + preferred for nitrogen recovery. It is shown that the NO3 - and NO starting feedstocks favor NH4 + formation using Ru-rich catalysts, while Pd-rich catalysts favor N2 formation. Conversely, a NO2 - starting feedstock favors NH4 + at ≈50 atomic-% Ru and selectivity decreases with higher Ru content. Mechanistic differences have been probed using density functional theory (DFT). Results show that, for NO3 - and NO feedstocks, the thermodynamics of the competing pathways for N-H and N-N formation lead to preferential NH4 + or N2 production, respectively, while Ru-rich surfaces are susceptible to poisoning by NO2 - feedstock, which displaces H atoms. This leads to a decrease in overall reduction activity and an increase in selectivity toward N2 production. Together, these results demonstrate the importance of tailoring both the reaction pathway thermodynamics and initial reactant binding energies to control overall reaction selectivity.

11.
Chembiochem ; 25(6): e202300696, 2024 03 15.
Article in English | MEDLINE | ID: mdl-38146865

ABSTRACT

Pt(II) and Pd(II) coordinating N-donor ligands have been extensively studied as anticancer agents after the success of cisplatin. In this work, a novel bidentate N-donor ligand, the N-[[4-(phenylmethoxy)phenyl]methyl]-2-pyridinemethanamine, was designed to explore the antiparasitic, antiviral and antitumor activity of its Pt(II) and Pd(II) complexes. Chemical and spectroscopic characterization confirm the formation of [MLCl2 ] complexes, where M=Pt(II) and Pd(II). Single crystal X-ray diffraction confirmed a square-planar geometry for the Pd(II) complex. Spectroscopic characterization of the Pt(II) complex suggests a similar structure. 1 H NMR, 195 Pt NMR and HR-ESI-MS(+) analysis of DMSO solution of complexes indicated that both compounds exchange the chloride trans to the pyridine for a solvent molecule with different reaction rates. The ligand and the two complexes were tested for in vitro antitumoral, antileishmanial, and antiviral activity. The Pt(II) complex resulted in a GI50 of 10.5 µM against the NCI/ADR-RES (multidrug-resistant ovarian carcinoma) cell line. The ligand and the Pd(II) complex showed good anti-SARS-CoV-2 activity with around 65 % reduction in viral replication at a concentration of 50 µM.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Platinum/pharmacology , Platinum/chemistry , Ligands , Cisplatin , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antiviral Agents/pharmacology , Palladium/pharmacology , Palladium/chemistry , Crystallography, X-Ray , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Cell Line, Tumor
12.
Chembiochem ; 25(10): e202400150, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38554039

ABSTRACT

1,2,3-triazole is an important building block in organic chemistry. It is now well known as a bioisostere for various functions, such as the amide or the ester bond, positioning it as a key pharmacophore in medicinal chemistry and it has found applications in various fields including life sciences. Attention was first focused on the synthesis of 1,4-disubstituted 1,2,3-triazole molecules however 1,4,5-trisubstituted 1,2,3-triazoles have now emerged as valuable molecules due to the possibility to expand the structural modularity. In the last decade, methods mainly derived from the copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction have been developed to access halo-triazole compounds and have been applied to nucleosides, carbohydrates, peptides and proteins. In addition, late-stage modification of halo-triazole derivatives by metal-mediated cross-coupling or halo-exchange reactions offer the possibility to access highly functionalized molecules that can be used as tools for chemical biology. This review summarizes the synthesis, the functionalization, and the applications of 1,4,5-trisubstituted halo-1,2,3-triazoles in biologically relevant molecules.


Subject(s)
Cycloaddition Reaction , Triazoles , Triazoles/chemistry , Triazoles/chemical synthesis , Copper/chemistry , Catalysis , Azides/chemistry , Alkynes/chemistry , Alkynes/chemical synthesis , Proteins/chemistry , Peptides/chemistry , Peptides/chemical synthesis , Click Chemistry , Nucleosides/chemistry , Nucleosides/chemical synthesis , Carbohydrates/chemistry , Carbohydrates/chemical synthesis
13.
Microvasc Res ; 151: 104619, 2024 01.
Article in English | MEDLINE | ID: mdl-37898331

ABSTRACT

Because of the high mortality and morbidity rate of breast cancer, successful management of the disease requires synthesis of novel compounds. To this end, ongoing attempts to create new candidates include synthesis of multinuclear metal complexes. The high DNA binding affinity and cytotoxic activity of these complexes makes them promising as breast cancer treatments. This study investigated anti-growth/cytotoxic effect of the dinuclear Pd(II) complex on breast cancer cell lines (MCF-7, MDA-MB-231) using various methods of staining, flow cytometry, and immunoblotting. The study conducted colony formation, invasion, and migration assays were to assess the effect of the complex on metastasis. Increased caspase-3/7 levels and positive annexin V staining were observed in both cell lines, proving apoptosis. Altered TNFR1 and TRADD expression with caspase-8 cleavage followed by BCL-2 inactivation with loss of mitochondrial membrane potential confirmed the presence of apoptosis in MCF-7 and MDA-MB-231, regardless of p53 expression status. The results implied anti-migration properties. Finally, the study used the CAM assay to assess antiangiogenic properties and showed that the complex inhibited angiogenesis. The study concluded the dinuclear Pd(II) complex warrants further in vivo experiments to show its potential in the treatment of breast cancer.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Humans , Female , Breast Neoplasms/metabolism , Apoptosis , Antineoplastic Agents/chemistry , MCF-7 Cells , Cell Line, Tumor , Cell Proliferation
14.
Chemistry ; 30(2): e202303165, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-37850396

ABSTRACT

Atropisomers have emerged as important structural scaffolds in natural products, drug design, and asymmetric synthesis. Recently, N-N biaryl atropisomers have drawn increasing interest due to their unique structure and relatively stable axes. However, its asymmetric synthesis remains scarce compared to its well-developed C-C biaryl analogs. In this concept, we summarize the asymmetric synthesis of N-N biaryl atropisomers including N-N pyrrole-pyrrole, N-N pyrrole-indole, N-N indole-indole, and N-N indole-carbazole, during which a series synthetic strategies are highlighted. Also, a synthetic evolution is briefly reviewed and an outlook of N-N biaryl atropisomers synthesis is offered.

15.
Chemistry ; 30(46): e202401738, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-38752722

ABSTRACT

The Pd-catalysed decarboxylative asymmetric allylic alkylation (DAAA) has been applied to the enantioselective synthesis of sterically hindered benzofuran-3(2H)-one-derived α-aryl-ß-keto esters employing the (R,R)-ANDEN phenyl Trost ligand. A range of substrates were synthesised, employing previously developed aryllead triacetate methodology to install various aryl groups. The resulting α-aryl-α-allyl benzofuran-3(2H)-one DAAA products were obtained in moderate to high yields and in enantioselectivities of up to 96 % ee, with the best results observed for substrates containing a di-ortho-substitution pattern on the aryl ring as well as naphthyl-containing substrates.

16.
Chemistry ; 30(19): e202400017, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38284753

ABSTRACT

The site-selective modification of complex biomolecules by transition metal-catalysis is highly warranted, but often thwarted by the presence of Lewis basic functional groups. This study demonstrates that protonation of amines and phosphates in carbohydrates circumvents catalyst inhibition in palladium-catalyzed site-selective oxidation. Both aminoglycosides and sugar phosphates, compound classes that up till now largely escaped direct modification, are oxidized with good efficiency. Site-selective oxidation of kanamycin and amikacin was used to prepare a set of 3'-modified aminoglycoside derivatives of which two showed promising activity against antibiotic-resistant E. coli strains.


Subject(s)
Aminoglycosides , Sugar Phosphates , Palladium , Escherichia coli , Anti-Bacterial Agents/pharmacology , Catalysis
17.
Chemistry ; 30(5): e202303350, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-37872737

ABSTRACT

Three series of palladium(II) complexes supported by a phosphine-iminophosphorane ligand built upon an ortho-phenylene core were investigated to study the influence of the iminophosphorane N substituent. Cis-dichloride palladium(II) complexes 1 in which the N atom bears an isopropyl (iPr, 1 a), a phenyl (Ph, 1 b), a trimethylsilyl (TMS, 1 c) group or an H atom (1 d) were synthesized in high yield. They were characterized by NMR, IR spectroscopy, HR-mass spectrometry, elemental analysis, and X-ray diffraction. A substantial bond length difference between the Pd-Cl bonds was observed in 1. Complexes 1 a-d were converted into [Pd(LR )Cl(CNt Bu)](OTf)] 2 a-d whose isocyanide is located trans to the iminophosphorane. The corresponding dicationic complexes [Pd(LR )(CNt Bu)2 ](OTf)2 3 a-d were also synthesized, however they exhibited lower stability in solution than 2, the isopropyl derivative 3 a being the most stable of the series. Molecular modeling was performed to rationalize the regioselectivity of the substitution of the single chloride by isocyanide (from 1 to 2) and to study the electronic distribution in the complexes. In particular differences between the TMS and H containing complexes vs. the iPr and Ph ones were found. This suggests that the nature of the N substituent is far from innocent and can help tune the reactivity of iminophosphorane complexes.

18.
Chemistry ; 30(3): e202302416, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-37792811

ABSTRACT

Transition-metal-catalyzed coupling reactions that involve the direct functionalization of insert C-H bond represent one of the most efficient strategies for forming carbon-carbon bonds. Herein, a palladium-catalyzed intramolecular C-H bond arylation of triaryl phosphates is reported to access seven-membered cyclic biarylphosphonate targets. The reaction is achieved via a unique eight-membered palladacyclic intermediate and shows good functional group compatibility. Meanwhile, the product can be readily converted into other valuable phosphate compounds.

19.
Chemistry ; : e202402587, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39178046

ABSTRACT

Typical approaches to heterocycle construction require significant changes in synthetic strategy even for a change as minor as increasing the ring size. The ability to access multiple heterocyclic scaffolds through a common synthetic approach, simply through trivial modification of one reaction component, would enable facile access to diverse libraries of structural analogues of core scaffolds. Here, we show that urea-derived ligands effectively promote Pd-mediated chainwalking processes to enable remote heteroannulation for the rapid construction of six- and seven-membered azaheterocycles under essentially identical reaction conditions. This method demonstrates good functional group tolerance and effectively engages sterically hindered substrates. In addition, this reaction is applicable to target-oriented synthesis, demonstrated through the formal synthesis of antimalarial alkaloid galipinine.

20.
Chemistry ; : e202402351, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39192800

ABSTRACT

The synthetic potential of substituted 1,4-dioxenes is well recognised, although the chemistry of 2-aryl-1,4-dioxenes is relatively unexplored. Their transition metal-catalysed synthesis has been limited to Stille-type cross-coupling chemistry, typically showing long reaction times, or proceeding at high reaction temperatures. Here we present a facile and general methodology for the cross-coupling of aryl bromides with lithium 1,4-dioxene, affording a range of 2-aryl-1,4-dioxenes in generally good yields. We highlight the synthetic applicability of this transformation at multigram scale, and demonstrate the versatility of the products by conversion of the dioxene units to various carbonyl-based functionalities. Additionally, we present a concise two-step synthesis of an arylated analogue to a known 1,4-dioxene-based antifungal agent.

SELECTION OF CITATIONS
SEARCH DETAIL