Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Adv Healthc Mater ; 13(9): e2303255, 2024 04.
Article in English | MEDLINE | ID: mdl-38253413

ABSTRACT

Partial-thickness cartilage defect (PTCD) is a common and formidable clinical challenge without effective therapeutic approaches. The inherent anti-adhesive characteristics of the extracellular matrix within cartilage pose a significant impediment to the integration of cells or biomaterials with the native cartilage during cartilage repair. Here, an injectable photocrosslinked bioadhesive hydrogel, consisting of gelatin methacryloyl (GM), acryloyl-6-aminocaproic acid-g-N-hydroxysuccinimide (AN), and poly(lactic-co-glycolic acid) microspheres loaded with kartogenin (KGN) (abbreviated as GM/AN/KGN hydrogel), is designed to enhance interfacial integration and repair of PTCD. After injected in situ at the irregular defect, a stable and robust hydrogel network is rapidly formed by ultraviolet irradiation, and it can be quickly and tightly adhered to native cartilage through amide bonds. The hydrogel exhibits good adhesion strength up to 27.25 ± 1.22 kPa by lap shear strength experiments. The GM/AN/KGN hydrogel demonstrates good adhesion, low swelling, resistance to fatigue, biocompatibility, and chondrogenesis properties in vitro. A rat model with PTCD exhibits restoration of a smoother surface, stable seamless integration, and abundant aggrecan and type II collagen production. The injectable stable adhesive hydrogel with long-term chondrogenic differentiation capacity shows great potential to facilitate repair of PTCD.


Subject(s)
Anilides , Chondrogenesis , Hydrogels , Phthalic Acids , Rats , Animals , Hydrogels/pharmacology , Hydrogels/chemistry , Delayed-Action Preparations/pharmacology , Cartilage
2.
ACS Appl Mater Interfaces ; 12(20): 22467-22478, 2020 May 20.
Article in English | MEDLINE | ID: mdl-32394696

ABSTRACT

Current biomaterials and tissue engineering techniques have shown a promising efficacy on full-thickness articular cartilage defect repair in clinical practice. However, due to the difficulty of implanting biomaterials or tissue engineering constructs into a partial-thickness cartilage defect, it remains a challenge to provide a satisfactory cure in joint surface regeneration in the early and middle stages of osteoarthritis. In this study, we focused on a ready-to-use tissue-adhesive joint surface paint (JS-Paint) capable of promoting and enhancing articular surface cartilage regeneration. The JS-Paint is mainly composed of N-(2-aminoethyl)-4-(4-(hydroxymethyl)-2-methoxy-5-nitrosophenoxy) butanamide (NB)-coated silk fibroin microparticles and possess optimal cell adhesion, migration, and proliferation properties. NB-modified silk fibroin microparticles can directly adhere to the cartilage and form a smooth layer on the surface via the photogenerated aldehyde group of NB reacting with the -NH2 groups of the cartilage tissue. JS-Paint treatment showed a significant promotion of cartilage regeneration and restored the smooth joint surface at 6 weeks postsurgery in a rabbit model of a partial-thickness cartilage defect. These findings revealed that silk fibroin can be utilized to bring about a tissue-adhesive paint. Thus, the JS-Paint strategy has some great potential to enhance joint surface regeneration and revolutionize future therapeutics of early and middle stages of osteoarthritis joint ailments.


Subject(s)
Cartilage, Articular/physiology , Fibroins/chemistry , Regeneration/drug effects , Tissue Adhesives/chemistry , Animals , Benzyl Alcohols/chemistry , Benzyl Alcohols/radiation effects , Benzyl Alcohols/toxicity , Cartilage, Articular/drug effects , Cell Adhesion/drug effects , Cell Movement/drug effects , Cell Proliferation/drug effects , Fibroins/toxicity , Joints/pathology , Joints/surgery , Rabbits , Tissue Adhesives/radiation effects , Tissue Adhesives/toxicity , Ultraviolet Rays
3.
Tissue Eng Regen Med ; 13(2): 182-190, 2016 Apr.
Article in English | MEDLINE | ID: mdl-30603398

ABSTRACT

Treatment options for partial thickness cartilage defects are limited. The purpose of this study was to evaluate the efficacy of the chondrocyte-seeded cartilage extracellular matrix membrane in repairing partial thickness cartilage defects. First, the potential of the membrane as an effective cell carrier was investigated. Secondly, we have applied the chondrocyte-seeded membrane in an ex vivo, partial thickness defect model to analyze its repair potential. After culture of chondrocytes on the membrane in vitro, cell viability assay, cell seeding yield calculation and cell transfer assay were done. Cell carrying ability of the membrane was also tested by seeding different densities of cells. Partial defects were created on human cartilage tissue explants. Cell-seeded membranes were applied using a modified autologous chondrocyte implantation technique on the defects and implanted subcutaneously in nude mice for 2 and 4 weeks. In vitro data showed cell viability and seeding yield comparable to standard culture dishes. Time dependent cell transfer from the membrane was observed. Membranes supported various densities of cells. Ex vivo data showed hyaline-like cartilage tissue repair, integrated on the defect by 4 weeks. Overall, chondrocyte-seeded cartilage extracellular membranes may be an effective and feasible treatment strategy for the repair of partial thickness cartilage defects.

SELECTION OF CITATIONS
SEARCH DETAIL