ABSTRACT
Skin healing occurs through an intricate process called wound healing which comprises four phases: coagulation and hemostasis, inflammation, cellular proliferation, and remodeling. Chronic wounds often arise because of prolonged or excessive inflammation, which hinders the healing process and wound closure. Despite the recognized efficacy of Pogostemon cablin (patchouli) in wound healing, the precise mechanism of action of Pogostemon cablin extract (PCE) on inflammation and wound healing remains poorly understood. In this study, we investigated the effects of PCE on cell proliferation and wound healing, as well as its anti-inflammatory activity, using in vitro experiments. We found that PCE increased cell proliferation and expression of the cell proliferation marker Ki67 and accelerated wound healing in human keratinocytes through the activation of OR2AT4. Furthermore, PCE exhibited anti-inflammatory effects by decreasing the levels of pro-inflammatory cytokines interleukin-6 and -8 in lipopolysaccharide-treated and TNF-α-exposed THP-1 and HaCaT cells, respectively. Overall, these findings suggest that PCE holds therapeutic potential by promoting cell proliferation, facilitating wound healing, and exerting anti-inflammatory effects.
ABSTRACT
The opportunistic fungal pathogen Candida albicans could cause severe clinical outcomes which could be exacerbated by the scarcity of antifungals. The capacity of C. albicans to form biofilms on medical devices that are hard to eradicate, further deepen the need to develop antifungal agents. In this study, we, for the first time, showed that patchouli alcohol (PA) can inhibit the growth of multiple C. albicans strains, as well as four other Candida species, with MICs of 64 µg/mL and MFCs from 64 to 128 µg/mL. The biofilm formation and development, adhesion, yeast-to-hyphal transition and extracellular polysaccharide of C. albicans can be inhibited by PA in a concentration-dependent manner. Confocal microscopy analyses of cells treated with PA showed that PA can increase the membrane permeability and intracellular reactive oxygen species (ROS) production. In C. elegans, PA did not influence the survival below 64 µg/mL. In this study PA demonstrated antifungal and antibiofilm activity against C. albicans and our results showed the potential of developing PA to fight Candida infections.
Subject(s)
Antifungal Agents , Candida albicans , Sesquiterpenes , Animals , Antifungal Agents/pharmacology , Caenorhabditis elegans/microbiology , Virulence , Biofilms , Microbial Sensitivity TestsABSTRACT
MYB family is one of the largest transcription factor families in plants and plays a crucial role in regulating plant biochemical and physiological processes. However, R2R3-MYBs in patchouli have not been systematically investigated. Here, based on the gene annotation of patchouli genome sequence, 484 R2R3-MYB transcripts were detected. Further in-depth analysis of the gene structure and expression of R2R3-MYBs supported the tetraploid hybrid origin of patchouli. When combined with R2R3-MYBs from Arabidopsis, a phylogenetic tree of patchouli R2R3-MYBs was constructed and divided into 31 clades. Interestingly, a patchouli-specific R2R3-MYB clade was found and confirmed by homologous from other Lamiaceae species. The syntenic analysis demonstrated that tandem duplication contributed to its evolution. This study systematically analysed the R2R3-MYB family in patchouli, providing information on its gene characterization, functional prediction, and species evolution.
Subject(s)
Arabidopsis , Pogostemon , Pogostemon/genetics , Pogostemon/metabolism , Plant Proteins/genetics , Phylogeny , Arabidopsis/genetics , Transcription Factors/metabolismABSTRACT
Melanoma is a highly metastatic cancer with a low incidence rate, but a high mortality rate. Patchouli alcohol (PA), a tricyclic sesquiterpene, is considered the main active component in Pogostemon cablin Benth, which improves wound healing and has anti-tumorigenic activity. However, the pharmacological action of PA on anti-melanoma remains unclear. Thus, the present study aimed to investigate the role of PA in the proliferation, cell cycle, apoptosis and migration of melanoma cells. These results indicated that PA selectively inhibited the proliferation of B16F10 cells in a dose- and time-dependent manner. It induced cell cycle arrest at the G0 /G1 phase and typical morphological changes in apoptosis, such as chromatin condensation, DNA fragmentation and apoptotic bodies. In addition, PA reduced the migratory ability of B16F10 cells by upregulating E-cadherin and downregulating p-Smad2/3, vimentin, MMP-2 and MMP-9 expression. PA was also found to strongly suppress tumour growth in vivo. Furthermore, PA combined with cisplatin synergistically inhibited colony formation and migration of B16F10 cells and attenuated the development of resistance to treatment. Therefore, the results of this study indicate that PA may play a pivotal role in inducing apoptosis and reducing the migration of melanoma cells, and may thus be a potential candidate for melanoma treatment.
Subject(s)
Melanoma , Sesquiterpenes , Humans , Cisplatin/pharmacology , Sesquiterpenes/pharmacology , Cell Line, Tumor , Apoptosis , Cell ProliferationABSTRACT
BACKGROUND: Alzheimer's disease (AD) is a chronic neurodegenerative disease characterized by progressive cognitive dysfunctions and behavioral impairments. Patchouli alcohol (PA), isolated from Pogostemonis Herba, exhibits multiple pharmacological properties, including neuroprotective effects. This study aimed to investigate the therapeutic effects of PA against AD using the TgCRND8 transgenic AD mouse model, and to explore the underlying mechanisms targeting CCAAT/enhancer-binding protein ß/asparagine endopeptidase (C/EBPß/AEP) signaling pathway. METHODS: After genotyping to confirm the transgenicity, drug treatments were administered intragastrically once daily to 3-month-old TgCRND8 mice for 4 consecutive months. Several behavioral tests were applied to assess different aspects of neurological functions. Then the brain and colon tissues were harvested for in-depth mechanistic studies. To further verify whether PA exerts anti-AD effects via modulating C/EBPß/AEP signaling pathway in TgCRND8 mice, adeno-associated virus (AAV) vectors encoding CEBP/ß were bilaterally injected into the hippocampal CA1 region in TgCRND8 mice to overexpress C/EBPß. Additionally, the fecal microbiota transplantation (FMT) experiment was performed to verify the potential role of gut microbiota on the anti-AD effects of PA. RESULTS: Our results showed that PA treatment significantly improved activities of daily living (ADL), ameliorated the anxiety-related behavioral deficits and cognitive impairments in TgCRND8 mice. PA modulated the amyloid precursor protein (APP) processing. PA also markedly reduced the levels of beta-amyloid (Aß) 40 and Aß42, suppressed Aß plaque burdens, inhibited tau protein hyperphosphorylation at several sites and relieved neuroinflammation in the brains of TgCRND8 mice. Moreover, PA restored gut dysbiosis and inhibited the activation of the C/EBPß/AEP signaling pathway in the brain and colon tissues of TgCRND8 mice. Interestingly, PA strikingly alleviated the AD-like pathologies induced by the overexpression of C/EBPß in TgCRND8 mice. Additionally, the FMT of fecal microbiota from the PA-treated TgCRND8 mice significantly alleviated the cognitive impairments and AD-like pathologies in the germ-free TgCRND8 mice. CONCLUSION: All these findings amply demonstrated that PA could ameliorate the cognitive deficits in TgCRND8 mice via suppressing Aß plaques deposition, hyperphosphorylation of tau protein, neuroinflammation and gut dysbiosis through inhibiting the activation of C/EBPß/AEP pathway, suggesting that PA is a promising naturally occurring chemical worthy of further development into the pharmaceutical treatment of AD.
Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Gastrointestinal Microbiome , Neurodegenerative Diseases , Humans , Mice , Animals , Alzheimer Disease/therapy , Alzheimer Disease/drug therapy , Mice, Transgenic , tau Proteins/metabolism , Neuroinflammatory Diseases , Activities of Daily Living , Dysbiosis , Cognitive Dysfunction/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Amyloid beta-Peptides/metabolism , Cognition , Disease Models, AnimalABSTRACT
Sesquiterpenes represent a large class of terpene compounds found in plants with broad applications such as pharmaceuticals and biofuels. The plastidial MEP pathway in ripening tomato fruit is naturally optimized to provide the 5-carbon isoprene building blocks of all terpenes for production of the tetraterpene pigment lycopene and other carotenoids, making it an excellent plant system to be engineered for production of high-value terpenoids. We reconstituted and enhanced the pool of sesquiterpene precursor farnesyl diphosphate (FPP) in plastids of tomato fruit by overexpressing the fusion gene DXS-FPPS encoding a fusion protein of 1-deoxy-D-xylulose 5-phosphate synthase (DXS) linked with farnesyl diphosphate synthase (originally called farnesyl pyrophosphate synthase, and abbreviated as FPPS) under the control of fruit-ripening specific polygalacturonase (PG) promoter concomitant with substantial reduction in lycopene content and large production of FPP-derived squalene. The supply of precursors achieved by the fusion gene expression can be harnessed by an engineered sesquiterpene synthase that is retargeted to plastid to engineer high-yield sesquiterpene production in tomato fruit, offering an effective production system for high-value sesquiterpene ingredients.
Subject(s)
Sesquiterpenes , Solanum lycopersicum , Solanum lycopersicum/genetics , Lycopene/metabolism , Fruit/genetics , Fruit/metabolism , Sesquiterpenes/metabolism , Terpenes/metabolism , Geranyltranstransferase/genetics , Geranyltranstransferase/metabolism , Plastids/genetics , Plastids/metabolismABSTRACT
As an important medicinal and aromatic plant, patchouli is distributed throughout most of Asia. However, current research on patchouli's genetic diversity is limited and lacks genome-wide studies. Here, we have collected seven representative patchouli accessions from different localities and performed whole-genome resequencing on them. In total, 402,650 single nucleotide polymorphisms (SNPs) and 153,233 insertions/deletions (INDELs) were detected. Based on these abundant genetic variants, patchouli accessions were primarily classified into the Chinese group and the Southeast Asian group. However, the accession SP (Shipai) collected from China formed a distinct subgroup within the Southeast Asian group. As SP has been used as a genuine herb in traditional Chinese medicine, its unique molecular markers have been subsequently screened and verified. For 26,144 specific SNPs and 16,289 specific INDELs in SP, 10 of them were validated using Polymerase Chain Reaction (PCR) following three different approaches. Further, we analyzed the effects of total genetic variants on genes involved in the sesquiterpene synthesis pathway, which produce the primary phytochemical compounds found in patchouli. Eight genes were ultimately investigated and a gene encoding nerolidol synthetase (PatNES) was chosen and confirmed through biochemical assay. In accession YN, genetic variants in PatNES led to a loss of synthetase activity. Our results provide valuable information for understanding the diversity of patchouli germplasm resources.
Subject(s)
Pogostemon , Pogostemon/genetics , Sequence Analysis, DNA , Polymorphism, Single Nucleotide , Genome, Plant , AsiaABSTRACT
Patchouli Essential Oil (PEO) has been used as a scent for various healing purposes since the ancient Egyptian period. The primary source of the oil is Pogostemon cablin (PC), a medicinal plant for treating gastrointestinal symptoms. However, the pharmacological function has not been addressed. Here, we report the cancer prevention and gut microbiota (GM) modulating property of PEO and its derivatives patchouli alcohol (PA) and pogostone (PO) in the ApcMin /+ colorectal cancer mice model. We found that PEO, PA, and PO significantly reduced the tumor burden. At the same time, it strengthened the epithelial barrier, evidenced by substantially increasing the number of the goblet and Paneth cells and upregulation of tight junction and adhesion molecules. In addition, PEO, PA, and PO shifted M1 to M2 macrophage phenotypes and remodeled the inflammatory milieu of ApcMin /+ mice. We also found suppression of CD4+CD25+ and stimulation CD4+ CD8+ cells in the spleen, blood, mesenteric lymph nodes (MLNs), and Peyer's patches (PPs) of the treated mice. The composition of the gut microbiome of the drug-treated mice was distinct from the control mice. The drugs stimulated the short-chain fatty acids (SCFAs)-producers and the key SCFA-sensing receptors (GPR41, GPR43, and GPR109a). The activation of SCFAs/GPSs also triggered the alterations of PPAR-γ, PYY, and HSDCs signaling mediators in the treated mice. Our work showed that PEO and its derivatives exert potent anti-cancer effects by modulating gut microbiota and improving the intestinal microenvironment of the ApcMmin /+ mice.
Subject(s)
Antineoplastic Agents, Phytogenic/therapeutic use , Colorectal Neoplasms/drug therapy , Oils, Volatile/therapeutic use , Pogostemon , Animals , Antineoplastic Agents, Phytogenic/pharmacology , CD4-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/drug effects , Colorectal Neoplasms/immunology , Colorectal Neoplasms/microbiology , Disease Models, Animal , Gastrointestinal Microbiome/drug effects , Intestinal Mucosa/drug effects , Lymph Nodes/drug effects , Macrophages/drug effects , Male , Mice , Oils, Volatile/pharmacology , Peyer's Patches/drug effects , Spleen/drug effectsABSTRACT
Clinical evidence shows that postmenpausal women are almost twice as likely to develop Alzheimer's disease (AD) as men of the same age, and estrogen is closely related to the occurrence of AD. Estrogen receptor (ER) α is mainly expressed in the mammary gland and other reproductive organs like uterus while ERß is largely distributed in the hippocampus and cardiovascular system, suggesting that ERß selective agonist is a valuable drug against neurodegenerative diseases with low tendency in inducing cancers of breast and other reproductive organs. In this study we identified a natural product patchouli alcohol (PTA) as a selective ERß agonist which improved the cognitive defects in female APP/PS1 mice, and explore the underlying mechanisms. Six-month-old female APP/PS1 mice were administered PTA (20, 40 mg · kg-1 · d-1, i.g.) for 90 days. We first demonstrated that PTA bound to ERß with a dissociation constant (KD) of 288.9 ± 35.14 nM in microscale thermophoresis. Then we showed that PTA administration dose-dependently ameliorated cognitive defects evaluated in Morris water maze and Y-maze testes. Furthermore, PTA administration reduced amyloid plaque deposition in the hippocampus by promoting microglial phagocytosis; PTA administration improved synaptic integrity through enhancing BDNF/TrkB/CREB signaling, ameliorated oxidative stress by Catalase level, and regulated Bcl-2 family proteins in the hippocampus. The therapeutic effects of PTA were also observed in vitro: PTA (5, 10, 20 µM) dose-dependently increased phagocytosis of o-FAM-Aß42 in primary microglia and BV2 cells through enhancing ERß/TLR4 signaling; PTA treatment ameliorated o-Aß25-35-induced reduction of synapse-related proteins VAMP2 and PSD95 in primary neurons through enhancing ERß/BDNF/TrkB/CREB pathways; PTA treatment alleviated o-Aß25-35-induced oxidative stress in primary neurons through targeting ERß and increasing Catalase expression. Together, this study has addressed the efficacy of selective ERß agonist in the amelioration of AD and highlighted the potential of PTA as a drug lead compound against the disease.
Subject(s)
Alzheimer Disease , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Brain-Derived Neurotrophic Factor/metabolism , Catalase/metabolism , Disease Models, Animal , Estrogen Receptor beta/metabolism , Estrogens/metabolism , Female , Hippocampus/metabolism , Mice , Mice, Transgenic , Plaque, Amyloid/drug therapy , Presenilin-1 , SesquiterpenesABSTRACT
Dysregulated mucosal immune responses and colonic fibrosis impose two formidable challenges for ulcerative colitis treatment. It indicates that monotherapy could not sufficiently deal with this complicated disease and combination therapy may provide a potential solution. A chitosan-modified poly(lactic-co-glycolic acid) nanoparticle (CS-PLGA NP) system was developed for co-delivering patchouli alcohol and simvastatin to the inflamed colonic epithelium to alleviate the symptoms of ulcerative colitis via remodeling immune microenvironment and anti-fibrosis, a so-called "two-birds-one-stone" nanotherapeutic strategy. The bioadhesive nanomedicine enhanced the intestinal epithelial cell uptake efficiency and improved the drug stability in the gastrointestinal tract. The nanomedicine effectively regulated the Akt/MAPK/NF-κB pathway and reshaped the immune microenvironment through repolarizing M2Φ, promoting regulatory T cells and G-MDSC, suppressing neutrophil and inflammatory monocyte infiltration, as well as inhibiting dendritic cell maturation. Additionally, the nanomedicine alleviated colonic fibrosis. Our work elucidates that the colon-targeted codelivery for combination therapy is promising for ulcerative colitis treatment and to address the unmet medical need.
Subject(s)
Colitis, Ulcerative , Colitis , Nanoparticles , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Colon/metabolism , Humans , NanomedicineABSTRACT
Patchouli extracts and oils extracted from Pogostemon cablin are essential raw material for the perfume and cosmetics industries, in addition to being used as a natural additive for food flavoring. Steam distillation is a standard method used for plant extraction. However, this method causes thermal degradation of some essential components of the oil. In this study, patchouli was extracted with supercritical carbon dioxide (SC-CO2) under different conditions of pressure (10-30 MPa) and temperature (40-80 °C). The chemical components of the crude extracted oil and the functional group were characterized using gas chromatography-mass spectrometry (GC-MS) and Fourier Transform Infrared Spectroscopy (FT-IR). The extraction with supercritical carbon dioxide was shown to provide a higher yield (12.41%) at a pressure of 20 MPa and a temperature of 80 °C. Patchouli alcohol, Azulene, δ-Guaiene, and Seychellene are the main bioactive compounds that GC-MS results have identified. FTIR spectra showed alcohol, aldehyde, and aromatic ring bond stretching peaks. Extraction of patchouli with supercritical carbon dioxide provided a higher yield and a better quality of the crude patchouli oil.
Subject(s)
Chromatography, Supercritical Fluid , Oils, Volatile , Perfume , Pogostemon , Aldehydes , Azulenes , Carbon Dioxide , Chromatography, Supercritical Fluid/methods , Oils, Volatile/chemistry , Plant Extracts , Plant Oils/chemistry , Spectroscopy, Fourier Transform Infrared , SteamABSTRACT
Valeriana jatamansi is an important temperate herb that is used in the pharmaceutical and essential oil industries. In India, this species is now on the verge of extinction due to the over-exploitation of its rhizomes from its natural habitat. It is hypothesized that the variations in bioactive compounds in its essential oil are very high among the wild populations as well as cultivated sources. Thus, this study was conducted to evaluate the chemical profiling of essential oil of four wild populations (Rupena, Kugti, Garola, and Khani) and two cultivated sources (CSIR-IHBT, Salooni), which were distilled at three consecutive days. The variation in oil concentration in roots/rhizomes was found significant (p ≤ 0.05), and the maximum value (0.35%) was registered with the population collected from Kugti and Khani. In essential oil, irrespective of population and distillation day, patchouli alcohol was the major compound, which ranged from 19 to 63.1%. The maximum value (63.1%) was recorded with the essential oil obtained from Garola's population and distilled on the first day. The percentage of seychellene was abruptly increased with subsequent days of extraction in all the populations. The multivariate analysis revealed that the essential oil profiles of Rupena, Kugti, Garola, and CSIR-IHBT populations were found to be similar during the first day of distillation. However, during the second day, Rupena, Kugti, Khani, and CSIR-IHBT came under the same ellipse of 0.95% coefficient. The results suggest that the population of Kugti is superior in terms of oil concentration (0.35%), with a higher proportion of patchouli alcohol (63% on the first day). Thus, repeated distillation is recommended for higher recovery of essential oil. Moreover, repeated distillation can be used to attain V. jatamansi essential oil with differential and perhaps targeted definite chemical profile.
Subject(s)
Nardostachys , Oils, Volatile , Valerian , Altitude , Distillation/methods , Oils, Volatile/chemistry , Valerian/chemistryABSTRACT
Obesity impairs wound healing with substantial alterations in skin inflammation. Patchouli alcohol (PA), extracted from patchouli, has been reported to ameliorate inflammation in various cell types. However, the effects of PA on inflammation and wound healing have not been reported to date. In the present study, we examined whether PA affects cutaneous wound healing in high fat diet (HFD)-fed mice and explored PA-mediated molecular mechanisms through in vitro experiments. We found that PA administration accelerated wound healing as well as ameliorates inflammation in skin of HFD-fed mice. PA treatment augmented AMP-activated protein kinase (AMPK) phosphorylation and TGFb1 expression. PA enhanced cell migration and suppressed inflammation in LPS-treated HaCaT cells. Further, PA increased dose-dependently AMPK phosphorylation as along with TGFb1 and cell migration markers expression. siRNA for AMPK or TGFb1 abrogated the effects of PA on cell migration and inflammation. TGFb1 siRNA mitigated PA-induced expression of cell migration markers. These results suggest that PA ameliorates wound healing via AMPK and TGFb1-mediated suppression of inflammation. In sum, PA can be used as a novel treatment strategy for wound healing in obesity or insulin resistance.
Subject(s)
AMP-Activated Protein Kinases/metabolism , Sesquiterpenes/pharmacology , Transforming Growth Factor beta1/metabolism , Wound Healing/drug effects , Animals , Cell Movement , Cell Proliferation , Cells, Cultured , Diet, High-Fat , Disease Models, Animal , Humans , Inflammation/metabolism , Inflammation/prevention & control , Male , Mice , Mice, Inbred C57BLABSTRACT
Depression is a common global mental disorder that seriously harms human physical and mental health. With the development of society, the increase of pressure and the role of various other factors make the incidence of depression increase year by year. However, there is a lack of drugs that have a fast onset, significant effects, and few side effects. Some volatile oils from traditional natural herbal medicines are usually used to relieve depression and calm emotions, such as Lavender essential oil and Acorus tatarinowii essential oil. It was reported that these volatile oils, are easy to enter the brain through the blood-brain barrier and have good antidepressant effects with little toxicity and side effects. In this review, we summarized the classification of depression, and listed the history of using volatile oils to fight depression in some countries. Importantly, we summarized the anti-depressant natural volatile oils and their monomers from herbal medicine, discussed the anti-depressive mechanisms of the volatile oils from natural medicine. The volatile oils of natural medicine and antidepressant drugs were compared and analyzed, and the application of volatile oils was explained from the clinical use and administration routes. This review would be helpful for the development of potential anti-depressant medicine and provide new alternative treatments for depressive disorders.
Subject(s)
Antidepressive Agents/administration & dosage , Depression/drug therapy , Depressive Disorder/drug therapy , Oils, Volatile/administration & dosage , Plant Oils/administration & dosage , Animals , Antidepressive Agents/chemistry , Antidepressive Agents/classification , Depression/classification , Depressive Disorder/classification , Humans , Oils, Volatile/chemistry , Oils, Volatile/classification , Phytotherapy , Plant Oils/chemistry , Plant Oils/classification , Plants, MedicinalABSTRACT
Root-knot nematode, Meloidogyne incognita is one of the most destructive nematodes worldwide. Essential oils (EOs) are being extensively utilized as eco-benign bionematicides, although the precise mechanism of action remains unclear. Pogostemon cablin Benth. is well-known as "Patchouli". It is native to South East Asia and known for ethno-pharmacological properties. In this study, chemical composition and potential nematicidal effect of EOs hydrodistilled from the leaves of P.â cablin grown at three different locations in India were comprehensively investigated to correlate their mechanism of action for target specific binding affinities toward nematode proteins. Aromatic volatile Pogostemon essential oils (PEO) from Northern India (PEO-NI), Southern India (PEO-SI) and North Eastern India (PEO-NEI) were analyzed by Gas Chromatography-Mass Spectrometry (GC/MS) to characterize forty volatile compounds. Maximum thirty-three components were identified in PEO-NEI. Sesquiterpenes were predominant with higher content of α-guaiene (2.3-24.4 %), patchoulol (6.1-32.7 %) and α-bulnesene (5.9-27.1 %). Patchoulol was the major component in PEO-SI (32.7±1.2 %) and PEO-NEI (29.2±1.1 %), while α-guaiene in PEO-NI (24.4±1.2 %). In vitro nematicidal assay revealed significant nematicidal action (LC50 44.6-87.0â µg mL-1 ) against juveniles of M.â incognita within 24â h exposure. Mortality increases with increasing time to 48â h (LC50 33.6-71.6â µg mL-1 ) and 72â h (LC50 27.7-61.2â µgâ mL-1 ). Molecular modelling and in silico studies revealed multi-modal inhibitive action of α-bulnesene (-22 to -13â kJ mol-1 ) and α-guaiene (-22 to -12â kJ mol-1 ) against three target proteins namely, acetyl cholinesterase (AChE), odorant response gene-1 (ODR1), odorant response gene-3 (ODR3). Most preferable binding mechanism was observed against AChE due to pi-alkyl, pi-sigma, and hydrophobic interactions. Structure nematicidal activity relationship suggested the presence of hydroxy group for nematicidal activity is nonessential, rather highly depends on synergistic composition of sesquiterpene hydrocarbons.
Subject(s)
Antinematodal Agents/pharmacology , Molecular Docking Simulation , Pogostemon/chemistry , Tylenchoidea/drug effects , Animals , Antinematodal Agents/chemistry , Antinematodal Agents/isolation & purification , Dose-Response Relationship, Drug , India , Plant Leaves/chemistryABSTRACT
Considering the current dramatic and fatal situation due to the high spreading of SARS-CoV-2 infection, there is an urgent unmet medical need to identify novel and effective approaches for prevention and treatment of Coronavirus disease (COVID 19) by re-evaluating and repurposing of known drugs. For this, tomatidine and patchouli alcohol have been selected as potential drugs for combating the virus. The hit compounds were subsequently docked into the active site and molecular docking analyses revealed that both drugs can bind the active site of SARS-CoV-2 3CLpro, PLpro, NSP15, COX-2 and PLA2 targets with a number of important binding interactions. To further validate the interactions of promising compound tomatidine, Molecular dynamics study of 100 ns was carried out towards 3CLpro, NSP15 and COX-2. This indicated that the protein-ligand complex was stable throughout the simulation period, and minimal backbone fluctuations have ensued in the system. Post dynamic MM-GBSA analysis of molecular dynamics data showed promising mean binding free energy 47.4633 ± 9.28, 51.8064 ± 8.91 and 54.8918 ± 7.55 kcal/mol, respectively. Likewise, in silico ADMET studies of the selected ligands showed excellent pharmacokinetic properties with good absorption, bioavailability and devoid of toxicity. Therefore, patchouli alcohol and especially, tomatidine may provide prospect treatment options against SARS-CoV-2 infection by potentially inhibiting virus duplication though more research is guaranteed and secured.
Subject(s)
Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus Papain-Like Proteases/antagonists & inhibitors , Endoribonucleases/antagonists & inhibitors , SARS-CoV-2/enzymology , Sesquiterpenes/pharmacology , Tomatine/analogs & derivatives , Viral Nonstructural Proteins/antagonists & inhibitors , Antiviral Agents/pharmacology , COVID-19/virology , Coronavirus 3C Proteases/metabolism , Coronavirus Papain-Like Proteases/metabolism , Endoribonucleases/metabolism , Enzyme Inhibitors/pharmacology , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , SARS-CoV-2/drug effects , Tomatine/pharmacology , Viral Nonstructural Proteins/metabolism , COVID-19 Drug TreatmentABSTRACT
Biocompatible skin wound dressing materials with long-term therapeutic windows and anti-infection properties have attracted great attention all over the world. The cooperation between essential oil and non-toxic or bio-based polymers was a promising strategy. However, the inherent volatility and chemical instability of most ingredients in essential oils make the sustained pharmacological activity of essential oil-based biomaterials a challenge. In this study, a kind of film nanocomposite loaded with patchouli essential oil (PEO-FNC) was fabricated. PEO-loaded mesoporous silica nanoparticles (PEO-MSNs) with drug load higher than 40 wt% were firstly prepared using supercritical CO2 cyclic impregnation (SCCI), and then combined with the film matrix consisting of polyvinyl alcohol and chitosan. The morphology of PEO-MSNs and PEO-FNC was observed by transmission and scanning electron microscope. The mechanical properties, including hygroscopicity, tensile strength and elongation at break (%), were tested. The release behavior of PEO from the film nanocomposite showed that PEO could keep releasing for more than five days. PEO-FNC exhibited good long-term (>48 h) antibacterial effect on Staphylococcus aureus and non-toxicity on mouse fibroblast (L929 cells), making it a promising wound dressing material.
Subject(s)
Bandages/microbiology , Carbon Dioxide/chemistry , Nanocomposites/chemistry , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Pogostemon/chemistry , Wound Healing/drug effects , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Mice , Staphylococcus aureus/drug effectsABSTRACT
The terpenoids in Pogostemon cablin have complex structures and abundant pharmacological effects. Patchouli alcohol(PA) and pogostone(PO) have a high medicinal value by virtue of anti-tumor, anti-inflammatory, antibacterial, antioxidant, and other biological activities. Due to the low content of terpenoid metabolites in P. cablin, the study of biosynthesis and metabolism regulation can provide a biosynthetic basis for obtaining high-content terpenoids. In this study, key enzyme genes in biosynthesis, transcription factors in metabolism regulation, spatio-temporal expression of terpene synthase were reviewed, aiming to provide a reference for the development, protection, and utilization of P. cablin resources.
Subject(s)
Pogostemon , Pogostemon/genetics , Terpenes , Transcription Factors/geneticsABSTRACT
This study aims to explore the relationship of DNA methylation with the contents of the index components as well as the growth and development of Pogostemon cablin. The demethylation reagent 5-azacytidine(5-azaC) was used to treat the tissue culture seedlings of patchouliol-type P. cablin. High performance liquid chromatography was employed to evaluate the changes of DNA methy-lation in P. cablin, and GC-MS to detect the contents of index components in P.cablin. The agronomic characters of P.cablin were measured using the common methods. The results showcased that DNA methylation of P.cablin was significantly reduced by 5-azaC in a concentration-dependent manner. Thirty days after treatment with 5-azaC at different concentrations, the content of patchouli alcohol changed slightly; compared with that in the control group, the content of pogostone in 50 µmol·L~(-1) and 100 µmol·L~(-1) 5-azaC groups was significantly up-regulated. The 100 µmol·L~(-1) 5-azaC group had the largest differences in contents of pogostone and patchouli alcohol compared with the control group, followed by the 50 µmol·L~(-1) 5-azaC group. Ninety days after disinhibition, the content of pogostone in the treatment group was significantly increased and the content of patchouli alcohol was significantly decreased. In addition, 5-azaC significantly inhibited the growth and development of P.cablin in a dose-dependent manner. These results indicate that DNA methylation regulates the biosynthesis of the index components in patchouliol-type P.cablin and proper demethylation can directly promote the synthesis of pogostone and indirectly affect the accumulation of patchouli alcohol.
Subject(s)
Pogostemon , Azacitidine , DNA Methylation , Gas Chromatography-Mass Spectrometry , Oils, Volatile , Pogostemon/geneticsABSTRACT
BACKGROUND: Patchouli alcohol (PA) is a tricyclic sesquiterpene extracted from Pogostemonis Herba, which is a traditional Chinese medicine used for therapy of inflammatory diseases. Recent studies have shown that PA has various pharmacological activities, including anti-bacterial and anti-viral effects. METHODS: In this study, the anti-influenza virus (IAV) activities and mechanisms were investigated both in vitro and in vivo. The inhibitory effects of PA against IAV in vitro were evaluated by plaque assay and immunofluorescence assay. The neuraminidase inhibition assay, hemagglutination inhibition (HI) assay, and western blot assay were used to explore the anti-viral mechanisms. The anti-IAV activities in vivo were determined by mice pneumonia model and HE staining. RESULTS: The results showed that PA significantly inhibited different IAV strains multiplication in vitro, and may block IAV infection through inactivating virus particles directly and interfering with some early stages after virus adsorption. Cellular PI3K/Akt and ERK/MAPK signaling pathways may be involved in the anti-IAV actions of PA. Intranasal administration of PA markedly improved mice survival and attenuated pneumonia symptoms in IAV infected mice, comparable to the effects of Oseltamivir. CONCLUSIONS: Therefore, Patchouli alcohol has the potential to be developed into a novel anti-IAV agent in the future.