Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Proteomics ; 22(4): e2100316, 2022 02.
Article in English | MEDLINE | ID: mdl-34878717

ABSTRACT

Protein post-translational modifications (PTMs) generate an enormous, but as yet undetermined, expansion of the produced proteoforms. In this Viewpoint, we firstly reviewed the concepts of proteoform and peptidoform. We show that many of the current PTM biological investigation and annotation studies largely follow a PTM site-specific rather than proteoform-specific approach. We further illustrate a potentially useful matching strategy in which a particular "modified peptidoform" is matched to the corresponding "unmodified peptidoform" as a reference for the quantitative analysis between samples and conditions. We suggest this strategy has the potential to provide more directly relevant information to learn the PTM site-specific biological functions. Accordingly, we advocate for the wider use of the nomenclature "peptidoform" in future bottom-up proteomic studies.


Subject(s)
Protein Processing, Post-Translational , Proteomics
2.
Proteomics ; 22(15-16): e2100206, 2022 08.
Article in English | MEDLINE | ID: mdl-35633285

ABSTRACT

Chromatin is the assembly of genomic DNA and proteins packaged in the nucleus of eukaryotic cells, which together are crucial in regulating a plethora of cellular processes. Histones may be the best known class of protein constituents in chromatin, which are decorated by a range of post-translational modifications to recruit accessory proteins and protein complexes to execute specific functions, ranging from DNA compaction, repair, transcription, and duplication, all in a dynamic fashion and depending on the cellular state. The key role of chromatin in cellular fitness is emphasized by the deregulation of chromatin determinants predisposing to different diseases, including cancer. For this reason, deep investigation of chromatin composition is fundamental to better understand cellular physiology. Proteomic approaches have played a crucial role to understand critical aspects of this complex interplay, benefiting from the ability to identify and quantify proteins and their modifications in an unbiased manner. This review gives an overview of the proteomic approaches that have been developed by combining mass spectrometry-based with tailored biochemical and genetic methods to examine overall protein make-up of chromatin, to characterize chromatin domains, to determine protein interactions, and to decipher the broad spectrum of histone modifications that represent the quintessence of chromatin function.


Subject(s)
Chromatin , Histone Code , DNA/genetics , Epigenesis, Genetic , Protein Processing, Post-Translational , Proteomics
3.
Proteomics ; 22(15-16): e2200064, 2022 08.
Article in English | MEDLINE | ID: mdl-35695711

ABSTRACT

All cells incur DNA damage from exogenous and endogenous sources and possess pathways to detect and repair DNA damage. Post-translational modifications (PTMs), in the past 20 years, have risen to ineluctable importance in the study of the regulation of DNA repair mechanisms. For example, DNA damage response kinases are critical in both the initial sensing of DNA damage as well as in orchestrating downstream activities of DNA repair factors. Mass spectrometry-based proteomics revolutionized the study of the role of PTMs in the DNA damage response and has canonized PTMs as central modulators of nearly all aspects of DNA damage signaling and repair. This review provides a biologist-friendly guide for the mass spectrometry analysis of PTMs in the context of DNA repair and DNA damage responses. We reflect on the current state of proteomics for exploring new mechanisms of PTM-based regulation and outline a roadmap for designing PTM mapping experiments that focus on the DNA repair and DNA damage responses.


Subject(s)
Protein Processing, Post-Translational , Proteomics , DNA Damage , DNA Repair , Mass Spectrometry/methods , Proteomics/methods
4.
Proteomics ; 21(23-24): e2100008, 2021 12.
Article in English | MEDLINE | ID: mdl-34145981

ABSTRACT

The recent discovery of alternative open reading frames creates a need for suitable analytical approaches to verify their translation and to characterize the corresponding gene products at the molecular level. As the analysis of small proteins within a background proteome by means of classical bottom-up proteomics is challenging, method development for the analysis of small open reading frame encoded peptides (SEPs) have become a focal point for research. Here, we highlight bottom-up and top-down proteomics approaches established for the analysis of SEPs in both pro- and eukaryotes. Major steps of analysis, including sample preparation and (small) proteome isolation, separation and mass spectrometry, data interpretation and quality control, quantification, the analysis of post-translational modifications, and exploration of functional aspects of the SEPs by means of proteomics technologies are described. These methods do not exclusively cover the analytics of SEPs but simultaneously include the low molecular weight proteome, and moreover, can also be used for the proteome-wide analysis of proteolytic processing events.


Subject(s)
Proteome , Proteomics , Molecular Weight , Open Reading Frames , Peptides/genetics
5.
Proteomics ; : e2000061, 2020 Jul 08.
Article in English | MEDLINE | ID: mdl-32643287

ABSTRACT

A large number of post-translational modifications (PTMs) in proteins are buried in the unassigned mass spectrometric (MS) spectra in shot-gun proteomics datasets. Because the modified peptide fragments are low in abundance relative to the corresponding non-modified versions, it is critical to develop tools that allow facile evaluation of assignment of PTMs based on the MS/MS spectra. Such tools will preferably have the ability to allow comparison of fragment ion spectra and retention time between the modified and unmodified peptide pairs or group. Herein, MMS2plot, an R package for visualizing peptide-spectrum matches (PSMs) for multiple peptides, is described. MMS2plot features a batch mode and generates the output images in vector graphics file format that facilitate evaluation and publication of the PSM assignment. MMS2plot is expected to play an important role in PTM discovery from large-scale proteomics datasets generated by liquid chromatography-MS/MS. The MMS2plot package is freely available at https://github.com/lileir/MMS2plot under the GPL-3 license.

6.
Anal Biochem ; 568: 73-77, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30597127

ABSTRACT

Synthetic isotope labeled phosphopeptides are valuable tools for the quantification and validation of phosphoproteome data. Here, we report that the same set of phosphopeptides, which are used as spike-in standards, can be successfully applied for identification of stimulus specific protein-protein interactions mediated by the respective phosphorylation sites. As a proof-of-concept, binding of two γH2AX (pS139) phosphosite specific interaction partners, MDC1 and 53BP1, was confirmed and elevated binding affinity was revealed in response to ionizing radiation. Our strategy is generally applicable and enables multiplexed validation and functional analysis of phosphorylation sites offering great potential for the follow-up of phosphoproteome studies.


Subject(s)
Phosphopeptides/chemistry , Isotope Labeling , Phosphopeptides/chemical synthesis , Phosphorylation , Protein Binding
7.
Exp Physiol ; 104(5): 715-728, 2019 05.
Article in English | MEDLINE | ID: mdl-30820991

ABSTRACT

NEW FINDINGS: What is the central question of this study? What is the biological role of carbonylation in muscle age-related functional decline and how might exercise affect the carbonylation process differently compared to habitual sedentary behaviour? What is the main finding and its importance? The carbonylation of troponin I (TNNI1), tropomyosin α-1 chain and α-actinin-1 demonstrated a relationship with muscle age-related functional decline. Exercise attenuated the decline by slowing the rate of carbonylation and promoting antioxidant reactions within the muscle. As exercise demonstrated the greatest effect on TNNI1, quantification of protein carbonyls in TNNI1 may be used as a potential biomarker of muscle age-related functional decline. ABSTRACT: This study investigated the biological role of carbonylation in muscle age-related functional decline and how regular aerobic exercise may affect the carbonylation process differently from habitual sedentary behaviour. Twenty-four healthy male Sprague-Dawley (SD) rats (mean age: 23 months) were randomly divided into an old-aged sedentary control group (O-SED) and an old-aged aerobic exercise group (O-EX). The O-EX group participated in regular aerobic exercise - treadmill running - with exercise intensity increased gradually from 50-55% to 65-70% of maximum oxygen consumption ( V̇O2max ) over 10 weeks. Rats' body weight, exercise behaviour index, morphology and oxidative stress were monitored. Avidin magnetic beads and electrospray ionization quadrupole time-of-flight mass spectrometry were used for gathering and separating carbonylated proteins while western blot tested for molecular targets. O-SED and O-EX rats both had 19 oxidative modification sites for protein carbonylation. In the O-SED group, 16 specific carbonylated proteins were identified, while 16 additional specific species were also found in the O-EX group, with all 28 species demonstrating oxidative modifications. The carbonylated proteins included troponin I (TNNI1; slow skeletal muscle), tropomyosin α1 and α-actinin 1. In particular, TNNI1 carbonylation modifications were found only in sedentary rats. Aerobic exercise increased TNNI1 and Ca2+ /calmodulin-dependent protein kinase IIα expression significantly. Observations suggested that quantification of TNNI1 carbonylation may be a potential biomarker of muscle age-related functional decline. Importantly, regular aerobic exercise appeared to have antioxidant effects in the muscle that reduced TNNI1 slow carbonylation and promoted Ca2+ /calmodulin-dependent protein kinase IIα (CAMK2) and TNNI1 expression for skeletal muscle contraction regulation, thus attenuating possible age-related skeletal muscle functional decline.


Subject(s)
Muscle, Skeletal/growth & development , Muscle, Skeletal/metabolism , Physical Conditioning, Animal/physiology , Protein Carbonylation/physiology , Troponin I/metabolism , Aging , Anaerobic Threshold , Animals , Body Weight , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Male , Muscle Contraction/physiology , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Slow-Twitch/physiology , Oxidative Stress , Rats , Rats, Sprague-Dawley , Sedentary Behavior
8.
Proteomics ; 15(18): 3209-18, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26081071

ABSTRACT

The Hmt1 methyltransferase is the predominant arginine methyltransferase in Saccharomyces cerevisiae. There are 18 substrate proteins described for this methyltransferase, however native sites of methylation have only been identified on two of these proteins. Here we used peptide immunoaffinity enrichment, followed by LC-ETD-MS/MS, to discover 21 native sites of arginine methylation on five putative Hmt1 substrate proteins, namely Gar1p (H/ACA ribonucleoprotein complex subunit 1), Nop1p (rRNA 2'-O-methyltransferase fibrillarin), Npl3p (nucleolar protein 3), Nsr1p (nuclear localization sequence-binding protein), and Rps2p (40S ribosomal protein S2). The sites, many of which were found to be mono- or di-methylated, were predominantly found in RGG (Arg-Gly-Gly) motifs. Heavy methyl-SILAC validated the majority of these peptides. The above proteins, and relevant sites of methylation, were subsequently validated by in vitro methylation with recombinant Hmt1. This brings the total of Hmt1 substrate proteins for which native methylation sites have been identified to five.


Subject(s)
Nuclear Proteins , Protein-Arginine N-Methyltransferases , RNA-Binding Proteins , Repressor Proteins , Saccharomyces cerevisiae Proteins , Amino Acid Sequence , Methylation , Models, Molecular , Molecular Sequence Data , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Protein Processing, Post-Translational , Protein-Arginine N-Methyltransferases/chemistry , Protein-Arginine N-Methyltransferases/metabolism , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , Repressor Proteins/chemistry , Repressor Proteins/metabolism , Reproducibility of Results , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism
9.
Virology ; 447(1-2): 104-11, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24210104

ABSTRACT

We have combined 2-D SDS-PAGE with liquid chromatography-high resolving mass spectrometry (LC-MS) to explore the proteome of the adenovirus type 2 (Ad2) at the level of post translational modifications (PTMs). The experimental design included in-solution digestion, followed by titanium dioxide enrichment, as well as in-gel digestion of polypeptides after separation of Ad2 capsid proteins by 1-D and 2-D SDS-PAGE. All samples were analyzed using LC-MS with subsequent manual verification of PTM positions. The results revealed new phosphorylation sites that can explain the observed trains of protein spots observed for the pIII, pIIIa and pIV proteins. The pIIIa protein was found to be the most highly modified protein with now 18 verified sites of phosphorylation, three sites of nitrated tyrosine and one sulfated tyrosine. Nitrated tyrosines were also identified in pII. Lysine acetylations were detected in pII and pVI. The findings make the Ad2 virion much more complex than hitherto believed.


Subject(s)
Adenoviridae/physiology , Protein Processing, Post-Translational , Viral Proteins/metabolism , Acetylation , Adenoviridae/chemistry , Chromatography, Liquid , Electrophoresis, Gel, Two-Dimensional , Mass Spectrometry , Phosphorylation , Proteome/analysis
SELECTION OF CITATIONS
SEARCH DETAIL