Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 472
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 121(23): e2322674121, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38768327

ABSTRACT

Predators and prey benefit from detecting sensory cues of each other's presence. As they move through their environment, terrestrial animals accumulate electrostatic charge. Because electric charges exert forces at a distance, a prey animal could conceivably sense electrical forces to detect an approaching predator. Here, we report such a case of a terrestrial animal detecting its predators by electroreception. We show that predatory wasps are charged, thus emit electric fields, and that caterpillars respond to such fields with defensive behaviors. Furthermore, the mechanosensory setae of caterpillars are deflected by these electrostatic forces and are tuned to the wingbeat frequency of their insect predators. This ability unveils a dimension of the sensory interactions between prey and predators and is likely widespread among terrestrial animals.


Subject(s)
Predatory Behavior , Wasps , Animals , Predatory Behavior/physiology , Wasps/physiology , Air , Static Electricity
2.
Proc Natl Acad Sci U S A ; 120(5): e2209037120, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36689656

ABSTRACT

Sea otters (Enhydra lutris) and wolves (Canis lupus) are two apex predators with strong and cascading effects on ecosystem structure and function. After decades of recovery from near extirpation, their ranges now overlap, allowing sea otters and wolves to interact for the first time in the scientific record. We intensively studied wolves during 2015 to 2021 in an island system colonized by sea otters in the 2000s and by wolves in 2013. After wolf colonization, we quantified shifts in foraging behavior with DNA metabarcoding of 689 wolf scats and stable isotope analyses, both revealing a dietary switch from Sitka black-tailed deer (Odocoileus hemionus), the terrestrial in situ primary prey, to sea otters. Here we show an unexpected result of the reintroduction and restoration of sea otters, which became an abundant marine subsidy for wolves following population recovery. The availability of sea otters allowed wolves to persist and continue to reproduce, subsequently nearly eliminating deer. Genotypes from 390 wolf scats and telemetry data from 13 wolves confirmed island fidelity constituting one of the highest known wolf population densities and upending standardly accepted wolf density predictions based on ungulate abundance. Whereas marine subsidies in other systems are generally derived from lower trophic levels, here an apex nearshore predator became a key prey species and linked nearshore and terrestrial food webs in a recently deglaciated and rapidly changing ecosystem. These results underscore that species restoration may serve as an unanticipated nutrient pathway for recipient ecosystems even resulting in cross-boundary subsidy cascades.


Subject(s)
Deer , Otters , Wolves , Animals , Ecosystem , Predatory Behavior , Food Chain , Population Dynamics
3.
Proc Natl Acad Sci U S A ; 120(7): e2218909120, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36757892

ABSTRACT

An effective evasion strategy allows prey to survive encounters with predators. Prey are generally thought to escape in a direction that is either random or serves to maximize the minimum distance from the predator. Here, we introduce a comprehensive approach to determine the most likely evasion strategy among multiple hypotheses and the role of biomechanical constraints on the escape response of prey fish. Through a consideration of six strategies with sensorimotor noise and previous kinematic measurements, our analysis shows that zebrafish larvae generally escape in a direction orthogonal to the predator's heading. By sensing only the predator's heading, this orthogonal strategy maximizes the distance from fast-moving predators, and, when operating within the biomechanical constraints of the escape response, it provides the best predictions of prey behavior among all alternatives. This work demonstrates a framework for resolving the strategic basis of evasion in predator-prey interactions, which could be applied to a broad diversity of animals.


Subject(s)
Predatory Behavior , Zebrafish , Animals , Zebrafish/physiology , Larva/physiology , Predatory Behavior/physiology , Escape Reaction , Biomechanical Phenomena
4.
Mol Biol Evol ; 41(8)2024 Aug 02.
Article in English | MEDLINE | ID: mdl-38935574

ABSTRACT

Venom systems are complex traits that have independently emerged multiple times in diverse plant and animal phyla. Within each venomous lineage there typically exists interspecific variation in venom composition where several factors have been proposed as drivers of variation, including phylogeny and diet. Understanding these factors is of broad biological interest and has implications for the development of antivenom therapies and venom-based drug discovery. Because of their high species richness and the presence of several major evolutionary prey shifts, venomous marine cone snails (genus Conus) provide an ideal system to investigate drivers of interspecific venom variation. Here, by analyzing the venom gland expression profiles of ∼3,000 toxin genes from 42 species of cone snail, we elucidate the role of prey-specific selection pressures in shaping venom variation. By analyzing overall venom composition and individual toxin structures, we demonstrate that the shifts from vermivory to piscivory in Conus are complemented by distinct changes in venom composition independent of phylogeny. In vivo injections of venom from piscivorous cone snails in fish further showed a higher potency compared with venom of nonpiscivores demonstrating a selective advantage. Together, our findings provide compelling evidence for the role of prey shifts in directing the venom composition of cone snails and expand our understanding of the mechanisms of venom variation and diversification.


Subject(s)
Conus Snail , Mollusk Venoms , Animals , Conus Snail/genetics , Mollusk Venoms/genetics , Predatory Behavior , Biological Evolution , Phylogeny , Evolution, Molecular
5.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Article in English | MEDLINE | ID: mdl-35131939

ABSTRACT

Correctly assessing the total impact of predators on prey population growth rates (lambda, λ) is critical to comprehending the importance of predators in species conservation and wildlife management. Experiments over the past decade have demonstrated that the fear (antipredator responses) predators inspire can affect prey fecundity and early offspring survival in free-living wildlife, but recent reviews have highlighted the absence of evidence experimentally linking such effects to significant impacts on prey population growth. We experimentally manipulated fear in free-living wild songbird populations over three annual breeding seasons by intermittently broadcasting playbacks of either predator or nonpredator vocalizations and comprehensively quantified the effects on all the components of population growth, together with evidence of a transgenerational impact on offspring survival as adults. Fear itself significantly reduced the population growth rate (predator playback mean λ = 0.91, 95% CI = 0.80 to 1.04; nonpredator mean λ = 1.06, 95% CI = 0.96 to 1.16) by causing cumulative, compounding adverse effects on fecundity and every component of offspring survival, resulting in predator playback parents producing 53% fewer recruits to the adult breeding population. Fear itself was consequently projected to halve the population size in just 5 years, or just 4 years when the evidence of a transgenerational impact was additionally considered (λ = 0.85). Our results not only demonstrate that fear itself can significantly impact prey population growth rates in free-living wildlife, comparing them with those from hundreds of predator manipulation experiments indicates that fear may constitute a very considerable part of the total impact of predators.


Subject(s)
Aging/physiology , Fear/physiology , Songbirds/physiology , Animals , Animals, Wild , British Columbia , Population Growth , Predatory Behavior , Sound Recordings , Vocalization, Animal
6.
Ecol Lett ; 27(1): e14335, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37972585

ABSTRACT

Foraging decisions shape the structure of food webs. Therefore, a behavioural shift in a single species can potentially modify resource-flow dynamics of entire ecosystems. To examine this, we conducted a field experiment to assess foraging niche dynamics of semi-arboreal brown anole lizards in the presence/absence of predatory ground-dwelling curly-tailed lizards in a replicated set of island ecosystems. One year after experimental translocation, brown anoles exposed to these predators had drastically increased perch height and reduced consumption of marine-derived food resources. This foraging niche shift altered marine-to-terrestrial resource-flow dynamics and persisted in the diets of the first-generation offspring. Furthermore, female lizards that displayed more risk-taking behaviours consumed more marine prey on islands with predators present. Our results show how predator-driven rapid behavioural shifts can alter food-web connectivity between oceanic and terrestrial ecosystems and underscore the importance of studying behaviour-mediated niche shifts to understand ecosystem functioning in rapidly changing environments.


Subject(s)
Ecosystem , Lizards , Animals , Female , Food Chain , Predatory Behavior
7.
Am Nat ; 203(1): 1-13, 2024 01.
Article in English | MEDLINE | ID: mdl-38207143

ABSTRACT

AbstractAverage concentrations of biota in the ocean are low, presenting a critical problem for ocean consumers. High-resolution sampling, however, demonstrates that the ocean is peppered with narrow hot spots of organism activity. To determine whether these resource aggregations could provide a significant solution to the ocean's food paradox, a conceptual graphical model was developed that facilitates comparisons of the role of patchiness in predator-prey interactions across taxa, size scales, and ecosystems. The model predicts that predators are more reliant on aggregated resources for foraging success when the average concentrations of resources is low, the size discrepancy between predator and prey is great, the predator has a high metabolic rate, and/or the predator's foraging time is limited. Size structure differences between marine and terrestrial food webs and a vast disparity in the overall mean density of their resources lead to the conclusion that high-density aggregations of prey are much more important to the survival of oceanic predators than their terrestrial counterparts, shaping the foraging decisions that are available to an individual and setting the stage on which evolutionary pressures can act. Patches of plenty may be rare, but they play an outsized role in behavioral, ecological, and evolutionary processes, particularly in the sea.


Subject(s)
Ecosystem , Predatory Behavior , Animals , Food Chain , Oceans and Seas , Biota
8.
Am Nat ; 203(3): 347-361, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38358809

ABSTRACT

AbstractClassic evolutionary theory predicts that predation will shift trait means and erode variance within prey species; however, several studies indicate higher behavioral trait variance and trait integration in high-predation populations. These results come predominately from field-sampled animals comparing low- and high-predation sites and thus cannot isolate the role of predation from other ecological factors, including density effects arising from higher predation. Here, we study the role of predation on behavioral trait (co)variation in experimental populations of guppies (Poecilia reticulata) living with and without a benthic ambush predator (Jaguar cichlid) to better evaluate the role of predation and where density was equalized among replicates twice per year. At 2.5 years after introduction of the predators (∼10 overlapping generations), 40 males were sampled from each of the six replicate populations and extensively assayed for activity rates, water column use, and latency to feed following disturbance. Individual variation was pronounced in both treatments, with substantial individual variation in means, temporal plasticity, and predictability (inverse residual variance). Predators had little effect on mean behavior, although there was some evidence for greater use of the upper water column in predator-exposed fish. There was greater variance among individuals in water column use in predator-exposed fish, and they habituated more quickly over time; individuals higher in the water column fed slower and had a reduced positive correlation with activity, although again this effect was time specific. Predators also affected the integration of personality and plasticity-among-individual variances in water column use increased, and those in activity decreased, through time-which was absent in controls. Our results contrast with the extensive guppy literature showing rapid evolution in trait means, demonstrating either increases or maintenance of behavioral variance under predation.


Subject(s)
Cichlids , Poecilia , Animals , Male , Predatory Behavior , Personality , Water
9.
Proc Biol Sci ; 291(2032): 20241112, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39378991

ABSTRACT

Large mammalian herbivores (LMH) are important functional components and drivers of biodiversity and ecosystem functioning in grasslands. Yet their role in regulating food-web dynamics and trophic cascades remains poorly understood. In the temperate grasslands of northern China, we explored whether and how grazing domestic cattle (Bos taurus) alter the predator-prey interactions between a dominant grasshopper (Euchorthippus unicolor) and its avian predator the barn swallow (Hirundo rustica). Using two large manipulative field experiments, we found that in the presence of cattle, grasshoppers increased their jumping frequency threefold, swallows increased foraging visits to these fields sixfold, and grasshopper density was reduced by about 50%. By manipulatively controlling the grasshoppers' ability to jump, we showed that jumping enables grasshoppers to avoid being incidentally consumed or trampled by cattle. However, jumping behaviour increased their consumption rates by swallows 37-fold compared with grasshoppers that were unable to jump. Our findings illustrate how LMH can indirectly alter predator-prey interactions by affecting behaviour of avian predators and herbivorous insects. These non-plant-mediated effects of LMH may influence trophic interactions in other grazing ecosystems and shape community structure and dynamics. We highlight that convoluted multispecies interactions may better explain how LMH control food-web dynamics in grasslands.


Subject(s)
Food Chain , Grasshoppers , Herbivory , Predatory Behavior , Animals , Grasshoppers/physiology , China , Cattle/physiology , Swallows/physiology , Grassland
10.
Proc Biol Sci ; 291(2032): 20240944, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39378993

ABSTRACT

Anti-predator behaviours in response to predator cues can be innate, or they can be learned through prior experience and remembered over time. The duration and strength of continued anti-predator behaviour after predator cues are no longer present, and the potential for an enhanced response when re-exposed to predator cues later is less known but could account for the observed variation in anti-predator responses. We measured the carryover effects of past predation exposure and the potential for anti-predator learning and memory in the marine snail Nucella canaliculata from six populations distributed over 1000 km of coastline. We exposed lab-reared snails to cues associated with a common crab predator or seawater control in two serial experiments separated by over seven months. Responses were population- and sex-dependent, with some populations retaining anti-predator behaviours while others showed a capacity for learning and memory. Male snails showed a strong carryover of risk aversion, while females were able to return to normal feeding rates and grow more quickly. These behavioural differences culminated in strong impacts on feeding and growth rates, demonstrating that this variation has implications for the strength of trait-mediated indirect interactions, which can impact entire ecosystems.


Subject(s)
Learning , Memory , Predatory Behavior , Snails , Animals , Snails/physiology , Female , Male , Brachyura/physiology , Sex Factors , Cues
11.
Proc Biol Sci ; 291(2023): 20232849, 2024 May.
Article in English | MEDLINE | ID: mdl-38775542

ABSTRACT

Recent experiments have demonstrated that carnivores and ungulates in Africa, Asia, Europe and North America fear the human 'super predator' far more than other predators. Australian mammals have been a focus of research on predator naiveté because it is suspected they show atypical antipredator responses. To experimentally test if mammals in Australia also most fear humans, we quantified the responses of four native marsupials (eastern grey kangaroo, Bennett's wallaby, Tasmanian pademelon, common brushtail possum) and introduced fallow deer to playbacks of predator (human, dog, Tasmanian devil, wolf) or non-predator control (sheep) vocalizations. Native marsupials most feared the human 'super predator', fleeing humans 2.4 times more often than the next most frightening predator (dogs), and being most, and significantly, vigilant to humans. These results demonstrate that native marsupials are not naïve to the peril humans pose, substantially expanding the taxonomic and geographic scope of the growing experimental evidence that wildlife worldwide generally perceive humans as the planet's most frightening predator. Introduced fallow deer fled humans, but not more than other predators, which we suggest may result from their being introduced. Our results point to both challenges concerning marsupial conservation and opportunities for exploiting fear of humans as a wildlife management tool.


Subject(s)
Deer , Fear , Marsupialia , Predatory Behavior , Animals , Deer/physiology , Humans , Marsupialia/physiology , Australia , Introduced Species , Wolves/physiology , Dogs , Vocalization, Animal
12.
J Exp Biol ; 227(9)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38634142

ABSTRACT

The ability of predators to adopt hunting tactics that minimise escape reactions from prey is crucial for efficient foraging, and depends on detection capabilities and locomotor performance of both predators and prey. Here, we investigated the efficiency of a small pinniped, the Antarctic fur seal (Arctocephalus gazella) at exploiting their small prey by describing for the first time their fine-scale predator-prey interactions. We compared these with those from another diving predator, the southern elephant seal (Mirounga leonina) that forage on the same prey type. We used data recorded by a newly developed sonar tag that combines active acoustics with ultrahigh-resolution movement sensors to study simultaneously the fine-scale behaviour of both Antarctic fur seals and prey during predator-prey interactions in more than 1200 prey capture events for eight female Antarctic fur seals. Our results showed that Antarctic fur seals and their prey detect each other at the same time, i.e. 1-2 s before the strike, forcing Antarctic fur seals to display reactive fast-moving chases to capture their prey. In contrast, southern elephant seals detect their prey up to 10 s before the strike, allowing them to approach their prey stealthily without triggering an escape reaction. The active hunting tactics used by Antarctic fur seals is probably very energy consuming compared with the stalking tactics used by southern elephant seals but might be compensated for by the consumption of faster-moving larger prey. We suggest that differences in manoeuvrability, locomotor performance and detection capacities and in pace of life between Antarctic fur seals and southern elephant seals might explain these differences in hunting styles.


Subject(s)
Fur Seals , Predatory Behavior , Seals, Earless , Animals , Fur Seals/physiology , Female , Seals, Earless/physiology , Antarctic Regions , Acoustics , Escape Reaction/physiology
13.
J Exp Biol ; 227(6)2024 03 15.
Article in English | MEDLINE | ID: mdl-38186295

ABSTRACT

Aggregation in social fishes has evolved to improve safety from predators. The individual interaction mechanisms that govern collective behavior are determined by the sensory systems that translate environmental information into behavior. In dynamic environments, shifts in conditions impede effective visual sensory perception in fish schools, and may induce changes in the collective response. Here, we consider whether environmental conditions that affect visual contrast modulate the collective response of schools to looming predators. By using a virtual environment to simulate four contrast levels, we tested whether the collective state of minnow fish schools was modified in response to a looming optical stimulus. Our results indicate that fish swam slower and were less polarized in lower contrast conditions. Additionally, schooling metrics known to be regulated by non-visual sensory systems tended to correlate better when contrast decreased. Over the course of the escape response, schools remained tightly formed and retained the capability of transferring social information. We propose that when visual perception is compromised, the interaction rules governing collective behavior are likely to be modified to prioritize ancillary sensory information crucial to maximizing chance of escape. Our results imply that multiple sensory systems can integrate to control collective behavior in environments with unreliable visual information.


Subject(s)
Predatory Behavior , Visual Perception , Animals , Predatory Behavior/physiology , Environment , Fishes/physiology , Vision, Ocular
14.
Ecol Appl ; 34(5): e3003, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38890813

ABSTRACT

Large terrestrial mammals increasingly rely on human-modified landscapes as anthropogenic footprints expand. Land management activities such as timber harvest, agriculture, and roads can influence prey population dynamics by altering forage resources and predation risk via changes in habitat, but these effects are not well understood in regions with diverse and changing predator guilds. In northeastern Washington state, USA, white-tailed deer (Odocoileus virginianus) are vulnerable to multiple carnivores, including recently returned gray wolves (Canis lupus), within a highly human-modified landscape. To understand the factors governing predator-prey dynamics in a human context, we radio-collared 280 white-tailed deer, 33 bobcats (Lynx rufus), 50 cougars (Puma concolor), 28 coyotes (C. latrans), and 14 wolves between 2016 and 2021. We first estimated deer vital rates and used a stage-structured matrix model to estimate their population growth rate. During the study, we observed a stable to declining deer population (lambda = 0.97, 95% confidence interval: 0.88, 1.05), with 74% of Monte Carlo simulations indicating population decrease and 26% of simulations indicating population increase. We then fit Cox proportional hazard models to evaluate how predator exposure, use of human-modified landscapes, and winter severity influenced deer survival and used these relationships to evaluate impacts on overall population growth. We found that the population growth rate was dually influenced by a negative direct effect of apex predators and a positive effect of timber harvest and agricultural areas. Cougars had a stronger effect on deer population dynamics than wolves, and mesopredators had little influence on the deer population growth rate. Areas of recent timber harvest had 55% more forage biomass than older forests, but horizontal visibility did not differ, suggesting that timber harvest did not influence predation risk. Although proximity to roads did not affect the overall population growth rate, vehicle collisions caused a substantial proportion of deer mortalities, and reducing these collisions could be a win-win for deer and humans. The influence of apex predators and forage indicates a dual limitation by top-down and bottom-up factors in this highly human-modified system, suggesting that a reduction in apex predators would intensify density-dependent regulation of the deer population owing to limited forage availability.


Subject(s)
Deer , Population Dynamics , Wolves , Animals , Deer/physiology , Wolves/physiology , Humans , Predatory Behavior , Washington , Human Activities , Coyotes/physiology , Puma/physiology , Food Chain , Ecosystem , Lynx/physiology
15.
J Anim Ecol ; 93(9): 1176-1191, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38881237

ABSTRACT

During animal migration, ephemeral communities of taxa at all trophic levels co-occur over space and time. The interactions between predators and prey along migration corridors are ecologically and evolutionarily significant. However, these interactions remain understudied in terrestrial systems and warrant further investigations using novel approaches. We investigated the predator-prey interactions between a migrating avivorous predator and ephemeral avian prey community in the fall migration season. We tested for associations between avian traits and prey selection and hypothesized that prey traits (i.e. relative size, flocking behaviour, habitat, migration tendency and availability) would influence prey selection by a sexually dimorphic raptor on migration. To document prey consumption, we sampled trace prey DNA from beaks and talons of migrating sharp-shinned hawks Accipiter striatus (n = 588). We determined prey availability in the ephemeral avian community by extracting weekly abundance indices from eBird Status and Trends data. We used discrete choice models to assess prey selection and visualized the frequency of prey in diet and availability on the landscape over the fall migration season. Using eDNA metabarcoding, we detected prey species on 94.1% of the hawks sampled (n = 525/588) comprising 1396 prey species detections from 65 prey species. Prey frequency in diet and eBird relative abundance of prey species were correlated over the migration season for top-selected prey species, suggesting prey availability is an important component of raptor-songbird interactions during fall. Prey size, flocking behaviour and non-breeding habitat association were prey traits that significantly influenced predator choice. We found differences between female and male hawk prey selection, suggesting that sexual size dimorphism has led to distinct foraging strategies on migration. This research integrated field data collected by a volunteer-powered raptor migration monitoring station and public-generated data from eBird to reveal elusive predator-prey dynamics occurring in an ephemeral raptor-songbird community during fall migration. Understanding dynamic raptor-songbird interactions along migration routes remains a relatively unexplored frontier in animal ecology and is necessary for the conservation and management efforts of migratory and resident communities.


Durante la migración animal, las comunidades efímeras de taxones de todos los niveles tróficos coexisten en el espacio y el tiempo. Las interacciones entre depredadores y presas a lo largo de los corredores migratorios son significativas desde el punto de vista ecológica y evolutivo. Sin embargo, estas interacciones siguen siendo poco estudiadas en los sistemas terrestres y justifican más investigaciones utilizando enfoques novedosos. Investigamos las interacciones depredador­presa entre un depredador avívoro migratorio y una comunidad de presas aviares efímeras en la temporada migratoria otoñal. Probamos las asociaciones entre los rasgos de las aves y la selección de presas y planteamos la hipótesis de que los rasgos de las presas (tamaño relativo, comportamiento de bandada, hábitat, tendencia migratoria y disponibilidad) influirían en la selección de presas por parte de una rapaz sexualmente dimórfica durante la migración. Para documentar el consumo de presas, recogimos rastros de ADN de presas de picos y garras de Gavilán Americano Accipiter striatus (n = 588) migratorios. Determinamos la disponibilidad de presas en la comunidad de aves efímeras extrayendo índices de abundancia semanales de los datos de eBird Estado y Tendencias. Utilizamos modelos de elección discreta para evaluar la selección de presas y visualizamos la frecuencia de las presas en la dieta y la disponibilidad en el paisaje durante la temporada migratoria otoñal. Utilizando el metacódigo de barras del ADN ambiental, detectamos especies de presas en el 94,1% de los halcones muestreados (n = 525/588), comprendiendo 1396 detecciones de 65 especies de presas. La frecuencia de presas en la dieta y la abundancia relativa de especies de presas en eBird se correlacionaron a lo largo de la temporada de migración para las principales especies de presas seleccionadas, lo que sugiere que la disponibilidad de presas es un componente importante de las interacciones entre aves rapaces y aves canoras durante el otoño. El tamaño de las presas, el comportamiento de las bandadas y la asociación con el hábitat no reproductivo fueron rasgos de presa que influyeron significativamente en la elección de los depredadores. Encontramos diferencias entre la selección de presas de gavilán hembra y macho, lo que sugiere que el dimorfismo sexual de tamaño ha conducido a distintas estrategias de alimentación durante la migración. Esta investigación integró datos de campo recopilados por una estación de monitoreo de migración de rapaces impulsada por voluntarios y datos generados públicamente por eBird para revelar la esquiva dinámica depredador­presa que ocurre en una comunidad efímera de rapaces y aves canoras durante la migración otoñal. Comprender las interacciones dinámicas entre rapaces y aves canoras a lo largo de las rutas migratorias sigue siendo una frontera relativamente inexplorada en la ecología animal y es necesaria para los esfuerzos de conservación y gestión de las comunidades migratorias y residentes.


Subject(s)
Animal Migration , Food Chain , Hawks , Predatory Behavior , Animals , Hawks/physiology , Female , Male , Ecosystem , Diet/veterinary , Seasons
16.
J Anim Ecol ; 93(7): 943-957, 2024 07.
Article in English | MEDLINE | ID: mdl-38801060

ABSTRACT

The temporal dynamics of insect populations in agroecosystems are influenced by numerous biotic and abiotic interactions, including trophic interactions in complex food webs. Predicting the regulation of herbivorous insect pests by arthropod predators and parasitoids would allow for rendering crop production less dependent on chemical pesticides. Curtsdotter et al. (2019) developed a food-web model simulating the influences of naturally occurring arthropod predators on aphid population dynamics in cereal crop fields. The use of an allometric hypothesis based on the relative body masses of the prey and various predator guilds reduced the number of estimated parameters to just five, albeit field-specific. Here, we extend this model and test its applicability and predictive capacity. We first parameterized the original model with a dataset with the dynamic arthropod community compositions in 54 fields in six regions in France. We then integrated three additional biological functions to the model: parasitism, aphid carrying capacity and suboptimal high temperatures that reduce aphid growth rates. We developed a multi-field calibration approach to estimate a single set of generic allometric parameters for a given group of fields, which would increase model generality needed for predictions. The original and revised models, when using field-specific parameterization, achieved quantitatively good fits to observed aphid population dynamics for 59% and 53% of the fields, respectively, with pseudo-R2 up to 0.99. But the multi-field calibration showed that increased model generality came at the cost of reduced model reliability (goodness-of-fit). Our study highlights the need to further improve our understanding of how body size and other traits affect trophic interactions in food webs. It also points up the need to acquire high-resolution data to use this type of modelling approach. We propose that a hypothesis-driven strategy of model improvement based on the integration of additional biological functions and additional functional traits beyond body size (e.g., predator space search or prey defences) into the food-web matrix can improve model reliability.


Subject(s)
Aphids , Food Chain , Models, Biological , Population Dynamics , Predatory Behavior , Animals , Aphids/physiology , France , Edible Grain , Arthropods/physiology
17.
J Anim Ecol ; 93(7): 906-917, 2024 07.
Article in English | MEDLINE | ID: mdl-38807348

ABSTRACT

Predators can strongly influence prey populations not only through consumptive effects (CE) but also through non-consumptive effects (NCE) imposed by predation risk. Yet, the impact of NCE on bioenergetic and stoichiometric body contents of prey, traits that are shaping life histories, population and food web dynamics, is largely unknown. Moreover, the degree to which NCE can evolve and can drive evolution in prey populations is rarely studied. A 6-week outdoor mesocosm experiment with Caged-Fish (NCE) and Free-Ranging-Fish (CE and NCE) treatments was conducted to quantify and compare the effects of CE and NCE on population densities, bioenergetic and stoichiometric body contents of Daphnia magna, a keystone species in freshwater ecosystems. We tested for evolution of CE and NCE by using experimental populations consisting of D. magna clones from two periods of a resurrected natural pond population: a pre-fish period without fish and a high-fish period with high predation pressure. Both Caged-Fish and Free-Ranging-Fish treatments decreased the body size and population densities, especially in Daphnia from the high-fish period. Only the Free-Ranging-Fish treatment affected bioenergetic variables, while both the Caged-Fish and Free-Ranging-Fish treatments shaped body stoichiometry. The effects of CE and NCE were different between both periods indicating their rapid evolution in the natural resurrected population. Both the Caged-Fish and Free-Ranging-Fish treatments changed the clonal frequencies of the experimental Daphnia populations of the pre-fish as well as the high-fish period, indicating that not only CE but also NCE induced clonal sorting, hence rapid evolution during the mesocosm experiment in both periods. Our results demonstrate that CE as well as NCE have the potential to change not only the body size and population density but also the bioenergetic and stoichiometric characteristics of prey populations. Moreover, we show that these responses not only evolved in the studied resurrected population, but that CE and NCE also caused differential rapid evolution in a time frame of 6 weeks (ca. four to six generations). As NCE can evolve as well as can drive evolution, they may play an important role in shaping eco-evolutionary dynamics in predator-prey interactions.


Subject(s)
Daphnia , Energy Metabolism , Food Chain , Population Density , Predatory Behavior , Animals , Daphnia/physiology , Biological Evolution
18.
J Anim Ecol ; 93(8): 1135-1146, 2024 08.
Article in English | MEDLINE | ID: mdl-38898692

ABSTRACT

Fish fins are remarkable devices of propulsion. Fin morphology is intimately linked to locomotor performance, and hence to behaviours that influence fitness, such as foraging and predator avoidance. This foreshadows a connection between fin morphology and variation in predation risk. Yet, whether prey can adjust fin morphology according to changes in perceived risk within their lifetime (a.k.a. predator-induced plasticity) remains elusive. Here, we quantify the structural size of five focal fins in crucian carp (Carassius carassius) following controlled manipulations to perceived predation risk (presence/absence of pike Esox lucius). We also assess if crucian carp respond to increased predation risk by shifts in dorsal fin colouration, and test for differences in how fish actively use their dorsal fins by quantifying the area of the fin displayed in behavioural trials. We find that crucian carp show phenotypic plasticity with regards to fin size as predator-exposed fish consistently have larger fins. Individuals exposed to perceived predation risk also increased dorsal fin darkness and actively displayed a larger area of the fin to potential predators. Our results thus provide compelling evidence for predator-induced fin enlargement, which should result in enhanced escape swimming performance. Moreover, fin-size plasticity may evolve synergistically with fin colouration and display behaviour, and we suggest that the adaptive value of this synergy is to enhance the silhouette of deep-bodied and hard-to-capture prey to deter gape-limited predators prior to attack. Together, our results provide new perspectives on the role of predation risk in development and evolution of fins.


Subject(s)
Animal Fins , Carps , Esocidae , Predatory Behavior , Animals , Animal Fins/physiology , Animal Fins/anatomy & histology , Carps/physiology , Carps/anatomy & histology , Esocidae/physiology , Esocidae/anatomy & histology , Darkness , Swimming
19.
Oecologia ; 204(3): 653-660, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38461225

ABSTRACT

Group-living animals sometimes cooperatively protect their offspring against predators. This behavior is observed in a wide range of taxa but, to the best of our knowledge, this is the first report of its occurrence in arthropods that are not eusocial. Adult female predatory mites Gynaeseius liturivorus protect their eggs against egg predators, the predatory mite species Neoseiulus californicus. In the field, several adult female G. liturivorus were often found on the same plant structures such as folded leaves. We tested whether these females might protect their eggs cooperatively, focusing on kinship between the females. When two adult female G. liturivorus were kept in the absence of egg predators, their reproduction was not affected by their kinship. The presence of egg predators reduced the number of G. liturivorus eggs. However, reproduction of two G. liturivorus sisters was higher than that of two non-sisters. Together, sisters guarded the oviposition site longer than non-sisters. We further tested if non-sisters increased egg guarding by having developed together from eggs to adults and found no such effect. Although it remains unclear how adult female G. liturivorus recognize conspecifics as kin or sisters, our results suggest that G. liturivorus sisters reduced predation on their offspring by cooperatively guarding their eggs.


Subject(s)
Mites , Animals , Female , Predatory Behavior , Oviposition , Reproduction , Plant Leaves
20.
J Chem Ecol ; 50(1-2): 42-51, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38133704

ABSTRACT

Among defenses against predation, chemical defenses are possibly the most studied. However, when addressing the effectiveness of those chemical defenses, previous studies did not include properties of the chemical substances themselves. Lipophilicity, for instance, may facilitate crossing membranes, and boiling point may define the duration of the substances in the air. Moreover, other variables may also be relevant: the predator taxon; the prey model chosen to conduct experiments; whether the prey is presented grouped or not in experiments; and whether the chemical defense is a mixture of many substances or only one. To understand how those factors influence chemical defenses' effectiveness, we conducted a multilevel meta-analysis with 43 studies (127 effect sizes), accounting for different types of dependence. We used Akaike Information Criterion (AICc) to select the best model. The model with the lowest AICc value included only the boiling point, which defines how quickly a chemical substance volatilizes. This model indicated that the most effective chemical defenses had lower boiling point values, i.e., higher volatility. Moreover, we did not find chemicals with very low boiling points, suggesting there might be an optimum range of volatility. Other models, including the intercept-only model, were also recovered among the best models, therefore further studies are needed to confirm the relationship between volatility and chemical defenses' effectiveness. Our results highlight the value of incorporating physicochemical properties in the ecological and evolutionary study of chemical defense.


Subject(s)
Arthropods , Animals , Predatory Behavior , Biological Evolution , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL