Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Immunity ; 54(6): 1304-1319.e9, 2021 06 08.
Article in English | MEDLINE | ID: mdl-34048708

ABSTRACT

Despite mounting evidence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) engagement with immune cells, most express little, if any, of the canonical receptor of SARS-CoV-2, angiotensin-converting enzyme 2 (ACE2). Here, using a myeloid cell receptor-focused ectopic expression screen, we identified several C-type lectins (DC-SIGN, L-SIGN, LSECtin, ASGR1, and CLEC10A) and Tweety family member 2 (TTYH2) as glycan-dependent binding partners of the SARS-CoV-2 spike. Except for TTYH2, these molecules primarily interacted with spike via regions outside of the receptor-binding domain. Single-cell RNA sequencing analysis of pulmonary cells from individuals with coronavirus disease 2019 (COVID-19) indicated predominant expression of these molecules on myeloid cells. Although these receptors do not support active replication of SARS-CoV-2, their engagement with the virus induced robust proinflammatory responses in myeloid cells that correlated with COVID-19 severity. We also generated a bispecific anti-spike nanobody that not only blocked ACE2-mediated infection but also the myeloid receptor-mediated proinflammatory responses. Our findings suggest that SARS-CoV-2-myeloid receptor interactions promote immune hyperactivation, which represents potential targets for COVID-19 therapy.


Subject(s)
COVID-19/metabolism , COVID-19/virology , Host-Pathogen Interactions , Lectins, C-Type/metabolism , Membrane Proteins/metabolism , Myeloid Cells/immunology , Myeloid Cells/metabolism , Neoplasm Proteins/metabolism , SARS-CoV-2/physiology , Angiotensin-Converting Enzyme 2/metabolism , Binding Sites , COVID-19/genetics , Cell Line , Cytokines , Gene Expression Regulation , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Inflammation Mediators/metabolism , Lectins, C-Type/chemistry , Membrane Proteins/chemistry , Models, Molecular , Neoplasm Proteins/chemistry , Protein Binding , Protein Conformation , Single-Domain Antibodies/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Structure-Activity Relationship
2.
Int J Mol Sci ; 25(17)2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39273156

ABSTRACT

Mitochondria play pivotal roles in sustaining various biological functions including energy metabolism, cellular signaling transduction, and innate immune responses. Viruses exploit cellular metabolic synthesis to facilitate viral replication, potentially disrupting mitochondrial functions and subsequently eliciting a cascade of proinflammatory responses in host cells. Additionally, the disruption of mitochondrial membranes is involved in immune regulation. During viral infections, mitochondria orchestrate innate immune responses through the generation of reactive oxygen species (ROS) and the release of mitochondrial DNA, which serves as an effective defense mechanism against virus invasion. The targeting of mitochondrial damage may represent a novel approach to antiviral intervention. This review summarizes the regulatory mechanism underlying proinflammatory response induced by mitochondrial damage during viral infections, providing new insights for antiviral strategies.


Subject(s)
Immunity, Innate , Mitochondria , Reactive Oxygen Species , Virus Diseases , Humans , Mitochondria/metabolism , Virus Diseases/immunology , Virus Diseases/metabolism , Reactive Oxygen Species/metabolism , Animals , Inflammation/metabolism , Inflammation/immunology , DNA, Mitochondrial/metabolism , Signal Transduction
3.
Infect Immun ; 91(2): e0050322, 2023 02 16.
Article in English | MEDLINE | ID: mdl-36695576

ABSTRACT

ß-Lactams are the most widely prescribed antibiotics used for the control and treatment of bacterial infections. The direct effect of ß-lactams on bacteria is well studied worldwide. In the context of infections and as a consequence of their direct activity against the pathogen, ß-lactams also regulate antibacterial immune responses. This knowledge has led to the theorem that the effectiveness of ß-lactam treatment results from the synergy between the drug and the immune response. Key players in this immune response, with an essential role in the clearance of live and dead bacteria, are the myeloid cells. In this review, we summarize the data that shed light on how ß-lactams interact with myeloid cells during bacterial infection treatment.


Subject(s)
Bacterial Infections , beta-Lactams , Humans , beta-Lactams/pharmacology , beta-Lactams/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacterial Infections/drug therapy , Bacteria , Immunity, Innate
4.
Environ Toxicol ; 38(12): 2819-2825, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37551787

ABSTRACT

Cyclizine exhibits sedation and treatment of nausea, vomiting, and motion sickness due to antihistaminic and antimuscarinic effects. Cyclizine has the potential for abuse due to the hallucinogenic and euphoric effect. The response of overdose and illegal abuse of cyclizine includes confusion, tremors, chest pain, ataxia, seizures, and lead to suicide. Macrophage plays the important role in the innate immunity. However, over activation of macrophages results in pro-inflammatory responses in peripheral tissues. In the present study, cyclizine was found to enhanced the generation of pro-inflammatory cytokines, including tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, and IL-6. We further found that secretion of nitrogen oxide (NO) induced by cyclizine via expression of inducible nitric oxide synthases (iNOS). Cyclizine exhibited parallel stimulation of phosphorylation of nuclear factor-κB (NFκB) p65, and its up-stream factor Akt. These results indicated that the expression of pro-inflammatory cytokines, pro-inflammatory mediators, and adhesion molecules would be induced by cyclizine via activation of Akt-NFκB pathway in macrophages.


Subject(s)
NF-kappa B , Proto-Oncogene Proteins c-akt , Humans , NF-kappa B/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Cyclizine/metabolism , Cyclizine/pharmacology , Anti-Inflammatory Agents/pharmacology , Macrophages , Cytokines/metabolism , Tumor Necrosis Factor-alpha/metabolism , Lipopolysaccharides/pharmacology , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/metabolism
5.
Infect Immun ; 87(5)2019 03.
Article in English | MEDLINE | ID: mdl-30804101

ABSTRACT

Vibrio parahaemolyticus is a human pathogen, and it is a major cause of severe gastroenteritis in coastal areas. OmpU is one of the major outer membrane porins of V. parahaemolyticus Host-immunomodulatory effects of V. parahaemolyticus OmpU (VpOmpU) have not been elucidated yet. In this study, in an effort towards characterizing the effect of VpOmpU on innate immune responses of the host, we observed that VpOmpU is recognized by the Toll-like receptor 1/2 (TLR1/2) heterodimer in THP-1 monocytes but by both TLR1/2 and TLR2/6 heterodimers in RAW 264.7 macrophages. To the best of our knowledge, this is the first report of a natural pathogen-associated molecular pattern (PAMP) recognized by both TLR1/2 and TLR2/6 heterodimers; so far, mainly the synthetic ligand Pam2CSK4 has been known to be recognized by both the TLR1/2 and TLR2/6 heterodimers. We also have shown that VpOmpU can activate monocytes and macrophages, leading to the generation of proinflammatory responses as indicated by tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), and NO production in macrophages and TNF-α and IL-6 production in monocytes. VpOmpU-mediated proinflammatory responses involve MyD88-IRAK-1 leading to the activation of mitogen-activated protein (MAP) kinases (p38 and Jun N-terminal protein kinase [JNK]) and transcription factors NF-κB and AP-1. Further, we have shown that for the activation of macrophages leading to the proinflammatory responses, the TLR2/6 heterodimer is preferred over the TLR1/2 heterodimer. We have also shown that MAP kinase activation is TLR2 mediated.


Subject(s)
Immunity, Innate/immunology , Inflammation/immunology , Macrophages/immunology , Monocytes/immunology , Toll-Like Receptors/immunology , Vibrio Infections/immunology , Vibrio parahaemolyticus/immunology , Vibrio parahaemolyticus/isolation & purification , Host-Pathogen Interactions/immunology , Humans , Signal Transduction/immunology
6.
Int J Toxicol ; 34(2): 195-203, 2015.
Article in English | MEDLINE | ID: mdl-25808165

ABSTRACT

Various metals produced from human activity are ubiquitously detected in ambient air. The metals may lead to induction and/or exacerbation of respiratory diseases, but the significant metals and factors contributing to such diseases have not been identified. To compare the effects of each metal and different oxidation states of metals on human airway, we examined the viability and production of interleukin (IL)-6 and IL-8 using BEAS-2B cell line, derived from human airway epithelial cells. Airway epithelial cells were exposed to Mn(2+), V(4+), V(5+), Cr(3+), Cr(6+), Zn(2+), Ni(2+), and Pb(2+) at a concentration of 0.5, 5, 50, or 500 µmol/L for 24 hours. Mn and V decreased the cell viability in a concentration-dependent manner, and V(5+) tended to have a greater effect than V(4+). The Cr decreased the cell viability, and (Cr(+6)) at concentrations of 50 and 500 µmol/L was more toxic than (Cr(+3)). Zn at a concentration of 500 µmol/L greatly decreased the cell viability, whereas Ni at the same concentration increased it. Pb produced fewer changes. Mn and Ni at a concentration of 500 µmol/L induced the significant production of IL-6 and IL-8. However, most of the metals including (V(+4), V(+5)), (Cr(+3), Cr(+6)), Zn, and Pb inhibited the production of both IL-6 and IL-8. The present results indicate that various heavy metals have different effects on toxicity and the proinflammatory responses of airway epithelial cells, and those influences also depend on the oxidation states of the metals.


Subject(s)
Air Pollutants/toxicity , Inflammation/chemically induced , Metals, Heavy/toxicity , Respiratory Mucosa/drug effects , Cell Survival/drug effects , Chromium/toxicity , Dose-Response Relationship, Drug , Humans , Interleukin-6/analysis , Interleukin-8/analysis , Lead/toxicity , Manganese/toxicity , Nickel/toxicity , Respiratory Mucosa/chemistry , Respiratory Mucosa/cytology , Vanadium/toxicity , Zinc/toxicity
7.
Heliyon ; 10(5): e26886, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38463809

ABSTRACT

Background: A hyperinflammatory response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection gravely worsens the clinical progression of coronavirus disease 2019 (COVID-19). Although the undesirable effects of inflammasome activation have been correlated to the severity of COVID-19, the mechanisms of this process in the asymptomatic infection and disease progression have not yet been clearly elucidated. Methods: We performed strand-specific RNA sequencing in 39 peripheral blood mononuclear cell (PBMC) samples from asymptomatic individuals(n = 10), symptomatic patients(n = 16) and healthy donors(n = 13). Results: Dysregulation of pyrin inflammasomes along with the proline-serine-threonine phosphatase-interacting protein 1 (PSTPIP1) gene was identified in SARS-COV-2 infection. Notably, the PSTPIP1 expression level showed a significant negative correlation with an adjacent long-noncoding RNA (lncRNA) RP11-797A18.6 in the asymptomatic individuals compared with the healthy controls. In addition, a decline in the nuclear factor kappa B subunit 1 (NFKB1) gene expression was observed in asymptomatic infection, followed by a rise in the mild and moderate disease stages, suggesting that altered NFKB1 expression and associated proinflammatory signals may trigger a disease progression. Conclusions: Overall, our results indicate that PSTPIP1-dependent pyrin inflammasomes-mediated pyroptosis and NF-κB activation might be potential preventive targets for COVID-19 disease development and progression.

8.
Cell Rep ; 43(9): 114648, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39167491

ABSTRACT

Metabolic reprogramming is crucial for activating innate immunity in macrophages, and the accumulation of immunometabolites is essential for effective defense against infection. The NAD+/NADH (ratio of nicotinamide adenine dinucleotide and its reduced counterpart) redox couple serves as a critical node that integrates metabolic pathways and signaling events, but how this metabolite couple engages macrophage activation remains unclear. Here, we show that the NAD+/NADH ratio serves as a molecular signal that regulates proinflammatory responses and type I interferon (IFN) responses divergently. Salmonella Typhimurium infection leads to a decreased NAD+/NADH ratio by inducing the accumulation of NADH. Further investigation shows that an increased NAD+/NADH ratio correlates with attenuated proinflammatory responses and enhanced type I IFN responses. Conversely, a decreased NAD+/NADH ratio is linked to intensified proinflammatory responses and restrained type I IFN responses. These results show that the NAD+/NADH ratio is an essential cell-intrinsic factor that orchestrates innate immunity, which enhances our understanding of how metabolites fine-tune innate immunity.


Subject(s)
Glucose , Homeostasis , Immunity, Innate , Interferon Type I , Mice, Inbred C57BL , NAD , Salmonella typhimurium , NAD/metabolism , Animals , Glucose/metabolism , Salmonella typhimurium/immunology , Mice , Interferon Type I/metabolism , Macrophages/metabolism , Macrophages/immunology , Salmonella Infections/immunology , Salmonella Infections/metabolism , Salmonella Infections/microbiology , Humans , Signal Transduction
9.
Virulence ; 15(1): 2395831, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39185619

ABSTRACT

Salmonella enterica serovar Typhi (S. Typhi) causes typhoid fever, a systemic infection that affects millions of people worldwide. S. Typhi can invade and survive within host cells, such as intestinal epithelial cells and macrophages, by modulating their immune responses. However, the immunomodulatory capability of S. Typhi in relation to TolC-facilitated efflux pump function remains unclear. The role of TolC, an outer membrane protein that facilitates efflux pump function, in the invasion and immunomodulation of S. Typhi, was studied in human intestinal epithelial cells and macrophages. The tolC deletion mutant of S. Typhi was compared with the wild-type and its complemented strain in terms of their ability to invade epithelial cells, survive and induce cytotoxicity in macrophages, and elicit proinflammatory cytokine production in macrophages. The tolC mutant, which has a defective outer membrane, was impaired in invading epithelial cells compared to the wild-type strain, but the intracellular presence of the tolC mutant exhibited greater cytotoxicity and induced higher levels of proinflammatory cytokines (IL-1ß and IL-8) in macrophages compared to the wild-type strain. These effects were reversed by complementing the tolC mutant with a functional tolC gene. Our results suggest that TolC plays a role in S. Typhi to efficiently invade epithelial cells and suppress host immune responses during infection. TolC may be a potential target for the development of novel therapeutics against typhoid fever.


Subject(s)
Bacterial Outer Membrane Proteins , Epithelial Cells , Macrophages , Salmonella typhi , Typhoid Fever , Salmonella typhi/pathogenicity , Salmonella typhi/immunology , Salmonella typhi/genetics , Humans , Macrophages/microbiology , Macrophages/immunology , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , Bacterial Outer Membrane Proteins/immunology , Epithelial Cells/microbiology , Epithelial Cells/immunology , Typhoid Fever/immunology , Typhoid Fever/microbiology , Immunomodulation , Cytokines/metabolism , Cytokines/immunology , Microbial Viability , Interleukin-8/metabolism , Interleukin-1beta/metabolism , Interleukin-1beta/immunology , Cell Line
10.
Microbiol Spectr ; : e0204223, 2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37615438

ABSTRACT

Epstein-Barr virus (EBV) DNA may influence the development of autoimmune diseases by increasing the production of proinflammatory cytokines. Such cytokines have been associated with inducing the dysbiosis of colonic microbiota, which, in turn, is a risk factor for autoimmune diseases such as rheumatoid arthritis (RA). Therefore, we investigated the role that EBV DNA may play in modulating the intestinal microbiota and consequent exacerbation of arthritis in a mouse model. Mice were treated with collagen (arthritis-inducing agent), EBV DNA and collagen, EBV DNA, or water. Fecal samples were collected from arthritic and control mice, and 16S rRNA sequencing was performed to determine the effect of EBV DNA on the composition of colonic microbiota. EBV DNA causes a change in the alpha diversity of the microbiota resulting in an increased Chao1 microbial richness and decreased Shannon diversity index in the RA mouse model. In addition, the abundance of particular genera/genus clusters was significantly altered among the various groups, with the EBV DNA-exacerbated arthritic group having the highest number of altered genera/genus cluster abundances. This group also had the highest number of cells co-expressing IL-17A, FOXP3, and IFNγ in the colons. Antimicrobial-cleared mice transplanted with fecal samples from EBV DNA-exacerbated arthritic mice showed a higher incidence and enhanced severity of RA compared to those transplanted with fecal samples from water or collagen-treated mice. IMPORTANCE Epstein-Barr virus (EBV) DNA alters the composition and diversity of the gut microbiota in a rheumatoid arthritis (RA) mouse model. These induced changes are associated with enhanced severity of symptoms. This better understanding of the various factors involved in the development of RA will possibly help in creating individualized treatments for RA patients including target mediators triggered by viral DNA. Given that a large swathe of the population harbors EBV, a significant proportion of subjects with arthritis may benefit from possible approaches that target EBV or mediators triggered by this virus.

11.
BMC Mol Cell Biol ; 23(1): 42, 2022 Sep 29.
Article in English | MEDLINE | ID: mdl-36175845

ABSTRACT

BACKGROUND: COVID-19 is a disease caused by SARS-CoV-2, which can cause mild to serious infections in humans. We aimed to explore the effect of growth hormone (GH)/estrogen/androgen in normal human lung epithelial BEAS-2B cells on COVID-19-type proinflammatory responses. METHODS: A BEAS-2B COVID-19-like proinflammatory cell model was constructed. After that, the cells were treated with GH, 17ß-estradiol (E2), and testosterone (Tes) for 24 h. CCK-8 assays were utilized to evaluate cell viability. The mRNA expression of ACE2, AGTR1, TMRRSS2, and ISG15 and the protein expression of ACE2, AGTR1, TMRRSS2, and ISG15 were measured by qRT‒PCR and Western blotting, respectively. ELISAs were performed to determine IL-6, MCP-1, MDA and SOD expression. Flow cytometry was used to measure ROS levels. Finally, MAPK/NF-κB pathway-related factor expression was evaluated. RESULTS: The COVID-19-type proinflammatory model was successfully constructed, and 1000 ng/mL RBD treatment for 24 h was selected as the condition for the model group for subsequent experiments. After RBD treatment, cell viability decreased, the mRNA expression of ACE2, AGTR1, TMRRSS2, and ISG15 and the protein expression of ACE2, AGTR1, TMRRSS2, and ISG15 increased, IL-6, MCP-1, MDA and ROS levels increased, and MDA levels decreased. The mRNA levels of MAPK14 and RELA increased, but the protein levels did not change significantly. In addition, phospho-MAPK14 and phospho-RELA protein levels were also increased. Among the tested molecules, E2 had the most pronounced effect, followed by GH, while Tes showed the opposite effect. CONCLUSION: GH/E2 alleviated inflammation in a COVID-19-type proinflammatory model, but Tes showed the opposite effect.


Subject(s)
COVID-19 Drug Treatment , Mitogen-Activated Protein Kinase 14 , Androgens , Angiotensin-Converting Enzyme 2 , Estradiol/pharmacology , Estrogens , Growth Hormone , Humans , Interleukin-6 , Lung , NF-kappa B , Reactive Oxygen Species , SARS-CoV-2 , Sincalide , Superoxide Dismutase , Testosterone
12.
Front Immunol ; 12: 672752, 2021.
Article in English | MEDLINE | ID: mdl-34040613

ABSTRACT

Objective: We recently demonstrated that EBV DNA is correlated with proinflammatory responses in mice and in rheumatoid arthritis (RA) patients; hence, we utilized an RA mouse model to examine whether EBV DNA enhances the risk and severity of arthritis and to assess its immunomodulatory effects. Methods: C57BL/6J mice were treated with collagen (arthritis-inducing agent), EBV DNA 6 days before collagen, EBV DNA 15 days after collagen, Staphylococcus epidermidis DNA 6 days before collagen, EBV DNA alone, or water. Mice were then monitored for clinical signs and affected joints/footpads were histologically analysed. The relative concentration of IgG anti- chicken collagen antibodies and serum cytokine levels of IL-17A and IFNϒ were determined by ELISA. The number of cells co-expressing IL-17A and IFNϒ in joint histological sections was determined by immunofluorescence. Results: The incidence of arthritis was significantly higher in mice that received EBV DNA prior to collagen compared to mice that only received collagen. Similarly, increased clinical scores, histological scores and paw thicknesses with a decreased gripping strength were observed in groups treated with EBV DNA and collagen. The relative concentration of IgG anti-chicken collagen antibodies was significantly increased in the group that received EBV DNA 6 days prior to collagen in comparison to the collagen receiving group. On the other hand, the highest number of cells co-expressing IFNϒ and IL-17A was observed in joints from mice that received both collagen and EBV DNA. Conclusion: EBV DNA increases the incidence and severity of arthritis in a RA mouse model. Targeting mediators triggered by viral DNA may hence be a potential therapeutic avenue.


Subject(s)
Arthritis, Experimental/immunology , Arthritis, Rheumatoid/immunology , DNA, Viral/immunology , Epstein-Barr Virus Infections/immunology , Animals , Arthritis, Experimental/pathology , Arthritis, Experimental/virology , Arthritis, Rheumatoid/pathology , Arthritis, Rheumatoid/virology , Epstein-Barr Virus Infections/complications , Female , Herpesvirus 4, Human , Incidence , Mice , Mice, Inbred C57BL
13.
Front Immunol ; 10: 2822, 2019.
Article in English | MEDLINE | ID: mdl-31921113

ABSTRACT

Salmonella enterica serovar Typhimurium is known to cause its virulence by secreting various effector proteins directly into the host cytoplasm via two distinct type III secretion systems (T3SS-1 and T3SS-2). Generally, T3SS-1-delivered effectors help Salmonella Typhimurium in the early phases of infection including invasion and immune modulation of the host cells, whereas T3SS-2 effectors mainly help in the survival of Salmonella Typhimurium within the host cells including maintenance of Salmonella-containing vacuole, replication of the bacteria, and dissemination. Some of the effectors are secreted via both T3SS-1 and T3SS-2, suggesting their role in distinct phases of infection of host cells. SteA is such an effector that is secreted by both T3SS-1 and T3SS-2. It has been shown to control the membrane dynamics of the Salmonella-containing vacuole within the host cells in the late phases of infection. In this manuscript, toward characterizing the T3SS-1 function of SteA, we found that SteA suppresses inflammatory responses of the host by interfering with the nuclear factor kappa B pathway. Our initial observation showed that the mice infected with steA-deleted Salmonella Typhimurium (ΔsteA) died earlier compared to the wild-type bacteria due to heightened immune responses, which indicated that SteA might suppress immune responses. Furthermore, our study revealed that SteA suppresses immune responses in macrophages by interfering with the degradation of IκB, the inhibitor of nuclear factor kappa B. SteA suppresses the ubiquitination and hence degradation of IκB by acting on Cullin-1 of the Skp-1, Cullin-1, F-box (SCF)-E3 ligase complex. Our study revealed that SteA suppresses a key step necessary for E3 ligase activation, i.e., neddylation of Cullin-1 by interfering with dissociation of its inhibitor Cand-1.


Subject(s)
Bacterial Proteins/metabolism , Host-Pathogen Interactions , I-kappa B Proteins/metabolism , Virulence Factors/metabolism , Animals , Cell Line , Cullin Proteins/metabolism , Cytokines/metabolism , HEK293 Cells , Humans , Mice , Models, Biological , Salmonella Infections/immunology , Salmonella Infections/metabolism , Salmonella Infections/microbiology , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
14.
mBio ; 10(3)2019 05 07.
Article in English | MEDLINE | ID: mdl-31064828

ABSTRACT

Viral infections induce proinflammatory signaling cascades and inflammatory cytokine production, which is precisely regulated for host benefits. In the current study, we unravel a previously unappreciated role of nonmuscle myosin heavy chain IIA (NMHC-IIA) as a negative regulator in inflammatory responses. We identified that cell surface NMHC-IIA recognized sialic acids on sialylated RNA viruses during early infections and interacted with an immune adaptor DNAX activation protein of 12 kDa (DAP12) to recruit downstream spleen tyrosine kinase (Syk), leading to suppressed virus-triggered proinflammatory responses. More importantly, recognition of sialylated RNA viruses or sialic acid mimics by NMHC-IIA was shown to inhibit lipopolysaccharide (LPS)-induced proinflammatory responses via the DAP12-Syk pathway. These findings uncover a novel negative regulation mechanism of proinflammatory responses and provide a molecular basis to design anti-inflammatory drugs.IMPORTANCE NMHC-IIA, a subunit of nonmuscle myosin IIA (NM-IIA), takes part in diverse physiological processes, including cell movement, cell shape maintenance, and signal transduction. Recently, NMHC-IIA has been demonstrated to be a receptor or factor contributing to viral infections. Here, we identified that NMHC-IIA recognizes sialic acids on sialylated RNA viruses, vesicular stomatitis virus (VSV) and porcine reproductive and respiratory syndrome virus (PRRSV). Upon recognition, NMHC-IIA associates with the transmembrane region of DAP12 to recruit Syk. Activation of the DAP12-Syk pathway impairs the host antiviral proinflammatory cytokine production and signaling cascades. More importantly, sialic acid mimics and sialylated RNA viruses enable the antagonism of LPS-triggered proinflammatory responses through engaging the NMHC-IIA-DAP12-Syk pathway. These results actually support that NMHC-IIA is involved in negative modulation of the host innate immune system, which provides a molecular basis for prevention and control of the sialylated RNA viruses and treatment of inflammatory diseases.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Myosin Heavy Chains/metabolism , RNA Viruses/metabolism , Sialic Acids/metabolism , Signal Transduction , Syk Kinase/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , Cytoskeletal Proteins/metabolism , Gene Knockdown Techniques , HEK293 Cells , Humans , Immunity, Innate , Mice , Myosin Heavy Chains/genetics , RAW 264.7 Cells , Swine , Syk Kinase/genetics
15.
Free Radic Biol Med ; 89: 322-32, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26427885

ABSTRACT

Type 2 Diabetes (T2D) is associated with a state of low-grade inflammation that leads to insulin resistance under sustained high-fat and glucose (HFG) stress. Mitochondria from pancreatic beta cells play an essential role by metabolizing nutrients and generating signals required for both triggering and amplifying pathways of insulin secretion responding to HFG. However, the underlying pathway linking mitochondrial function to initiate and integrate inflammatory responses within the pancreatic beta cells under HFG stress remains poorly defined. Here, we demonstrated that HFG induced Ca(2+)-mediated deleterious effects on mitochondrial rho GTPase 1 (Miro1), a protein allowing mitochondria to move along microtubules to regulate mitochondria dynamics. This redistribution of Miro1 by HFG led to aggravation of proinflammatory responses in rat islets due to damaged mitochondria-producing reactive oxygen species (ROS). In addition, HFG-induced Ca(2+)-mediated increased expression of mitochondrial dynamin-like protein (DLP1) was assembled on the outer membrane of mitochondria to initiate fission events. Higher expression of DLP1 induced mitochondria fragmentation as expected but was not essential for ROS-induced proinflammatory responses, while Miro1-mediated mitochondrial dysfunction induced proinflammatory responses under HFG stress. Combined, we proposed in this study that HFG stress caused mtROS release mainly through Miro1-mediated effects on mitochondria in pancreatic beta cells triggering the NLRP3-dependent proinflammatory responses and, subsequently, damaged insulin secretion.


Subject(s)
Carrier Proteins/metabolism , Inflammation/immunology , Insulin-Secreting Cells/immunology , Insulinoma/immunology , Mitochondria/pathology , Mitochondrial Proteins/metabolism , Stress, Physiological , rho GTP-Binding Proteins/metabolism , Animals , Apoptosis , Blotting, Western , Calcium/metabolism , Carrier Proteins/genetics , Cell Proliferation , Cells, Cultured , Immunoenzyme Techniques , Inflammation/metabolism , Inflammation/pathology , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Insulinoma/metabolism , Insulinoma/pathology , Male , Mitochondria/immunology , Mitochondria/metabolism , Mitochondrial Proteins/genetics , NLR Family, Pyrin Domain-Containing 3 Protein , RNA, Messenger/genetics , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , rho GTP-Binding Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL