Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.476
Filter
Add more filters

Publication year range
1.
Cell ; 182(4): 960-975.e15, 2020 08 20.
Article in English | MEDLINE | ID: mdl-32763155

ABSTRACT

Parental behavior is pervasive throughout the animal kingdom and essential for species survival. However, the relative contribution of the father to offspring care differs markedly across animals, even between related species. The mechanisms that organize and control paternal behavior remain poorly understood. Using Sprague-Dawley rats and C57BL/6 mice, two species at opposite ends of the paternal spectrum, we identified that distinct electrical oscillation patterns in neuroendocrine dopamine neurons link to a chain of low dopamine release, high circulating prolactin, prolactin receptor-dependent activation of medial preoptic area galanin neurons, and paternal care behavior in male mice. In rats, the same parameters exhibit inverse profiles. Optogenetic manipulation of these rhythms in mice dramatically shifted serum prolactin and paternal behavior, whereas injecting prolactin into non-paternal rat sires triggered expression of parental care. These findings identify a frequency-tuned brain-endocrine-brain circuit that can act as a gain control system determining a species' parental strategy.


Subject(s)
Dopamine/metabolism , Hypothalamus/physiology , Neurons/physiology , Paternal Behavior/physiology , Animals , Brain/physiology , Male , Mice , Mice, Inbred C57BL , Neurons/metabolism , Optogenetics , Patch-Clamp Techniques , Prolactin/blood , Rats , Rats, Sprague-Dawley , Receptors, Prolactin/deficiency , Receptors, Prolactin/genetics , Receptors, Prolactin/metabolism
2.
EMBO Rep ; 25(1): 351-377, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38177913

ABSTRACT

Hypothalamic Adult Neurogenesis (hAN) has been implicated in regulating energy homeostasis. Adult-generated neurons and adult Neural Stem Cells (aNSCs) in the hypothalamus control food intake and body weight. Conversely, diet-induced obesity (DIO) by high fat diets (HFD) exerts adverse influence on hAN. However, the effects of anti-obesity compounds on hAN are not known. To address this, we administered a lipidized analogue of an anti-obesity neuropeptide, Prolactin Releasing Peptide (PrRP), so-called LiPR, to mice. In the HFD context, LiPR rescued the survival of adult-born hypothalamic neurons and increased the number of aNSCs by reducing their activation. LiPR also rescued the reduction of immature hippocampal neurons and modulated calcium dynamics in iPSC-derived human neurons. In addition, some of these neurogenic effects were exerted by another anti-obesity compound, Liraglutide. These results show for the first time that anti-obesity neuropeptides influence adult neurogenesis and suggest that the neurogenic process can serve as a target of anti-obesity pharmacotherapy.


Subject(s)
Neuropeptides , Obesity , Mice , Humans , Animals , Prolactin-Releasing Hormone/pharmacology , Prolactin-Releasing Hormone/therapeutic use , Obesity/drug therapy , Body Weight , Neurogenesis , Hypothalamus
3.
Development ; 149(7)2022 04 01.
Article in English | MEDLINE | ID: mdl-35297994

ABSTRACT

Mammary organoid (MaO) models are only available for a few traditional model organisms, limiting our ability to investigate mammary gland development and cancer across mammals. This study established equine mammary organoids (EqMaOs) from cryopreserved mammary tissue, in which mammary tissue fragments were isolated and embedded into a 3D matrix to produce EqMaOs. We evaluated viability, proliferation and budding capacity of EqMaOs at different time points during culture, showing that although the number of proliferative cells decreased over time, viability was maintained and budding increased. We further characterized EqMaOs based on expression of stem cell, myoepithelial and luminal markers, and found that EqMaOs expressed these markers throughout culture and that a bilayered structure as seen in vivo was recapitulated. We used the milk-stimulating hormone prolactin to induce milk production, which was verified by the upregulation of milk proteins, most notably ß-casein. Additionally, we showed that our method is also applicable to additional non-traditional mammalian species, particularly domesticated animals such as cats, pigs and rabbits. Collectively, MaO models across species will be a useful tool for comparative developmental and cancer studies.


Subject(s)
Mammary Glands, Animal , Organoids , Animals , Cell Division , Epithelial Cells/metabolism , Female , Horses , Lactation , Mammals , Rabbits , Stem Cells , Swine
4.
Brain ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829801

ABSTRACT

The prevalence of many pain conditions often differs between sexes. In addition to such quantitative distinctions, sexual dimorphism may also be qualitative reflecting differences in mechanisms that promote pain in men and women. A major factor that influences the likelihood of pain perception is the threshold for activation of nociceptors. Peripheral nociceptor sensitization has been demonstrated to be clinically relevant in many pain conditions. Whether peripheral nociceptor sensitization can occur in a sexually dimorphic fashion, however, has not been extensively studied. To address this fundamental knowledge gap, we used patch clamp electrophysiology to evaluate the excitability of dorsal root ganglion neurones from male or female rodents, non-human primates, and humans following exposure to putative sensitizing agents. Previous studies from our laboratory, and others, have shown that prolactin promotes female-selective pain responses in rodents. Consistent with these observations, dorsal root ganglion neurones from female, but not male, mice were selectively sensitized by exposure to prolactin. The sensitizing action of prolactin was also confirmed in dorsal root ganglion neurones from a female macaque monkey. Critically, neurones recovered from female, but not male, human donors were also selectively sensitized by prolactin. In the course of studies of sleep and pain, we unexpectedly observed that an orexin antagonist could normalize pain responses in male animals. We found that orexin B produced sensitization of male, but not female, mouse, macaque, and human dorsal root ganglion neurones. Consistent with functional responses, increased prolactin receptor and orexin receptor 2 expression was observed in female and male mouse dorsal root ganglia, respectively. Immunohistochemical interrogation of cultured human sensory neurones and whole dorsal root ganglia also suggested increased prolactin receptor expression in females and orexin receptor 2 expression in males. These data reveal a functional double dissociation of nociceptor sensitization by sex, which is conserved across species and is likely directly relevant to human pain conditions. To our knowledge, this is the first demonstration of functional sexual dimorphism in human sensory neurones. Patient sex is currently not a common consideration for the choice of pain therapy. Precision medicine, based on patient sex could improve therapeutic outcomes by selectively targeting mechanisms promoting pain in women or men. Additional implications of these findings are that the design of clinical trials for pain therapies should consider the proportions of male or female patients enrolled. Lastly, re-examination of selected past failed clinical trials with subgroup analysis by sex may be warranted.

5.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Article in English | MEDLINE | ID: mdl-35131854

ABSTRACT

Aggressive behavior is rarely observed in virgin female mice but is specifically triggered in lactation where it facilitates protection of offspring. Recent studies demonstrated that the hypothalamic ventromedial nucleus (VMN) plays an important role in facilitating aggressive behavior in both sexes. Here, we demonstrate a role for the pituitary hormone, prolactin, acting through the prolactin receptor in the VMN to control the intensity of aggressive behavior exclusively during lactation. Prolactin receptor deletion from glutamatergic neurons or specifically from the VMN resulted in hyperaggressive lactating females, with a marked shift from intruder-directed investigative behavior to very high levels of aggressive behavior. Prolactin-sensitive neurons in the VMN project to a wide range of other hypothalamic and extrahypothalamic regions, including the medial preoptic area, paraventricular nucleus, and bed nucleus of the stria terminalis, all regions known to be part of a complex neuronal network controlling maternal behavior. Within this network, prolactin acts in the VMN to specifically restrain male-directed aggressive behavior in lactating females. This action in the VMN may complement the role of prolactin in other brain regions, by shifting the balance of maternal behaviors from defense-related activities to more pup-directed behaviors necessary for nurturing offspring.


Subject(s)
Aggression/physiology , Lactation/metabolism , Prolactin/metabolism , Animals , Female , Hypothalamus/metabolism , Male , Maternal Behavior/physiology , Mice , Mice, Inbred C57BL , Neurons/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Preoptic Area/metabolism , Receptors, Prolactin/metabolism , Thalamus/metabolism , Ventromedial Hypothalamic Nucleus/metabolism
6.
Proc Natl Acad Sci U S A ; 119(40): e2212196119, 2022 10 04.
Article in English | MEDLINE | ID: mdl-36161944

ABSTRACT

We used a representative of one of the oldest extant vertebrate lineages (jawless fish or agnathans) to investigate the early evolution and function of the growth hormone (GH)/prolactin (PRL) family. We identified a second member of the GH/PRL family in an agnathan, the sea lamprey (Petromyzon marinus). Structural, phylogenetic, and synteny analyses supported the identification of this hormone as prolactin-like (PRL-L), which has led to added insight into the evolution of the GH/PRL family. At least two ancestral genes were present in early vertebrates, which gave rise to distinct GH and PRL-L genes in lamprey. A series of gene duplications, gene losses, and chromosomal rearrangements account for the diversity of GH/PRL-family members in jawed vertebrates. Lamprey PRL-L is produced in the proximal pars distalis of the pituitary and is preferentially bound by the lamprey PRL receptor, whereas lamprey GH is preferentially bound by the lamprey GH receptor. Pituitary PRL-L messenger RNA (mRNA) levels were low in larvae, then increased significantly in mid-metamorphic transformers (stage 3); thereafter, levels subsided in final-stage transformers and metamorphosed juveniles. The abundance of PRL-L mRNA and immunoreactive protein increased in the pituitary of juveniles under hypoosmotic conditions, and treatment with PRL-L blocked seawater-associated inhibition of freshwater ion transporters. These findings clarify the origin and divergence of GH/PRL family genes in early vertebrates and reveal a function of PRL-L in osmoregulation of sea lamprey, comparable to a role of PRLs that is conserved in jawed vertebrates.


Subject(s)
Human Growth Hormone , Petromyzon , Animals , Growth Hormone/genetics , Growth Hormone/metabolism , Osmoregulation/genetics , Petromyzon/genetics , Petromyzon/metabolism , Phylogeny , Prolactin/genetics , Prolactin/metabolism , RNA, Messenger/metabolism , Vertebrates/genetics
7.
J Cell Biochem ; 125(5): e30551, 2024 05.
Article in English | MEDLINE | ID: mdl-38465779

ABSTRACT

Neuregulin-4 (Nrg4) and melatonin play vital roles in endocrine diseases. However, there is little discussion about the function and potential mechanism of Nrg4 and melatonin in prolactin (PRL) regulation. The human normal pituitary data from Gene Expression Profiling Interactive Analysis (GEPIA) database was used to explore the correlation between NRG4 and PRL. The expression and correlation of NRG4 and PRL were determined by Immunofluorescence staining (IF) and human normal pituitary tissue microarray. Western Blot (WB) was used to detect the expression of PRL, p-ErbB2/3/4, ErbB2/3/4, p-Erk1/2, Erk1/2, p-Akt and Akt in PRL-secreting pituitary GH3 and RC-4B/C cells treated by Nrg4, Nrg4-small interfering RNA, Erk1/2 inhibitor FR180204 and melatonin. The expression of NRG4 was significantly positively correlated with that of PRL in the GEPIA database and normal human pituitary tissues. Nrg4 significantly increased the expression and secretion of PRL and p-Erk1/2 expression in GH3 cells and RC-4B/C cells. Inhibition of Nrg4 significantly inhibited PRL expression. The increased levels of p-Erk1/2 and PRL induced by Nrg4 were abolished significantly in response to FR180204 in GH3 and RC-4B/C cells. Additionally, Melatonin promotes the expression of Nrg4, p-ErbB4, p-Erk1/2, and PRL and can further promote the expression of p-Erk1/2 and PRL in combination with Nrg4. Further investigation into the function of Nrg4 and melatonin on PRL expression and secretion may provide new clues to advance the clinical control of prolactinomas and hyperprolactinemia.


Subject(s)
MAP Kinase Signaling System , Melatonin , Neuregulins , Prolactin , Receptor, ErbB-4 , Melatonin/pharmacology , Humans , Prolactin/metabolism , Receptor, ErbB-4/metabolism , Receptor, ErbB-4/genetics , Neuregulins/metabolism , Neuregulins/genetics , MAP Kinase Signaling System/drug effects , Pituitary Gland/metabolism , Pituitary Gland/cytology , Animals , Rats
8.
Curr Issues Mol Biol ; 46(6): 5701-5711, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38921012

ABSTRACT

Toxoplasmosis is an infection caused by the parasite Toxoplasma gondii. One-third of the world's population has come into contact with this parasite. In Mexico, the prevalence is between 15% and 50% in the general population and 34.9% in women with high-risk pregnancies. In pregnancy, the highest incidence of infection occurs in the third trimester and fetal damage is inversely proportional to gestational age. Maternal hormones play a fundamental role in the immune response. There are very few studies, with controversial results, on the levels of increased hormones and their relationship to the kinetics of T. gondii infections during pregnancy. The aim was to determine the serum levels of 17-ß estradiol, prolactin, and progesterone, and their association with anti-T. gondii antibodies' kinetics in pregnancy. Fifty-two pregnant patients were studied. A questionnaire with sociodemographic and clinical aspects was used. Afterward, 10 mL of venous blood was collected by venipuncture every trimester. The concentrations of 17-ß estradiol, progesterone, and prolactin were measured, using the ELISA method. In addition, anti-Toxoplasma IgG and IgM antibodies were also determined in the first, second, and third trimester. The prevalence of anti-Toxoplasma IgG antibodies was 26.92% in the first and second trimester and 32.7% in the third trimester. In seropositive women, 17-ß estradiol increased in the second and third trimesters of pregnancy. Progesterone increased significantly p < 0.039 in the third trimester in these women, while prolactin increased in the second trimester with a statistical significance of p < 0.021. In addition, 17-ß estradiol, progesterone, and prolactin are associated with T. gondii infection during pregnancy. New studies are necessary to clarify the specific mechanisms of immune response related to these hormones during pregnancy.

9.
Proc Biol Sci ; 291(2022): 20240371, 2024 May.
Article in English | MEDLINE | ID: mdl-38714210

ABSTRACT

Naked mole-rats (Heterocephalus glaber) live in large colonies with one breeding female (queen), one to three breeding males (BMs) and the remainder are non-reproductive subordinates. The animals have a linear dominance rank with the breeders at the top of the hierarchy. We investigated how dominance rank in naked mole-rats differs with exploration (the propensity to explore a novel environment) and related endocrine markers. Exploration behaviour, faecal progestagen metabolite (fPM), faecal glucocorticoid metabolite (fGCM), faecal androgen metabolite (fAM) and plasma prolactin concentrations were quantified in breeding, high-, middle- and low-ranked females and males from five naked mole-rat colonies. There were no significant differences between the dominance rank and exploration behaviour. Interestingly, the queens and high-ranking females had higher fGCM and fAM concentrations compared with middle- and low-ranked females. The queens had significantly higher fPM concentrations than all other ranked females, since they are responsible for procreation. In the males, the BMs had higher fGCM concentrations compared with high- and low-ranked males. In addition, BMs and middle-ranking males had overall higher prolactin levels than all other ranked males, which could be linked to cooperative care. Overall, the results suggest that physiological reproductive suppression is linked to high dominance rank.


Subject(s)
Androgens , Feces , Mole Rats , Prolactin , Social Dominance , Animals , Male , Female , Prolactin/metabolism , Prolactin/blood , Feces/chemistry , Mole Rats/physiology , Androgens/metabolism , Androgens/blood , Glucocorticoids/metabolism , Exploratory Behavior , Progestins/metabolism
10.
Am J Physiol Regul Integr Comp Physiol ; 327(5): R479-R485, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39250544

ABSTRACT

To maintain internal ion balance in marine environments, teleost fishes leverage seawater (SW)-type ionocytes to actively secrete Na+ and Cl- into the environment. It is well established that SW-type ionocytes use apically expressed cystic fibrosis transmembrane conductance regulator 1 (Cftr1) as a conduit for Cl- to exit the gill. Here, we investigated whether the Ca2+-activated Cl- channel, anoctamin 1 (Ano1), provides an additional path for Cl--secretion in euryhaline mummichogs (Fundulus heteroclitus). Two ano1 gene isoforms, denoted ano1.1a and -1.1b, exhibited higher expression in the gill and opercular epithelium of mummichogs long-term acclimated to SW versus fresh water (FW). Branchial ano1.1b and cftr1 expression was increased in mummichogs sampled 24 h after transfer from FW to SW; ano1.1a and -1.1b were upregulated in the gill and opercular epithelium following transfer from SW to hypersaline SW. Alternatively, the expression of ano1.1a, -1.1b, and cftr1 in the gill and opercular epithelium was markedly decreased after transfer from SW to FW. Given its role in attenuating ion secretion, we probed whether prolactin downregulates ano1 isoforms. In addition to attenuating cftr1 expression, a prolactin injection reduced branchial ano1.1a and -1.1b levels. Given how Ano1 mediates Cl- secretion by mammalian epithelial cells, the salinity- and prolactin-sensitive nature of ano1 expression reported here indicates that Ano1 may constitute a novel Cl--secretion pathway in ionocytes. This study encourages a wider evaluation of this putative Cl--secretion pathway and its regulation by hormones in teleost fishes.NEW & NOTEWORTHY In this study, we provide evidence in a teleost fish that the Ca2+-activated Cl- channel, anoctamin 1 may provide an additional path for Cl- secretion by seawater-type ionocytes. Not only is this the first report of a Cftr-independent Cl--secreting pathway conferring survival in seawater but also the first description of its regulation by the pituitary hormone prolactin.


Subject(s)
Anoctamin-1 , Fundulidae , Gills , Prolactin , Salinity , Animals , Fundulidae/metabolism , Prolactin/metabolism , Gills/metabolism , Anoctamin-1/metabolism , Anoctamin-1/genetics , Fish Proteins/metabolism , Fish Proteins/genetics , Seawater , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Acclimatization , Chlorides/metabolism , Fundulus heteroclitus
11.
Clin Endocrinol (Oxf) ; 100(5): 450-458, 2024 May.
Article in English | MEDLINE | ID: mdl-38534014

ABSTRACT

OBJECTIVE AND DESIGN: Macroprolactinemia may influence the interpretation of serum prolactin levels-a recognised phenomenon since 1981. The degree of macroprolactinaemia over time is less well described. We determined how macroprolactin status (based on polyethylene glycol (PEG) precipitation) varied by analysing serial measurements in hyperprolactinaemic individuals over a period of 9 years. PATIENTS AND MEASUREMENTS: Results from 1810 individuals were included. All serum total prolactin results (measured using Roche Cobas 8000 analyser) were extracted from the laboratory information system for the period 1 January 2012 to 1 April 2021, along with relevant patient demographic/test data. Samples with a macroprolactin screening test performed (on samples with prolactin > 700 miu/L) were included in the main analysis. RESULTS: During the study period, 2782 macroprolactin checks were performed (12.5% of all prolactin tests) in 1810 individuals (599 males/2183 females, median-age: 35, interquartile range: 25-47, range: 16-93 years). Multiple macroprolactin checks were carried out on 465 patients (1437 measurements) with 94 patients (141 measurements) screening positive (<60% recovery). Only 19 patients (18 female) had at least one result above and one below the 60% screening cut-off, with 10 of these patients having results close to the 60% cut-off; in 9 patients, results were clearly different between repeat samples. In seven cases, the adjusted monomeric prolactin showed a potentially clinically significant difference. CONCLUSIONS: In this study, only 19/465 patients appeared to change macroprolactin status based on a 60% PEG recovery cut-off. The majority of these 19 patients were on antipsychotic/antidepressant medication(s) or had a prolactinoma; in only 7 did monomeric prolactin change significantly. This suggests that once macroprolactin status has been determined, clinical decision making is rarely affected by repeating it.


Subject(s)
Hyperprolactinemia , Prolactinoma , Adult , Female , Humans , Male , Hyperprolactinemia/diagnosis , Prolactin , Prolactinoma/diagnosis
12.
Eur J Clin Invest ; 54(6): e14190, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38470045

ABSTRACT

BACKGROUND: Prolactin (PRL) is a pituitary hormone promoting lactation in response to the suckling reflex. Beyond its well-known effects, novel tissue-specific and metabolic functions of PRL are emerging. AIMS: To dissect PRL as a critical mediator of whole-body gluco-insulinemic sensitivity. METHODS: PubMed-based search with the following terms 'prolactin', 'glucose metabolism', 'type 2 diabetes mellitus', 'type 1 diabetes mellitus', 'gestational diabetes mellitus' was performed. DISCUSSION: The identification of the PRL-glucose metabolism network poses the basis for unprecedented avenues of research in the pathogenesis of diabetes mellitus type 1 or 2, as well as of gestational diabetes. In this regard, it is of timely relevance to define properly the homeostatic PRL serum levels since glucose metabolism could be influenced by the circulating amount of the hormone. RESULTS: This review underscores the basic mechanisms of regulation of pancreatic ß-cell functions by PRL and provides a revision of articles which have investigated the connection between PRL unbalancing and diabetes mellitus. Future studies are needed to elucidate the burden and the role of PRL in the regulation of glucose metabolism and determine the specific PRL threshold that may impact the management of diabetes. CONCLUSION: A careful evaluation and context-driven interpretation of PRL levels (e.g., pregnancy, PRL-secreting pituitary adenomas, drug-related hyper- and hypoprolactinemia) could be critical for the correct screening and management of glucometabolic disorders, such as type 1 or 2 as well as gestational diabetes mellitus.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Diabetes, Gestational , Prolactin , Humans , Prolactin/metabolism , Prolactin/physiology , Diabetes, Gestational/metabolism , Diabetes, Gestational/physiopathology , Pregnancy , Female , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/physiopathology , Diabetes Mellitus, Type 2/metabolism , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/physiology , Insulin Resistance/physiology , Animals , Blood Glucose/metabolism
13.
Diabetes Metab Res Rev ; 40(6): e3836, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39096246

ABSTRACT

Prolactin, a hormone that has been studied for almost a century, has evolved from a reproductive regulator to a key player in metabolic health. Initially identified for its lactogenic role, the impact of prolactin on glucose and lipid metabolism became evident in the 1970s, leading to a paradigm shift in our understanding. Deviations in prolactin levels, including hyperprolactinaemia and hypoprolactinaemia, have been associated with adverse effects on glucose and lipid metabolism. Mechanistically, prolactin regulates metabolic homoeostasis by maintaining islet abundance, regulating the hypothalamic energy regulatory centre, balancing adipose tissue expansion, and regulating hepatic metabolism. Given the widespread use of pharmaceutical agents that affect prolactin levels, it is important to examine prolactin-related metabolic effects. Recently, a profound exploration of the intricate metabolic role of prolactin has been conducted, encompassing its rhythm-dependent regulatory influence on metabolism and its correlation with cognitive impairment associated with metabolic diseases. In this review, we highlight the role of prolactin as a metabolic regulator, summarise its metabolic effects, and discuss topics related to the association between prolactin and metabolic comorbidities.


Subject(s)
Lipid Metabolism , Prolactin , Animals , Humans , Hyperprolactinemia/metabolism , Metabolic Diseases/metabolism , Prolactin/metabolism
14.
Article in English | MEDLINE | ID: mdl-39489824

ABSTRACT

This special issue of Reviews in Endocrine and Metabolic Disorders is dedicated to hypoprolactinemia. Prolactin is known for its actions on the mammary gland including development, preparation for postpartum lactation, as well as synthesis and maintenance of milk secretion. However, prolactin has many other physiological effects on reproduction, embryonic and fetal development, homeostasis, neuroprotection, behavior, and immunoregulation. In clinical practice, physiopathology and clinical consequences of increased prolactin secretion are generally well understood, and medical treatment to decrease prolactin levels is available and effective in most cases. Unlike prolactin excess, hypoprolactinemia has been a neglected endocrine disorder and nospecific replacement therapy is commercially available. Prolactin is the only anterior pituitary hormone not addressed by clinical hypopituitarism guidelines. In recent years, human studies have revealed that hypoprolactinemia is associated with metabolic, sexual and neuropsychologic alterations. Therefore, this special issue of Reviews in Endocrine and Metabolic Disorders is aimed to enhance our incomplete understanding of hypoprolactinemia. A total of 17 articles were authored by respected scientists and clinicians from a variety of disciplines including adult and pediatric endocrinology, pathology, gynecology, reproductive medicine, oncology, and neurosurgery.

15.
Article in English | MEDLINE | ID: mdl-39037546

ABSTRACT

Prolactin is a polypeptide hormone composed of 199 amino acids, synthesized by lactotroph cells. Its primary effects are on the mammary gland and gonadal axes, but it also influences different organs and systems, particularly metabolic functions. Current literature has mainly focused on the diagnosis, monitoring, and treatment of hyperprolactinemia. Due to the lack of a well-established effective treatment for hypoprolactinemia, it is not clinically emphasized. Therefore, data on its diagnosis is limited. Hypoprolactinemia has been associated with metabolic dysfunctions such as type 2 diabetes mellitus, fatty liver, dyslipidemia, fertility problems, sexual dysfunction, and increased cardiovascular disease. While often seen as a part of combined hormone deficiencies due to pituitary damage, isolated prolactin deficiency is rare. Hypoprolactinemia can serve as a marker for extensive pituitary gland damage and dysfunction.Low or undetectable serum prolactin levels and the absence of a sufficient prolactin peak in the thyrotropin-releasing hormone (TRH) stimulation test are considered diagnostic for hypoprolactinemia. Gender appears to influence both basal prolactin levels and TRH stimulation test responses. Basal prolactin levels of, at least, 5 ng/mL for males and 7 ng/mL for females can be used as cut-off levels for normal prolactin reserve. Minimum peak prolactin responses of 18 ng/mL for males and 41 ng/mL for females to TRH stimulation can exclude hypoprolactinemia. However, larger population studies across different age groups and sexes are needed to better define normal basal prolactin levels and prolactin responses to the TRH stimulation test.

16.
Article in English | MEDLINE | ID: mdl-39356415

ABSTRACT

Prolactin deficiency is rare. It generally occurs when pituitary disorders, such as large pituitary tumors, pituitary apoplexy, and other conditions associated with sellar mass effect lead to global failure of pituitary function and hypopituitarism. In these situiations, prolactin is commonly the last pituitary hormone affected, after growth hormone and gonadotropins are lost and thyroid-stimulating hormone and adrenocorticotopic hormone secretion is impaired. Prolactin deficiency accompanies several congenital syndromes due to mutations in PROP1 and Pit1/ POU1F and in X-linked IGSF1 deficiency syndrome, and several aqcuired conditions including Sheehan syndrome, IgG4-related hypophysitis, and immune checkpoint-inhibitor-induced hypophysitis. In women, prolactin deficiency prevents lactation following childbirth among other symptoms associated with hypopituitarism. Human prolactin is not available commercially as replacement therapy. However, recombinant human prolactin administered daily to women with hypoprolactinemia and alactogenesis was found to lead to the production of significant milk volume sufficient for lactation.

17.
Article in English | MEDLINE | ID: mdl-39172174

ABSTRACT

Both local and external cranial radiotherapy (RT) can induce neurotoxicity and vascular damage of the hypothalamic-pituitary area, which can promote neuroendocrine alterations. While anterior pituitary insufficiency after RT has been extensively characterized, data on the effect of RT on prolactin (PRL) secretion are limited and heterogeneous, with different patterns of PRL behavior described in the literature. A progressive decline in PRL levels, reflecting a time-dependent, slowly evolving radiation-induced damage to the pituitary lactotroph cells has been reported. To date, the association between hypopituitarism and hypoprolactinemia in patients undergoing RT has not yet been fully investigated. The few available data suggest that lower PRL levels can predict an extent damage of the pituitary tissue and a higher degree of hypothalamic dysfunction. However, most studies on the effect of RT on pituitary function do not properly assess PRL secretion, as PRL deficiency is usually detected as part of hypopituitarism and not systematically investigated as an isolated disorder, which may lead to an underestimation of hypoprolactinemia after RT. In addition, the often-inadequate follow-up over a long period of time may contribute to the non-recognition of PRL deficiency after RT. Considering that hypoprolactinemia is associated with various metabolic complications, there is a need to define appropriate diagnostic and management criteria. Therefore, hypoprolactinemia should enter in the clinical investigation of patients at risk for hypopituitarism, mainly in those patients who underwent RT.

18.
Article in English | MEDLINE | ID: mdl-39476210

ABSTRACT

Prolactin (PRL) is a 23-kDa protein synthesized and secreted by lactotroph cells of the anterior pituitary gland but also by other peripheral tissues. PRL binds directly to a unique transmembrane receptor (PRLR), and the JAK2/signal transducer and activator of transcription 5 (Stat5) pathway is considered the major downstream pathway for PRLR signaling. To a lesser extent, PRL may be cleaved into the shorter 16-kDa PRL, also called vasoinhibin, whose signaling is not fully known. According to rodent models of PRL signaling inactivation and the identification of human genetic alterations in PRL signaling, a growing number of biological processes are partly mediated by PRL or its downstream effectors. In this review, we focused on PRL structure and signaling and its canonical function in reproduction. In addition to regulating reproductive functions, PRL also plays a role in behavior, notably in initiating nurturing and maternal behavior. We also included recent insights into PRL function in several fields, including migraines, metabolic homeostasis, inflammatory and autoimmune disease, and cancer. Despite the complexity of understanding the many functions of PRL, new research in this field offers interesting perspectives on physiological and pathophysiological processes.

19.
Article in English | MEDLINE | ID: mdl-39388004

ABSTRACT

The homeo-fit-prolactin hypothesis proposes a causal metabolic role for prolactin with hypoprolactinemia and hyperprolactinemia leading to adverse metabolic alterations. However, prolactin within the normal range and up to four times the upper reference limit may be a consequence of metabolic adaption and have a positive metabolic role similar to increased insulin in pre-diabetes. As a consequence, drugs that would increase prolactin levels within this threshold may hold promising effects, particularly for patients with type 2 diabetes. A documented positive metabolic effect of prolactin just above the normal threshold would not just be of benefit to patients with diabetes but assist in the decision to treat mild hyperprolactinemia in other patient groups as well, e.g. drug-induced hyperprolactinemia or idiopathic hyperprolactinemia. Prolactin receptors are present in the pancreas, liver, and adipose tissue, and pre-clinical studies suggest a positive and causal effect of prolactin on the gluco-insulinemic profile and lipid metabolism. This narrative review examines the evidence for the homeo-fit-prolactin hypothesis with a particular focus on results from human studies.

20.
Article in English | MEDLINE | ID: mdl-39227558

ABSTRACT

Traumatic brain injury (TBI) is a well-known etiologic factor for pituitary dysfunctions, with a prevalence of 15% during long-term follow-up. The most common hormonal disruption is growth hormone deficiency, followed by central adrenal insufficiency, central hypogonadism, and central hypothyroidism in varying order across studies. The prevalence of serum prolactin disturbances ranged widely from 0 to 85%. Prolactin release is mainly regulated by hypothalamic dopamine inhibition, and mediators such as TRH, serotonin, cytokines, and neurotransmitters have modulatory effects. Many factors, such as hypothalamic and/or pituitary gland injuries, as well as fluctuations in dopaminergic activity and other mediators and stress response, may cause derangements in serum prolactin levels after TBI. Although it is challenging to investigate the direct effects of TBI on serum prolactin levels due to many confounders, basal prolactin measurements and stimulation tests provide insight into the functionality of the hypothalamus and pituitary gland after TBI. Moreover, during the acute phase of TBI, prolactin levels appear to correlate with TBI severity. In contrast, in the chronic phase, hypoprolactinemia may function as an indirect indicator of pituitary dysfunction and reduced pituitary volume. Further investigations are needed to elucidate the pathophysiologic mechanisms underlying the prolactin trend following TBI, its significance, and its associations with other pituitary hormone dysfunctions. In this article, we re-evaluated our patients' TBI data regarding prolactin levels during prospective long-term follow-up, and reviewed the literature regarding the prevalence, pathophysiology, and clinical implications of serum prolactin disturbances during acute and chronic phases following TBI.

SELECTION OF CITATIONS
SEARCH DETAIL