Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Small ; 20(34): e2310464, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38597768

ABSTRACT

Developing highly active and durable catalysts in acid conditions remains an urgent issue due to the sluggish kinetics of oxygen evolution reaction (OER). Although RuO2 has been a state-of-the-art commercial catalyst for OER, it encounters poor stability and high cost. In this study, the electronic reservoir regulation strategy is proposed to promote the performance of acidic water oxidation via constructing a RuO2/MnO2 heterostructure supported on carbon cloth (CC) (abbreviated as RuO2/MnO2/CC). Theoretical and experimental results reveal that MnO2 acts as an electron reservoir for RuO2. It facilitates electron transfer from RuO2, enhancing its activity prior to OER, and donates electrons to RuO2, improving its stability after OER. Consequently, RuO2/MnO2/CC exhibits better performance compared to commercial RuO2, with an ultrasmall overpotential of 189 mV at 10 mA cm-2 and no signs of deactivation even after 800 h of electrolysis in 0.5 m H2SO4 at 10 mA cm-2. When applied as the anode in a proton exchange membrane water electrolyzer, the cost-efficient RuO2/MnO2/CC catalyst only requires a cell voltage of 1.661 V to achieve the water-splitting current of 1 A cm-2, and the noble metal cost is as low as US$ 0.00962 cm-2, indicating potential for practical applications.

2.
Angew Chem Int Ed Engl ; : e202411014, 2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39034426

ABSTRACT

A novel Ir-Mn dual-atom electrocatalyst is synthesized by a facile ion-exchange method by incorporating Ir in SrMnO3, which yields an extremely high activity and stability for the oxygen evolution reaction (OER). The ion exchange process occurs in a self-limitation way, which favors the formation of Ir-Mn dual-atom in the IrMnO9 unit. The incorporation of Ir modulates the electronic structure of both Ir and Mn, thereby resulting in a shorter distance of the Ir-Mn dual-atom (2.41 Å) than the Mn-Mn dual-atom (2.49 Å). The modulated Ir-Mn dual-atom enables the same spin direction O (↑) of the adsorbed *O intermediates, thus facilitating the direct coupling of the two adsorbed *O intermediates to release O2 via the oxygen-oxygen radical coupling mechanism. Electrochemical tests reveal that the Ir-SrMnO3 exhibits a superior OER's activity with a low overpotential of 207 mV at 10 mA cm-2 and achieves a mass specific activity of 1100 A gIr-1 at 1.5 V. The proton-exchange-membrane water electrolyzer with the Ir-SrMnO3 catalyst exhibits a low electrolysis voltage of 1.63 V at 1.0 A cm-2 and a stable 2000-h operation with a decay of only 15 µV h-1 at 0.5 A cm-2.

3.
Chemistry ; 29(5): e202202858, 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36331543

ABSTRACT

Metal phosphides are promising noble metal-free electrocatalysts for hydrogen evolution reaction (HER), but they usually suffer from inferior stability and thus are far from the device applications. We reported a facile and controllable synthetic method to prepare metal-incorporated M-FeP nanoparticles (M=Cr, Mn, Co, Fe, Ni, Cu, and Mo) with the guide of the density functional theory (DFT). The evaluated HER activity sequence was consistent with the DFT predictions, and cobalt was revealed to be the appropriate dopant. With the optimization of the Co/Fe ratio, the Fe0.67 Co0.33 P/C only required overpotentials of 67 mV and 129 mV to obtain the cathodic current density of 10 and 100 mA cm-2, respectively. It maintained the initial activity in the 10 h stability test, surpassing the other Co-FeP/C catalysts. Ex situ experiments demonstrated that the decreased element leaching and the increased surface phosphide content contributed to the high stability of the Fe0.67 Co0.33 P/C. A proton exchange membrane water electrolyzer was assembled using the Fe0.67 Co0.33 P/C as the cathodic catalyst. It showed a current density of 0.8 A cm-2 at the applied voltage of 2.0 V and retained the initial activity in the 1000 cycles' stability test, suggesting the potential application of the catalysts.


Subject(s)
Hydrogen , Metals , Protons , Cobalt , Water
4.
Molecules ; 27(19)2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36235180

ABSTRACT

The liquid and gas diffusion layer is a key component of proton exchange membrane water electrolyzer (PEMWE), and its interfacial contact resistance (ICR) and corrosion resistance have a great impact on the performance and durability of PEMWE. In this work, a novel hybrid coating with Au contacts discontinuously embedded in a titanium oxidized layer was constructed on a Ti felt via facile electrochemical metallizing and followed by a pre-oxidization process. The physicochemical characterizations, such as scanning electron microscopy, energy dispersive spectrometer, and X-ray diffraction results confirmed that the distribution and morphology of the Au contacts could be regulated with the electrical pulse time, and a hybrid coating (Au-TiO2/Ti) was eventually achieved after the long-term stability test under anode environment. At the compaction force of 140 N cm-2, the ICR was reduced from 19.7 mΩ cm2 of the P-Ti to 4.2 mΩ cm2 of the Au-TiO2/Ti. The corrosion current density at 1.8 V (RHE) is 0.689 µA cm-2. Both the ICR and corrosion resistance results showed that the prepared protective coating could provide comparable ICR and corrosion resistance to a dense Au coating.

5.
Adv Mater ; : e2412541, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39350447

ABSTRACT

Chemical synthesis of unconventional topologically close-packed intermetallic nanocrystals (NCs) remains a considerable challenge due to the limitation of large volume asymmetry between the components. Here, a series of unconventional intermetallic Frank-Kasper C15 phase Ir2M (M = rare earth metals La, Ce, Gd, Tb, Tm) NCs is successfully prepared via a molten-salt assisted reduction method as efficient electrocatalysts for hydrogen evolution reaction (HER). Compared to the disordered counterpart (A1-Ir2Ce), C15-Ir2Ce features higher Ir-Ce coordination number that leads to an electron-rich environment for Ir sites. The C15-Ir2Ce catalyst exhibits excellent and pH-universal HER activity and requires only 9, 16, and 27 mV overpotentials to attain 10 mA cm-2 in acidic, alkaline, and neutral electrolytes, respectively, representing one of the best HER electrocatalysts ever reported. In a proton exchange membrane water electrolyzer, the C15-Ir2Ce cathode achieves an industrial-scale current density of 1 A cm-2 with a remarkably low cell voltage of 1.7 V at 80 °C and can operate stably for 1000 h with a sluggish voltage decay rate of 50 µV h-1. Theoretical investigations reveal that the electron-rich Ir sites intensify the polarization of *H2O intermediate on C15-Ir2Ce, thus lowering the energy barrier of the water dissociation and facilitating the HER kinetics.

6.
Adv Sci (Weinh) ; 11(25): e2402356, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38647401

ABSTRACT

The proton exchange membrane water electrolyzer (PEMWE), crucial for green hydrogen production, is challenged by the scarcity and high cost of iridium-based materials. Cobalt oxides, as ideal electrocatalysts for oxygen evolution reaction (OER), have not been extensively applied in PEMWE, due to extremely high voltage and poor stability at large current density, caused by complicated structural variations of cobalt compounds during the OER process. Thus, the authors sought to introduce chromium into a cobalt spinel (Co3O4) catalyst to regulate the electronic structure of cobalt, exhibiting a higher oxidation state and increased Co-O covalency with a stable structure. In-depth operando characterizations and theoretical calculations revealed that the activated Co-O covalency and adaptable redox behavior are crucial for facilitating its OER activity. Both turnover frequency and mass activity of Cr-doped Co3O4 (CoCr) at 1.67 V (vs RHE) increased by over eight times than those of as-synthesized Co3O4. The obtained CoCr catalyst achieved 1500 mA cm-2 at 2.17 V and exhibited notable durability over extended operation periods - over 100 h at 500 mA cm-2 and 500 h at 100 mA cm-2, demonstrating promising application in the PEMWE industry.

7.
Adv Mater ; 36(30): e2402643, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38718084

ABSTRACT

The sluggish kinetics for anodic oxygen evolution reaction (OER) and insufficient catalytic performance over the corresponding Ir-based catalysts are still enormous challenges in proton exchange membrane water electrolyzer (PEMWE). Herein, it is reported that KIr4O8 nanowires anode catalyst with more exposed active sites and rich hydroxyl achieves a current density of 1.0 A cm-2 at 1.68 V and possesses excellent catalytic stability with 1230 h in PEMWE. Combining in situ Raman spectroscopy and differential electrochemical mass spectroscopy results, the modified adsorbate evolution mechanism is proposed, wherein the rich hydroxyl in the inherent structure of KIr4O8 nanowires directly participates in the catalytic process for favoring the OER. Density functional theory calculation results further suggest that the enhanced proximity between Ir (d) and O (p) band center in KIr4O8 can strengthen the covalence of Ir-O, facilitate the electron transfer between adsorbents and active sites, and decrease the energy barrier of rate-determining step from OH* to O* during the OER.

8.
Adv Sci (Weinh) ; 9(23): e2201654, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35717677

ABSTRACT

Future energy demands for green hydrogen have fueled intensive research on proton-exchange membrane water electrolyzers (PEMWE). However, the sluggish oxygen evolution reaction (OER) and highly corrosive environment on the anode side narrow the catalysts to be expensive Ir-based materials. It is very challenging to develop cheap and effective OER catalysts. Herein, Co-hexamethylenetetramine metal-organic framework (Co-HMT) as the precursor and a fast-quenching method is employed to synthesize RuO2 nanorods loaded on antimony-tin oxide (ATO). Physical characterizations and theoretical calculations indicate that the ATO can increase the electrochemical surface areas of the catalysts, while the tensile strains incorporated by quenching can alter the electronic state of RuO2 . The optimized catalyst exhibits a small overpotential of 198 mV at 10 mA cm-2 for OER, and keeps almost unchanged after 150 h chronopotentiometry. When applied in a real PEMWE assembly, only 1.51 V is needed for the catalyst to reach a current density of 1 A cm-2 .

9.
ACS Nano ; 16(9): 13834-13844, 2022 Sep 27.
Article in English | MEDLINE | ID: mdl-35997614

ABSTRACT

Developing low-cost, efficient, and robust nonprecious metal electrocatalysts for oxygen evolution reactions (OER) in acidic medium is the major challenge to realize the application of the proton exchange membrane water electrolyzer (PEM-WE). It is well-known that transition metal carbides (TMCs) have Pt-like electronic structures and catalytic behaviors. However, monometallic carbides in acidic medium show ignored OER activities. Herein, we reported that the catalytic activity of the TMCs can be enhanced by constructing bimetallic carbides (TiTaC2) fabricated through hydrothermal treatment followed by an annealing process, and further by doping fluorine (F) into the bimetallic carbides (TiTaFxC2). The as-prepared reduced graphene oxide (rGO) supported TiTaFxC2 nanoparticles (TiTaFxC2 NP/rGO) show state-of-the-art OER catalytic activity, which is even superior to Ir/C catalyst (an onset potential of only 1.42 V vs RHE and the overpotential of 490 mV to reach 100 mA cm-2), fast kinetics (Tafel slope of only 36 mV dec-1), and high durability (maintaining the current density at 1.60 V vs RHE for 40 h). Detailed structural characterizations together with density functional theory (DFT) calculations reveal that the electronic structures of the bimetallic carbides have been tuned, and their possible mechanism is also discussed.

10.
ACS Appl Mater Interfaces ; 11(28): 25123-25132, 2019 Jul 17.
Article in English | MEDLINE | ID: mdl-31195794

ABSTRACT

Tungsten carbide (WC) is an alternative to the costly and resource-constrained Pt-based catalysts. Herein, a one-step facile and easily scalable approach is reported to synthesize ultrafine WC nanocrystals encapsulated in porous N-doped carbon nanospheres (NC) by simple self-polymerization, drying, and annealing. It is worth mentioning that this developed method has four novel features: (1) the synthesis process, without any hard template or hydrocarbon gas feeding, is, notably, very facile and efficient with low cost; (2) the carbon coating on WC nanocrystals not only restrains coarsening of particles but also creates strong coupling interactions between the nanocrystallines and the conductive carbonaceous matrix; (3) uniform grape-like WC@NC nanospheres with high specific surface area can be obtained in a large scale; and (4) single-phase WC can be achieved. As a result, WC@NC demonstrates remarkable hydrogen evolution reaction (HER) electrocatalytic performance with overpotentials of 127 and 141 mV at a current density of 10 mA cm-2 and Tafel slopes of 56.3 and 78.7 mV dec-1 in acid and alkaline media, respectively. Our density functional theory calculations manifest that the strong synergistic electronic effect between WC and its intimately bonded carbon shell vastly boosts the HER electrocatalytic activity. WC@NC catalysts as a cathode are further tested in a home-made electrolyzer with 0.78 A cm-2 achieved at a cell voltage of 2 V at 80 °C and operated stably at 200 mA cm-2 for more than 20 h.

11.
ACS Appl Mater Interfaces ; 11(34): 30774-30785, 2019 Aug 28.
Article in English | MEDLINE | ID: mdl-31381294

ABSTRACT

Hydrogen production via a proton exchange membrane water electrolyzer (PEMWE) is an essential technology to complement discontinuity of renewable energies. Development of a high-efficiency and cost-effective gas diffusion electrode (GDE), which is a key component of this technology, remains a challenge. Here, we report a high-performance Ni phosphide GDE prepared by simple electrochemical methods. Selective leaching of excess Ni in electrodeposited NixP1-x enabled fabrication of a nanoporous NiP GDE with a large electrochemical surface area (ECSA). In half-cell tests, the nanoporous NiP GDE demonstrated a hydrogen-evolving current density of -10 mA/cm2 at an overpotential of 103 mV with good stability. In the single-cell tests, the PEMWE employing a nanoporous NiP cathode exhibited a current density of 1.47 A/cm2 at a cell voltage of 2.0 V, which was the competitive performance among state-of-the-art non-noble cathodes reported to date.

SELECTION OF CITATIONS
SEARCH DETAIL