Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Chemistry ; 29(72): e202302541, 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-37755452

ABSTRACT

Pulsed dipolar EPR spectroscopy (PDS) in combination with site-directed spin labeling is a powerful tool in structural biology. However, the commonly used spin labels are conjugated to biomolecules via rather long and flexible linkers, which hampers the translation of distance distributions into biomolecular conformations. In contrast, the spin label copper(II)-nitrilotriacetic acid [Cu2+ (NTA)] bound to two histidines (dHis) is rigid and yields narrow distance distributions, which can be more easily translated into biomolecular conformations. Here, we use this label on the 71 kDa Yersinia outer protein O (YopO) to decipher whether a previously experimentally observed bimodal distance distribution is due to two conformations of the biomolecule or of the flexible spin labels. Two different PDS experiments, that is, pulsed electron-electron double resonance (PELDOR aka DEER) and relaxation-induced dipolar modulation enhancement (RIDME), yield unimodal distance distribution with the dHis-Cu2+ (NTA) motif; this result suggests that the α-helical backbone of YopO adopts a single conformation in frozen solution. In addition, we show that the Cu2+ (NTA) label preferentially binds to the target double histidine (dHis) sites even in the presence of 22 competing native histidine residues. Our results therefore suggest that the generation of a His-null background is not required for this spin labeling methodology. Together these results highlight the value of the dHis-Cu2+ (NTA) motif in PDS experiments.


Subject(s)
Copper , Histidine , Electron Spin Resonance Spectroscopy/methods , Copper/chemistry , Proteins/chemistry , Spin Labels
2.
Chemphyschem ; 17(13): 2066-78, 2016 07 04.
Article in English | MEDLINE | ID: mdl-27017296

ABSTRACT

High-spin gadolinium(III) and manganese(II) complexes have emerged as alternatives to standard nitroxide radical spin labels for measuring nanometric distances by using pulsed electron-electron double resonance (PELDOR or DEER) at high fields/frequencies. For certain complexes, particularly those with relatively small zero-field splitting (ZFS) and short distances between the two metal centers, the pseudosecular term of the dipolar coupling Hamiltonian is non-negligible. However, in general, the contribution from this term during conventional data analysis is masked by the flexibility of the molecule of interest and/or the long tethers connecting them to the spin labels. The efficient synthesis of a model system consisting of two [Mn(dota)](2-) (MnDOTA; DOTA(4-) =1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate) directly connected to the ends of a central rodlike oligo(phenylene-ethynylene) (OPE) spacer is reported. The rigidity of the OPE is confirmed by Q-band PELDOR measurements on a bis-nitroxide analogue. The Mn(II) -Mn(II) distance distribution profile determined by W-band PELDOR is in reasonable agreement with one simulated by using a simple rotamer analysis. The small degree of flexibility arising from the linking MnDOTA arm appears to outweigh the contribution from the pseudosecular term at this interspin distance. This study illustrates the potential of MnDOTA-based spin labels for measuring fairly short nanometer distances, and also presents an interesting candidate for in-depth studies of pulsed dipolar spectroscopy methods on Mn(II) -Mn(II) systems.

3.
Methods Mol Biol ; 2439: 223-240, 2022.
Article in English | MEDLINE | ID: mdl-35226325

ABSTRACT

Recent advances in pulsed electron paramagnetic resonance (EPR) spectroscopy enable studying structure and folding of nucleic acids. An efficient introduction of spin labels at specific positions within the oligonucleotide sequence is a prerequisite. We here present a step-by-step guide to synthesize long RNA oligonucleotides bearing spin labels at specific positions within the sequence. RNA preparation is achieved enzymatically via in vitro transcription using an expanded genetic alphabet. Highly structured, several hundred nucleotides long RNAs with two nitroxide spin labels at specific positions can be prepared by this method.


Subject(s)
Oligonucleotides , RNA , Electron Spin Resonance Spectroscopy/methods , Oligonucleotides/chemistry , Oligonucleotides/genetics , RNA/chemistry , RNA/genetics , Spin Labels
4.
Methods Mol Biol ; 2439: 241-274, 2022.
Article in English | MEDLINE | ID: mdl-35226326

ABSTRACT

In the past decades, pulsed dipolar electron paramagnetic resonance spectroscopy (PDS) has emerged as a powerful tool in biophysical chemistry to study the structure, dynamics, and function of biomolecules like oligonucleotides and proteins. Structural information is obtained from PDS methods in form of a distribution of distances between spin centers. Such spin centers can either be intrinsically present paramagnetic metal ions and organic radicals or may be attached to the biomolecule by means of site-directed spin labeling. The most common PDS experiment for probing interspin distances in the nanometer range is pulsed electron-electron double resonance (PELDOR or DEER). In the protocol presented here, we provide a step-by-step workflow on how to set up a PELDOR experiment on a commercially available pulsed EPR spectrometer, outline the data analysis, and highlight potential pitfalls. We suggest PELDOR measurements on nitroxide-labeled oligonucleotides to study the structure of either RNA-cleaving DNAzymes in complex with their RNA targets or modified DNAzymes with different functions and targets, in which deoxynucleotides are substituted by nitroxide-labeled nucleotides.


Subject(s)
Nitrogen Oxides , Oligonucleotides , Electron Spin Resonance Spectroscopy/methods , Oligonucleotides/chemistry , Spin Labels
5.
Beilstein J Nanotechnol ; 8: 2245-2256, 2017.
Article in English | MEDLINE | ID: mdl-29114451

ABSTRACT

For future molecular spintronic applications the possibility to modify and tailor the magnetic properties of transition-metal complexes is very promising. One of such possibilities is given by the countless derivatization offered by carbon chemistry. They allow for altering chemical structures and, in doing so, to tune magnetic properties of molecular spin-carrying compounds. With emphasis on the interplay of the spin density distribution of mononuclear and magnetic superexchange couplings of trinuclear bis(oxamato)-type complexes we review on efforts on such magneto-structural correlations.

6.
FEBS Lett ; 587(20): 3309-13, 2013 Oct 11.
Article in English | MEDLINE | ID: mdl-24036447

ABSTRACT

Channelrhodopsin is a cation channel with the unique property of being activated by light. To address structural changes of the open state of the channel, two variants, which contain either 1 or 2 wild-type cysteines, were derivatised with nitroxide spin label and subjected to electron paramagnetic resonance spectroscopy. Both variants contained the C128T mutation to trap the long-lived P3(520) state by illumination. Comparison of spin-spin distances in the dark state and after illumination reflect conformational changes in the conductive P3(520) state involving helices B and F. Spin distance measurements reveal that channelrhodopsin forms a dimer even in the absence of intermolecular N-terminal cysteines.


Subject(s)
Rhodopsin/chemistry , Electron Spin Resonance Spectroscopy , Protein Structure, Secondary , Protein Structure, Tertiary
SELECTION OF CITATIONS
SEARCH DETAIL