Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 326
Filter
Add more filters

Publication year range
1.
Cell ; 187(10): 2446-2464.e22, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38582079

ABSTRACT

Tauopathies are age-associated neurodegenerative diseases whose mechanistic underpinnings remain elusive, partially due to a lack of appropriate human models. Here, we engineered human induced pluripotent stem cell (hiPSC)-derived neuronal lines to express 4R Tau and 4R Tau carrying the P301S MAPT mutation when differentiated into neurons. 4R-P301S neurons display progressive Tau inclusions upon seeding with Tau fibrils and recapitulate features of tauopathy phenotypes including shared transcriptomic signatures, autophagic body accumulation, and reduced neuronal activity. A CRISPRi screen of genes associated with Tau pathobiology identified over 500 genetic modifiers of seeding-induced Tau propagation, including retromer VPS29 and genes in the UFMylation cascade. In progressive supranuclear palsy (PSP) and Alzheimer's Disease (AD) brains, the UFMylation cascade is altered in neurofibrillary-tangle-bearing neurons. Inhibiting the UFMylation cascade in vitro and in vivo suppressed seeding-induced Tau propagation. This model provides a robust platform to identify novel therapeutic strategies for 4R tauopathy.


Subject(s)
Induced Pluripotent Stem Cells , Neurons , Tauopathies , tau Proteins , Humans , Induced Pluripotent Stem Cells/metabolism , tau Proteins/metabolism , Tauopathies/metabolism , Tauopathies/pathology , Neurons/metabolism , Neurons/pathology , Animals , Mice , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/genetics , Brain/metabolism , Brain/pathology , Supranuclear Palsy, Progressive/metabolism , Supranuclear Palsy, Progressive/pathology , Supranuclear Palsy, Progressive/genetics , Cell Differentiation , Mutation , Autophagy
2.
Cell ; 186(10): 2219-2237.e29, 2023 05 11.
Article in English | MEDLINE | ID: mdl-37172566

ABSTRACT

The Commander complex is required for endosomal recycling of diverse transmembrane cargos and is mutated in Ritscher-Schinzel syndrome. It comprises two sub-assemblies: Retriever composed of VPS35L, VPS26C, and VPS29; and the CCC complex which contains twelve subunits: COMMD1-COMMD10 and the coiled-coil domain-containing (CCDC) proteins CCDC22 and CCDC93. Combining X-ray crystallography, electron cryomicroscopy, and in silico predictions, we have assembled a complete structural model of Commander. Retriever is distantly related to the endosomal Retromer complex but has unique features preventing the shared VPS29 subunit from interacting with Retromer-associated factors. The COMMD proteins form a distinctive hetero-decameric ring stabilized by extensive interactions with CCDC22 and CCDC93. These adopt a coiled-coil structure that connects the CCC and Retriever assemblies and recruits a 16th subunit, DENND10, to form the complete Commander complex. The structure allows mapping of disease-causing mutations and reveals the molecular features required for the function of this evolutionarily conserved trafficking machinery.


Subject(s)
Abnormalities, Multiple , Craniofacial Abnormalities , Multiprotein Complexes , Humans , Endosomes/metabolism , Protein Transport , Proteins/metabolism , Multiprotein Complexes/metabolism
3.
Cell ; 174(6): 1465-1476.e13, 2018 09 06.
Article in English | MEDLINE | ID: mdl-30122350

ABSTRACT

Cell-penetrating peptides (CPPs) are short protein segments that can transport cargos into cells. Although CPPs are widely studied as potential drug delivery tools, their role in normal cell physiology is poorly understood. Early during infection, the L2 capsid protein of human papillomaviruses binds retromer, a cytoplasmic trafficking factor required for delivery of the incoming non-enveloped virus into the retrograde transport pathway. Here, we show that the C terminus of HPV L2 proteins contains a conserved cationic CPP that drives passage of a segment of the L2 protein through the endosomal membrane into the cytoplasm, where it binds retromer, thereby sorting the virus into the retrograde pathway for transport to the trans-Golgi network. These experiments define the cell-autonomous biological role of a CPP in its natural context and reveal how a luminal viral protein engages an essential cytoplasmic entry factor.


Subject(s)
Capsid Proteins/metabolism , Cell-Penetrating Peptides/metabolism , Oncogene Proteins, Viral/metabolism , Amino Acid Sequence , Capsid Proteins/chemistry , Capsid Proteins/genetics , Cell-Penetrating Peptides/chemistry , Cell-Penetrating Peptides/genetics , Endosomes/metabolism , Golgi Apparatus/virology , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , HeLa Cells , Human papillomavirus 16/genetics , Human papillomavirus 16/physiology , Humans , Mutagenesis , Oncogene Proteins, Viral/chemistry , Oncogene Proteins, Viral/genetics , Protein Transport , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Sequence Alignment , Virus Attachment , Virus Internalization
4.
Cell ; 174(4): 870-883.e17, 2018 08 09.
Article in English | MEDLINE | ID: mdl-30057120

ABSTRACT

The mitochondrial unfolded protein response (UPRmt) can be triggered in a cell-non-autonomous fashion across multiple tissues in response to mitochondrial dysfunction. The ability to communicate information about the presence of mitochondrial stress enables a global response that can ultimately better protect an organism from local mitochondrial challenges. We find that animals use retromer-dependent Wnt signaling to propagate mitochondrial stress signals from the nervous system to peripheral tissues. Specifically, the polyQ40-triggered activation of mitochondrial stress or reduction of cco-1 (complex IV subunit) in neurons of C. elegans results in the Wnt-dependent induction of cell-non-autonomous UPRmt in peripheral cells. Loss-of-function mutations of retromer complex components that are responsible for recycling the Wnt secretion-factor/MIG-14 prevent Wnt secretion and thereby suppress cell-non-autonomous UPRmt. Neuronal expression of the Wnt ligand/EGL-20 is sufficient to induce cell-non-autonomous UPRmt in a retromer complex-, Wnt signaling-, and serotonin-dependent manner, clearly implicating Wnt signaling as a strong candidate for the "mitokine" signal.


Subject(s)
Animals, Genetically Modified/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Mitochondria/metabolism , Polyubiquitin/metabolism , Unfolded Protein Response/physiology , Wnt Proteins/metabolism , Animals , Animals, Genetically Modified/genetics , Animals, Genetically Modified/growth & development , Caenorhabditis elegans/genetics , Caenorhabditis elegans/growth & development , Caenorhabditis elegans Proteins/genetics , Carrier Proteins/genetics , Carrier Proteins/metabolism , Glycoproteins/genetics , Glycoproteins/metabolism , Intracellular Signaling Peptides and Proteins , Mitochondria/genetics , Neurons/cytology , Neurons/metabolism , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism , Wnt Proteins/genetics
5.
Cell ; 167(6): 1623-1635.e14, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27889239

ABSTRACT

Retromer is a multi-protein complex that recycles transmembrane cargo from endosomes to the trans-Golgi network and the plasma membrane. Defects in retromer impair various cellular processes and underlie some forms of Alzheimer's disease and Parkinson's disease. Although retromer was discovered over 15 years ago, the mechanisms for cargo recognition and recruitment to endosomes have remained elusive. Here, we present an X-ray crystallographic analysis of a four-component complex comprising the VPS26 and VPS35 subunits of retromer, the sorting nexin SNX3, and a recycling signal from the divalent cation transporter DMT1-II. This analysis identifies a binding site for canonical recycling signals at the interface between VPS26 and SNX3. In addition, the structure highlights a network of cooperative interactions among the VPS subunits, SNX3, and cargo that couple signal-recognition to membrane recruitment.


Subject(s)
Cation Transport Proteins/chemistry , Multiprotein Complexes/chemistry , Sorting Nexins/chemistry , Vesicular Transport Proteins/chemistry , Amino Acid Sequence , Cation Transport Proteins/metabolism , Crystallography, X-Ray , Humans , Models, Molecular , Protein Isoforms/chemistry , Protein Isoforms/metabolism , Scattering, Small Angle , Sorting Nexins/metabolism , Vesicular Transport Proteins/metabolism
6.
EMBO J ; 42(2): e112287, 2023 01 16.
Article in English | MEDLINE | ID: mdl-36644906

ABSTRACT

Proteins exit from endosomes through tubular carriers coated by retromer, a complex that impacts cellular signaling, lysosomal biogenesis and numerous diseases. The coat must overcome membrane tension to form tubules. We explored the dynamics and driving force of this process by reconstituting coat formation with yeast retromer and the BAR-domain sorting nexins Vps5 and Vps17 on oriented synthetic lipid tubules. This coat oligomerizes bidirectionally, forming a static tubular structure that does not exchange subunits. High concentrations of sorting nexins alone constrict membrane tubes to an invariant radius of 19 nm. At lower concentrations, oligomers of retromer must bind and interconnect the sorting nexins to drive constriction. Constricting less curved membranes into tubes, which requires more energy, coincides with an increased surface density of retromer on the sorting nexin layer. Retromer-mediated crosslinking of sorting nexins at variable densities may thus tune the energy that the coat can generate to deform the membrane. In line with this, genetic ablation of retromer oligomerization impairs endosomal protein exit in yeast and human cells.


Subject(s)
Saccharomyces cerevisiae , Sorting Nexins , Humans , Protein Transport , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Sorting Nexins/genetics , Sorting Nexins/metabolism , Constriction , Endosomes/metabolism
7.
Proc Natl Acad Sci U S A ; 121(33): e2405041121, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39116126

ABSTRACT

Endosomal membrane trafficking is mediated by specific protein coats and formation of actin-rich membrane domains. The Retromer complex coordinates with sorting nexin (SNX) cargo adaptors including SNX27, and the SNX27-Retromer assembly interacts with the Wiskott-Aldrich syndrome protein and SCAR homolog (WASH) complex which nucleates actin filaments establishing the endosomal recycling domain. Crystal structures, modeling, biochemical, and cellular validation reveal how the FAM21 subunit of WASH interacts with both Retromer and SNX27. FAM21 binds the FERM domain of SNX27 using acidic-Asp-Leu-Phe (aDLF) motifs similar to those found in the SNX1 and SNX2 subunits of the ESCPE-1 complex. Overlapping FAM21 repeats and a specific Pro-Leu containing motif bind three distinct sites on Retromer involving both the VPS35 and VPS29 subunits. Mutation of the major VPS35-binding site does not prevent cargo recycling; however, it partially reduces endosomal WASH association indicating that a network of redundant interactions promote endosomal activity of the WASH complex. These studies establish the molecular basis for how SNX27-Retromer is coupled to the WASH complex via overlapping and multiplexed motif-based interactions required for the dynamic assembly of endosomal membrane recycling domains.


Subject(s)
Endosomes , Sorting Nexins , Vesicular Transport Proteins , Humans , Endosomes/metabolism , Sorting Nexins/metabolism , Sorting Nexins/genetics , Sorting Nexins/chemistry , Vesicular Transport Proteins/metabolism , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/chemistry , Microfilament Proteins/metabolism , Microfilament Proteins/genetics , Microfilament Proteins/chemistry , Protein Binding , Crystallography, X-Ray , Binding Sites , Models, Molecular
8.
Proc Natl Acad Sci U S A ; 121(37): e2408262121, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39226352

ABSTRACT

Truncating genetic variants of SORL1, encoding the endosome recycling receptor SORLA, have been accepted as causal of Alzheimer's disease (AD). However, most genetic variants observed in SORL1 are missense variants, for which it is complicated to determine the pathogenicity level because carriers come from pedigrees too small to be informative for penetrance estimations. Here, we describe three unrelated families in which the SORL1 coding missense variant rs772677709, that leads to a p.Y1816C substitution, segregates with Alzheimer's disease. Further, we investigate the effect of SORLA p.Y1816C on receptor maturation, cellular localization, and trafficking in cell-based assays. Under physiological circumstances, SORLA dimerizes within the endosome, allowing retromer-dependent trafficking from the endosome to the cell surface, where the luminal part is shed into the extracellular space (sSORLA). Our results showed that the p.Y1816C mutant impairs SORLA homodimerization in the endosome, leading to decreased trafficking to the cell surface and less sSORLA shedding. These trafficking defects of the mutant receptor can be rescued by the expression of the SORLA 3Fn-minireceptor. Finally, we find that iPSC-derived neurons with the engineered p.Y1816C mutation have enlarged endosomes, a defining cytopathology of AD. Our studies provide genetic as well as functional evidence that the SORL1 p.Y1816C variant is causal for AD. The partial penetrance of the mutation suggests this mutation should be considered in clinical genetic screening of multiplex early-onset AD families.


Subject(s)
Alzheimer Disease , Endosomes , LDL-Receptor Related Proteins , Membrane Transport Proteins , Pedigree , Humans , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Endosomes/metabolism , LDL-Receptor Related Proteins/genetics , LDL-Receptor Related Proteins/metabolism , Female , Male , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Mutation, Missense , Protein Transport , Protein Multimerization , Aged , Middle Aged , HEK293 Cells
9.
Traffic ; 25(2): e12931, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38415291

ABSTRACT

Retrograde trafficking (RT) orchestrates the intracellular movement of cargo from the plasma membrane, endosomes, Golgi or endoplasmic reticulum (ER)-Golgi intermediate compartment (ERGIC) in an inward/ER-directed manner. RT works as the opposing movement to anterograde trafficking (outward secretion), and the two work together to maintain cellular homeostasis. This is achieved through maintaining cell polarity, retrieving proteins responsible for anterograde trafficking and redirecting proteins that become mis-localised. However, aberrant RT can alter the correct location of key proteins, and thus inhibit or indeed change their canonical function, potentially causing disease. This review highlights the recent advances in the understanding of how upregulation, downregulation or hijacking of RT impacts the localisation of key proteins in cancer and disease to drive progression. Cargoes impacted by aberrant RT are varied amongst maladies including neurodegenerative diseases, autoimmune diseases, bacterial and viral infections (including SARS-CoV-2), and cancer. As we explore the intricacies of RT, it becomes increasingly apparent that it holds significant potential as a target for future therapies to offer more effective interventions in a wide range of pathological conditions.


Subject(s)
Endoplasmic Reticulum , Neoplasms , Humans , Endoplasmic Reticulum/metabolism , Golgi Apparatus/metabolism , Cell Membrane/metabolism , Endosomes/metabolism , Neoplasms/metabolism , Protein Transport
10.
EMBO J ; 41(10): e109646, 2022 05 16.
Article in English | MEDLINE | ID: mdl-35466426

ABSTRACT

Endo-lysosomal compartments exchange proteins by fusing, fissioning, and through endosomal transport carriers. Thereby, they sort many plasma membrane receptors and transporters and control cellular signaling and metabolism. How the membrane fission events are catalyzed is poorly understood. Here, we identify the novel CROP complex as a factor acting at this step. CROP joins members of two protein families: the peripheral subunits of retromer, a coat forming endosomal transport carriers, and membrane inserting PROPPINs. Integration into CROP potentiates the membrane fission activity of the PROPPIN Atg18 on synthetic liposomes and confers strong preference for binding PI(3,5)P2 , a phosphoinositide required for membrane fission activity. Disrupting CROP blocks fragmentation of lysosome-like yeast vacuoles in vivo. CROP-deficient mammalian endosomes accumulate micrometer-long tubules and fail to export cargo, suggesting that carriers attempt to form but cannot separate from these organelles. PROPPINs compete for retromer binding with the SNX-BAR proteins, which recruit retromer to the membrane during the formation of endosomal carriers. Transition from retromer-SNX-BAR complexes to retromer-PROPPIN complexes might hence switch retromer activities from cargo capture to membrane fission.


Subject(s)
Endosomes , Sorting Nexins , Animals , Endosomes/metabolism , Lysosomes/metabolism , Mammals , Protein Transport , Saccharomyces cerevisiae/metabolism , Sorting Nexins/metabolism
11.
J Cell Sci ; 137(13)2024 07 01.
Article in English | MEDLINE | ID: mdl-38884339

ABSTRACT

Early endosomes sort transmembrane cargo either for lysosomal degradation or retrieval to the plasma membrane or the Golgi complex. Endosomal retrieval in eukaryotes is governed by the anciently homologous retromer or retriever complexes. Each comprises a core tri-protein subcomplex, membrane-deformation proteins and interacting partner complexes, together retrieving a variety of known cargo proteins. Trichomonas vaginalis, a sexually transmitted human parasite, uses the endomembrane system for pathogenesis. It has massively and selectively expanded its endomembrane protein complement, the evolutionary path of which has been largely unexplored. Our molecular evolutionary study of retromer, retriever and associated machinery in parabasalids and its free-living sister lineage of Anaeramoeba demonstrates specific expansion of the retromer machinery, contrasting with the retriever components. We also observed partial loss of the Commander complex and sorting nexins in Parabasalia but complete retention in Anaeramoeba. Notably, we identified putative parabasalid sorting nexin analogs. Finally, we report the first retriever protein localization in a non-metazoan group along with retromer protein localization in T. vaginalis.


Subject(s)
Endosomes , Endosomes/metabolism , Protein Transport , Trichomonas vaginalis/metabolism , Trichomonas vaginalis/genetics , Phylogeny , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Evolution, Molecular , Humans , Golgi Apparatus/metabolism , Sorting Nexins/metabolism , Sorting Nexins/genetics , Animals
12.
Proc Natl Acad Sci U S A ; 120(42): e2307721120, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37819982

ABSTRACT

The activity of proteins is thought to be invariably determined by their amino acid sequence or composition, but we show that a long segment of a viral protein can support infection independent of its sequence or composition. During virus entry, the papillomavirus L2 capsid protein protrudes through the endosome membrane into the cytoplasm to bind cellular factors such as retromer required for intracellular virus trafficking. Here, we show that an ~110 amino acid segment of L2 is predicted to be disordered and that large deletions in this segment abolish infectivity of HPV16 pseudoviruses by inhibiting cytoplasmic protrusion of L2, association with retromer, and proper virus trafficking. The activity of these mutants can be restored by insertion of protein segments with diverse sequences, compositions, and chemical properties, including scrambled amino acid sequences, a tandem array of a short sequence, and the intrinsically disordered region of an unrelated cellular protein. The infectivity of mutants with small in-frame deletions in this segment directly correlates with the size of the segment. These results indicate that the length of the disordered segment, not its sequence or composition, determines its activity during HPV16 pseudovirus infection. We propose that a minimal length of L2 is required for it to protrude far enough into the cytoplasm to bind cytoplasmic trafficking factors, but the sequence of this segment is largely irrelevant. Thus, protein segments can carry out complex biological functions such as Human papillomavirus pseudovirus infection in a sequence-independent manner. This finding has important implications for protein function and evolution.


Subject(s)
Oncogene Proteins, Viral , Papillomavirus Infections , Humans , Capsid Proteins/chemistry , Human Papillomavirus Viruses , Virus Internalization , HeLa Cells , Capsid/metabolism , Oncogene Proteins, Viral/genetics , Oncogene Proteins, Viral/chemistry
13.
Proc Natl Acad Sci U S A ; 120(1): e2211258120, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36577063

ABSTRACT

The retromer is a heteromeric protein complex that localizes to endosomal membranes and drives the formation of endosomal tubules that recycle membrane protein cargoes. In plants, the retromer plays essential and canonical functions in regulating the transport of vacuolar storage proteins and the recycle of endocytosed plasma membrane proteins (PM); however, the mechanisms underlying the regulation of assembly, protein stability, and membrane recruitment of the plant retromer complex remain to be elucidated. In this study, we identify a plant-unique endosomal regulator termed BLISTER (BLI), which colocalizes and associates with the retromer complex by interacting with the retromer core subunits VPS35 and VPS29. Depletion of BLI perturbs the assembly and membrane recruitment of the retromer core VPS26-VPS35-VPS29 trimer. Consequently, depletion of BLI disrupts retromer-regulated endosomal trafficking function, including transport of soluble vacuolar proteins and recycling of endocytosed PIN-FORMED (PIN) proteins from the endosomes back to the PM. Moreover, genetic analysis in Arabidopsis thaliana mutants reveals BLI and core retromer interact genetically in the regulation of endosomal trafficking. Taken together, we identified BLI as a plant-specific endosomal regulator, which functions in retromer pathway to modulate the recycling of endocytosed PM proteins and the trafficking of soluble vacuolar cargoes.


Subject(s)
Arabidopsis , Plant Proteins , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Transport , Endosomes/metabolism , Vacuoles/metabolism , Cell Membrane/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Arabidopsis/metabolism , Sorting Nexins/metabolism
14.
Trends Biochem Sci ; 46(7): 608-620, 2021 07.
Article in English | MEDLINE | ID: mdl-33526371

ABSTRACT

The retromer complex has a well-established role in endosomal protein sorting, being necessary for maintaining the dynamic localisation of hundreds of membrane proteins that traverse the endocytic system. Retromer function and dysfunction is linked with neurodegenerative diseases, including Alzheimer's and Parkinson's disease, and many pathogens, both viral and bacterial, exploit or interfere in retromer function for their own ends. In this review, the history of retromer is distilled into a concentrated form that spans the identification of retromer to recent discoveries that have shed new light on how retromer functions in endosomal protein sorting and why retromer is increasingly being viewed as a potential therapeutic target in neurodegenerative disease.


Subject(s)
Neurodegenerative Diseases , Endosomes/metabolism , Humans , Membrane Proteins/metabolism , Neurodegenerative Diseases/metabolism , Protein Transport
15.
Traffic ; 24(5): 216-230, 2023 05.
Article in English | MEDLINE | ID: mdl-36995008

ABSTRACT

The pentameric WASH complex facilitates endosomal protein sorting by activating Arp2/3, which in turn leads to the formation of F-actin patches specifically on the endosomal surface. It is generally accepted that WASH complex attaches to the endosomal membrane via the interaction of its subunit FAM21 with the retromer subunit VPS35. However, we observe the WASH complex and F-actin present on endosomes even in the absence of VPS35. We show that the WASH complex binds to the endosomal surface in both a retromer-dependent and a retromer-independent manner. The retromer-independent membrane anchor is directly mediated by the subunit SWIP. Furthermore, SWIP can interact with a number of phosphoinositide species. Of those, our data suggest that the interaction with phosphatidylinositol-3,5-bisphosphate (PI(3,5)P2 ) is crucial to the endosomal binding of SWIP. Overall, this study reveals a new role of the WASH complex subunit SWIP and highlights the WASH complex as an independent, self-sufficient trafficking regulator.


Subject(s)
Actins , Intracellular Signaling Peptides and Proteins , Vesicular Transport Proteins , Actins/metabolism , Endosomes/metabolism , Microfilament Proteins/metabolism , Protein Transport , Vesicular Transport Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Humans
16.
J Biol Chem ; 300(3): 105668, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38272232

ABSTRACT

G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors and a critical class of regulators of mammalian physiology. Also known as seven transmembrane receptors (7TMs), GPCRs are ubiquitously expressed and versatile, detecting a diverse set of endogenous stimuli, including odorants, neurotransmitters, hormones, peptides, and lipids. Accordingly, GPCRs have emerged as the largest class of drug targets, accounting for upward of 30% of all prescription drugs. The view that ligand-induced GPCR responses originate exclusively from the cell surface has evolved to reflect accumulating evidence that receptors can elicit additional waves of signaling from intracellular compartments. These events in turn shape unique cellular and physiological outcomes. Here, we discuss our current understanding of the roles and regulation of compartmentalized GPCR signaling.


Subject(s)
Receptors, G-Protein-Coupled , Signal Transduction , Animals , Cell Membrane/metabolism , Receptors, G-Protein-Coupled/metabolism , Humans , Intracellular Space/metabolism , Enzyme Activation
17.
Mol Cell ; 67(1): 84-95.e5, 2017 Jul 06.
Article in English | MEDLINE | ID: mdl-28602638

ABSTRACT

Autophagy traditionally sustains metabolism in stressed cells by promoting intracellular catabolism and nutrient recycling. Here, we demonstrate that in response to stresses requiring increased glycolytic demand, the core autophagy machinery also facilitates glucose uptake and glycolytic flux by promoting cell surface expression of the glucose transporter GLUT1/Slc2a1. During metabolic stress, LC3+ autophagic compartments bind and sequester the RabGAP protein TBC1D5 away from its inhibitory interactions with the retromer complex, thereby enabling retromer recruitment to endosome membranes and GLUT1 plasma membrane translocation. In contrast, TBC1D5 inhibitory interactions with the retromer are maintained in autophagy-deficient cells, leading to GLUT1 mis-sorting into endolysosomal compartments. Furthermore, TBC1D5 depletion in autophagy-deficient cells rescues retromer recruitment to endosomal membranes and GLUT1 surface recycling. Hence, TBC1D5 shuttling to autophagosomes during metabolic stress facilitates retromer-dependent GLUT1 trafficking. Overall, our results illuminate key interconnections between the autophagy and endosomal pathways dictating GLUT1 trafficking and extracellular nutrient uptake.


Subject(s)
Autophagy , Cell Membrane/metabolism , Fibroblasts/metabolism , GTPase-Activating Proteins/metabolism , Glucose Transporter Type 1/metabolism , Glucose/metabolism , Glycolysis , Stress, Physiological , Animals , Autophagosomes/metabolism , Autophagosomes/pathology , Autophagy-Related Protein 5/genetics , Autophagy-Related Protein 5/metabolism , Autophagy-Related Protein 7/genetics , Autophagy-Related Protein 7/metabolism , Endosomes/metabolism , Endosomes/pathology , Female , Fibroblasts/pathology , GTPase-Activating Proteins/genetics , Glucose Transporter Type 1/genetics , HEK293 Cells , Humans , Kinetics , Lysosomes/metabolism , Lysosomes/pathology , Mice , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Protein Transport , RNA Interference , Signal Transduction , Transfection , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism
18.
Cell Mol Life Sci ; 81(1): 103, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38409392

ABSTRACT

VPS35 plays a key role in neurodegenerative processes in Alzheimer's disease and Parkinson's disease (PD). Many genetic studies have shown a close relationship between autophagy and PD pathophysiology, and specifically, the PD-causing D620N mutation in VPS35 has been shown to impair autophagy. However, the molecular mechanisms underlying neuronal cell death and impaired autophagy in PD are debated. Notably, increasing evidence suggests that Rab9-dependent "alternative" autophagy, which is driven by a different molecular mechanism that driving ATG5-dependent "conventional" autophagy, also contributes to neurodegenerative process. In this study, we investigated the relationship between alternative autophagy and VPS35 D620N mutant-related PD pathogenesis. We isolated iPSCs from the blood mononuclear cell population of two PD patients carrying the VPS35 D620N mutant. In addition, we used CRISPR-Cas9 to generate SH-SY5Y cells carrying the D620N variant of VPS35. We first revealed that the number of autophagic vacuoles was significantly decreased in ATG5-knockout Mouse Embryonic Fibroblast or ATG5-knockdown patient-derived dopaminergic neurons carrying the VPS35 D620N mutant compared with that of the wild type VPS35 control cells. Furthermore, estrogen, which activates alternative autophagy pathways, increased the number of autophagic vacuoles in ATG5-knockdown VPS35 D620N mutant dopaminergic neurons. Estrogen induces Rab9 phosphorylation, mediated through Ulk1 phosphorylation, ultimately regulating alternative autophagy. Moreover, estrogen reduced the apoptosis rate of VPS35 D620N neurons, and this effect of estrogen was diminished under alternative autophagy knockdown conditions. In conclusion, alternative autophagy might be important for maintaining neuronal homeostasis and may be associated with the neuroprotective effect of estrogen in PD with VPS35 D620N.


Subject(s)
Neuroblastoma , Parkinson Disease , Animals , Humans , Mice , Autophagy/genetics , Dopaminergic Neurons/metabolism , Estrogens/pharmacology , Estrogens/metabolism , Fibroblasts/metabolism , Mutation/genetics , Neuroblastoma/metabolism , Parkinson Disease/pathology , Protein Transport , Vesicular Transport Proteins/metabolism
19.
Biochem J ; 481(4): 265-278, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38299383

ABSTRACT

The identification of multiple genes linked to Parkinson's disease (PD) invites the question as to how they may co-operate. We have generated isogenic cell lines that inducibly express either wild-type or a mutant form of the retromer component VPS35 (D620N), which has been linked to PD. This has enabled us to test proposed effects of this mutation in a setting where the relative expression reflects the physiological occurrence. We confirm that this mutation compromises VPS35 association with the WASH complex, but find no defect in WASH recruitment to endosomes, nor in the distribution of lysosomal receptors, cation-independent mannose-6-phosphate receptor and Sortilin. We show VPS35 (D620N) enhances the activity of the Parkinson's associated kinase LRRK2 towards RAB12 under basal conditions. Furthermore, VPS35 (D620N) amplifies the LRRK2 response to endolysosomal stress resulting in enhanced phosphorylation of RABs 10 and 12. By comparing different types of endolysosomal stresses such as the ionophore nigericin and the membranolytic agent l-leucyl-l-leucine methyl ester, we are able to dissociate phospho-RAB accumulation from membrane rupture.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/genetics , Parkinson Disease/metabolism , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism , Mutation , Lysosomes/genetics , Lysosomes/metabolism , Endosomes/genetics , Endosomes/metabolism , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism
20.
Proc Natl Acad Sci U S A ; 119(26): e2118755119, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35749364

ABSTRACT

Retromer is a heteropentameric complex that plays a specialized role in endosomal protein sorting and trafficking. Here, we report a reduction in the retromer proteins-vacuolar protein sorting 35 (VPS35), VPS26A, and VPS29-in patients with amyotrophic lateral sclerosis (ALS) and in the ALS model provided by transgenic (Tg) mice expressing the mutant superoxide dismutase-1 G93A. These changes are accompanied by a reduction of levels of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor subunit GluA1, a proxy of retromer function, in spinal cords from Tg SOD1G93A mice. Correction of the retromer deficit by a viral vector expressing VPS35 exacerbates the paralytic phenotype in Tg SOD1G93A mice. Conversely, lowering Vps35 levels in Tg SOD1G93A mice ameliorates the disease phenotype. In light of these findings, we propose that mild alterations in retromer inversely modulate neurodegeneration propensity in ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Vesicular Transport Proteins , Amyotrophic Lateral Sclerosis/metabolism , Animals , Disease Models, Animal , Humans , Mice , Mice, Transgenic , Spinal Cord/metabolism , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL