Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 258
Filter
Add more filters

Publication year range
1.
Cell ; 184(17): 4392-4400.e4, 2021 08 19.
Article in English | MEDLINE | ID: mdl-34289344

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic underscores the need to better understand animal-to-human transmission of coronaviruses and adaptive evolution within new hosts. We scanned more than 182,000 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomes for selective sweep signatures and found a distinct footprint of positive selection located around a non-synonymous change (A1114G; T372A) within the spike protein receptor-binding domain (RBD), predicted to remove glycosylation and increase binding to human ACE2 (hACE2), the cellular receptor. This change is present in all human SARS-CoV-2 sequences but not in closely related viruses from bats and pangolins. As predicted, T372A RBD bound hACE2 with higher affinity in experimental binding assays. We engineered the reversion mutant (A372T) and found that A372 (wild-type [WT]-SARS-CoV-2) enhanced replication in human lung cells relative to its putative ancestral variant (T372), an effect that was 20 times greater than the well-known D614G mutation. Our findings suggest that this mutation likely contributed to SARS-CoV-2 emergence from animal reservoirs or enabled sustained human-to-human transmission.


Subject(s)
COVID-19/virology , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Amino Acid Substitution , Angiotensin-Converting Enzyme 2 , Animals , Cell Line , Chiroptera/virology , Chlorocebus aethiops , Disease Reservoirs , Evolution, Molecular , Genome, Viral , Humans , Models, Molecular , Mutation , Phylogeny , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells
2.
Mol Biol Evol ; 41(7)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38941083

ABSTRACT

Insect crop pests threaten global food security. This threat is amplified through the spread of nonnative species and through adaptation of native pests to control measures. Adaptations such as pesticide resistance can result from selection on variation within a population, or through gene flow from another population. We investigate these processes in an economically important noctuid crop pest, Helicoverpa zea, which has evolved resistance to a wide range of pesticides. Its sister species Helicoverpa armigera, first detected as an invasive species in Brazil in 2013, introduced the pyrethroid-resistance gene CYP337B3 to South American H. zea via adaptive introgression. To understand whether this could contribute to pesticide resistance in North America, we sequenced 237 H. zea genomes across 10 sample sites. We report H. armigera introgression into the North American H. zea population. Two individuals sampled in Texas in 2019 carry H. armigera haplotypes in a 4 Mbp region containing CYP337B3. Next, we identify signatures of selection in the panmictic population of nonadmixed H. zea, identifying a selective sweep at a second cytochrome P450 gene: CYP333B3. We estimate that its derived allele conferred a ∼5% fitness advantage and show that this estimate explains independently observed rare nonsynonymous CYP333B3 mutations approaching fixation over a ∼20-year period. We also detect putative signatures of selection at a kinesin gene associated with Bt resistance. Overall, we document two mechanisms of rapid adaptation: the introduction of fitness-enhancing alleles through interspecific introgression, and selection on intraspecific variation.


Subject(s)
Genetic Introgression , Insecticide Resistance , Moths , Animals , Moths/genetics , Insecticide Resistance/genetics , Cytochrome P-450 Enzyme System/genetics , North America , Adaptation, Biological/genetics , Adaptation, Physiological/genetics , Selection, Genetic , Introduced Species
3.
Proc Natl Acad Sci U S A ; 119(47): e2213879119, 2022 11 22.
Article in English | MEDLINE | ID: mdl-36383746

ABSTRACT

The main mathematical result in this paper is that change of variables in the ordinary differential equation (ODE) for the competition of two infections in a Susceptible-Infected-Removed (SIR) model shows that the fraction of cases due to the new variant satisfies the logistic differential equation, which models selective sweeps. Fitting the logistic to data from the Global Initiative on Sharing All Influenza Data (GISAID) shows that this correctly predicts the rapid turnover from one dominant variant to another. In addition, our fitting gives sensible estimates of the increase in infectivity. These arguments are applicable to any epidemic modeled by SIR equations.


Subject(s)
COVID-19 , Epidemics , Influenza, Human , Humans , SARS-CoV-2/genetics , Disease Susceptibility
4.
BMC Genomics ; 25(1): 69, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38233755

ABSTRACT

BACKGROUND: The yak is a symbol of the Qinghai-Tibet Plateau and provides important basic resources for human life on the plateau. Domestic yaks have been subjected to strong artificial selection and environmental pressures over the long-term. Understanding the molecular mechanisms of phenotypic differences in yak populations can reveal key functional genes involved in the domestication process and improve genetic breeding. MATERIAL AND METHOD: Here, we re-sequenced 80 yaks (Maiwa, Yushu, and Huanhu populations) to identify single-nucleotide polymorphisms (SNPs) as genetic variants. After filtering and quality control, remaining SNPs were kept to identify the genome-wide regions of selective sweeps associated with domestic traits. The four methods (π, XPEHH, iHS, and XP-nSL) were used to detect the population genetic separation. RESULTS: By comparing the differences in the population stratification, linkage disequilibrium decay rate, and characteristic selective sweep signals, we identified 203 putative selective regions of domestic traits, 45 of which were mapped to 27 known genes. They were clustered into 4 major GO biological process terms. All known genes were associated with seven major domestication traits, such as dwarfism (ANKRD28), milk (HECW1, HECW2, and OSBPL2), meat (SPATA5 and GRHL2), fertility (BTBD11 and ARFIP1), adaptation (NCKAP5, ANTXR1, LAMA5, OSBPL2, AOC2, and RYR2), growth (GRHL2, GRID2, SMARCAL1, and EPHB2), and the immune system (INPP5D and ADCYAP1R1). CONCLUSIONS: We provided there is an obvious genetic different among domestic progress in these three yak populations. Our findings improve the understanding of the major genetic switches and domestic processes among yak populations.


Subject(s)
ATPases Associated with Diverse Cellular Activities , Domestication , Receptors, Steroid , Animals , Humans , Cattle/genetics , Genome , Sequence Analysis, DNA , Tibet , Genetics, Population , Microfilament Proteins , Receptors, Cell Surface , DNA Helicases , Nerve Tissue Proteins , Ubiquitin-Protein Ligases
5.
BMC Genomics ; 25(1): 428, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38689225

ABSTRACT

BACKGROUND: Although many studies have been done to reveal artificial selection signatures in commercial and indigenous chickens, a limited number of genes have been linked to specific traits. To identify more trait-related artificial selection signatures and genes, we re-sequenced a total of 85 individuals of five indigenous chicken breeds with distinct traits from Yunnan Province, China. RESULTS: We found 30 million non-redundant single nucleotide variants and small indels (< 50 bp) in the indigenous chickens, of which 10 million were not seen in 60 broilers, 56 layers and 35 red jungle fowls (RJFs) that we compared with. The variants in each breed are enriched in non-coding regions, while those in coding regions are largely tolerant, suggesting that most variants might affect cis-regulatory sequences. Based on 27 million bi-allelic single nucleotide polymorphisms identified in the chickens, we found numerous selective sweeps and affected genes in each indigenous chicken breed and substantially larger numbers of selective sweeps and affected genes in the broilers and layers than previously reported using a rigorous statistical model. Consistent with the locations of the variants, the vast majority (~ 98.3%) of the identified selective sweeps overlap known quantitative trait loci (QTLs). Meanwhile, 74.2% known QTLs overlap our identified selective sweeps. We confirmed most of previously identified trait-related genes and identified many novel ones, some of which might be related to body size and high egg production traits. Using RT-qPCR, we validated differential expression of eight genes (GHR, GHRHR, IGF2BP1, OVALX, ELF2, MGARP, NOCT, SLC25A15) that might be related to body size and high egg production traits in relevant tissues of relevant breeds. CONCLUSION: We identify 30 million single nucleotide variants and small indels in the five indigenous chicken breeds, 10 million of which are novel. We predict substantially more selective sweeps and affected genes than previously reported in both indigenous and commercial breeds. These variants and affected genes are good candidates for further experimental investigations of genotype-phenotype relationships and practical applications in chicken breeding programs.


Subject(s)
Chickens , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Selection, Genetic , Animals , Chickens/genetics , Genome , INDEL Mutation , Breeding , Phenotype , Genomics/methods
6.
BMC Genomics ; 25(1): 30, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38178019

ABSTRACT

BACKGROUND: Shaziling pig is a well-known indigenous breed in China who has superior meat quality traits. However, the genetic mechanism and genomic evidence underlying meat quality characteristics of Shaziling pigs are still unclear. To explore and investigate the germplasm characteristics of Shaziling pigs, we totally analyzed 67 individual's whole genome sequencing data for the first time (20 Shaziling pigs [S], 20 Dabasha pigs [DBS], 11 Yorkshire pigs [Y], 10 Berkshire pigs [BKX], 5 Basha pigs [BS] and 1 Warthog). RESULTS: A total of 2,538,577 SNPs with high quality were detected and 9 candidate genes which was specifically selected in S and shared in S to DBS were precisely mined and screened using an integrated analysis strategy of identity-by-descent (IBD) and selective sweep. Of them, dickkopf WNT signaling pathway inhibitor 2 (DKK2), the antagonist of Wnt signaling pathway, was the most promising candidate gene which was not only identified an association of palmitic acid and palmitoleic acid quantitative trait locus in PigQTLdb, but also specifically selected in S compared to other 48 Chinese local pigs of 12 populations and 39 foreign pigs of 4 populations. Subsequently, a mutation at 12,726-bp of DKK2 intron 1 (g.114874954 A > C) was identified associated with intramuscular fat content using method of PCR-RFLP in 21 different pig populations. We observed DKK2 specifically expressed in adipose tissues. Overexpression of DKK2 decreased the content of triglyceride, fatty acid synthase and expression of relevant genes of adipogenic and Wnt signaling pathway, while interference of DKK2 got contrary effect during adipogenesis differentiation of porcine preadipocytes and 3T3-L1 cells. CONCLUSIONS: Our findings provide an analysis strategy for mining functional genes of important economic traits and provide fundamental data and molecular evidence for improving pig meat quality traits and molecular breeding.


Subject(s)
Meat , Quantitative Trait Loci , Swine/genetics , Animals , Phenotype , Genome-Wide Association Study , China
7.
Mol Biol Evol ; 40(7)2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37402641

ABSTRACT

Throughout the Plio-Pleistocene, climate change has impacted tropical marine ecosystems substantially, with even more severe impacts predicted in the Anthropocene. Although many studies have clarified demographic histories of seabirds in polar regions, the history of keystone seabirds of the tropics is unclear, despite the prominence of albatrosses (Diomedeidae, Procellariiformes) as the largest and most threatened group of oceanic seabirds. To understand the impact of climate change on tropical albatrosses, we investigated the evolutionary and demographic histories of all four North Pacific albatrosses and their prey using whole-genome analyses. We report a striking concordance in demographic histories among the four species, with a notable dip in effective population size at the beginning of the Pleistocene and a population expansion in the Last Glacial Period when sea levels were low, which resulted in increased potential coastal breeding sites. Abundance of the black-footed albatross dropped again during the Last Glacial Maximum, potentially linked to climate-driven loss of breeding sites and concordant genome-derived decreases in its major prey. We find very low genome-wide (π < 0.001) and adaptative genetic diversities across the albatrosses, with genes of the major histocompatibility complex close to monomorphic. We also identify recent selective sweeps at genes associated with hyperosmotic adaptation, longevity, and cognition and memory. Our study has shed light on the evolutionary and demographic histories of the largest tropical oceanic seabirds and provides evidence for their large population fluctuations and alarmingly low genetic diversities.


Subject(s)
Biological Evolution , Ecosystem , Animals , Genetic Variation , Birds
8.
Mol Ecol ; : e17499, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39188068

ABSTRACT

This study explores the impact of positive selection on the genetic composition of a Drosophila serrata population in eastern Australia through a comprehensive analysis of 110 whole genome sequences. Utilizing an advanced deep learning algorithm (partialS/HIC) and a range of inferred demographic histories, we identified that approximately 14% of the genome is directly affected by sweeps, with soft sweeps being more prevalent (10.6%) than hard sweeps (2.1%), and partial sweeps being uncommon (1.3%). The algorithm demonstrated robustness to demographic assumptions in classifying complete sweeps but faced challenges in distinguishing neutral regions from partial sweeps and linked regions under demographic misspecification. The findings reveal the indirect influence of sweeps on nearly two-thirds of the genome through linkage, with an over-representation of putatively deleterious variants suggesting that positive selection drags deleterious variants to higher frequency due to hitchhiking with beneficial loci. Gene ontology enrichment analysis further supported our confidence in the accuracy of sweep detection as several traits expected to be under positive selection due to evolutionary arms races (e.g. immunity) were detected in hard sweeps. This study provides valuable insights into the direct and indirect contributions of positive selection in shaping genomic variation in natural populations.

9.
Mol Ecol ; 33(4): e17242, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38084851

ABSTRACT

Antagonistic selection between pathogens and their hosts can drive rapid evolutionary change and leave distinct molecular footprints of past and ongoing selection in the genomes of the interacting species. Despite an increasing availability of tools able to identify signatures of selection, the genetic mechanisms underlying coevolutionary interactions and the specific genes involved are still poorly understood, especially in heterogeneous natural environments. We searched the genomes of two species of Epichloe plant pathogen for evidence of recent selection. The Epichloe genus includes highly host-specific species that can sterilize their grass hosts. We performed selection scans using genome-wide SNP data from seven natural populations of two co-occurring Epichloe sibling species specialized on different hosts. We found evidence of recent (and ongoing) selective sweeps across the genome in both species. However, selective sweeps were more abundant in the species with a larger effective population size. Sweep regions often overlapped with highly polymorphic AT-rich regions supporting the role of these genome compartments in adaptive evolution. Although most loci under selection were specific to individual populations, we could also identify several candidate genes targeted by selection in sweep regions shared among populations. The genes encoded small secreted proteins typical of fungal effectors and cell wall-degrading enzymes. By investigating the genomic signatures of selection across multiple populations and species, this study contributes to our understanding of complex adaptive processes in natural plant pathogen systems.


Subject(s)
Epichloe , Epichloe/genetics , Genome , Poaceae/genetics , Genomics , Plants/genetics , Selection, Genetic
10.
Mol Ecol ; 33(12): e17383, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38747342

ABSTRACT

Despite a long presence in the contiguous United States (US), the distribution of invasive wild pigs (Sus scrofa × domesticus) has expanded rapidly since the 1980s, suggesting a more recent evolutionary shift towards greater invasiveness. Contemporary populations of wild pigs represent exoferal hybrid descendants of domestic pigs and European wild boar, with such hybridization expected to enrich genetic diversity and increase the adaptive potential of populations. Our objective was to characterize how genetic enrichment through hybridization increases the invasiveness of populations by identifying signals of selection and the ancestral origins of selected loci. Our study focused on invasive wild pigs within Great Smoky Mountains National Park, which represents a hybrid population descendent from the admixture of established populations of feral pigs and an introduction of European wild boar to North America. Accordingly, we genotyped 881 wild pigs with multiple high-density single-nucleotide polymorphism (SNP) arrays. We found 233 markers under putative selection spread over 79 regions across 16 out of 18 autosomes, which contained genes involved in traits affecting feralization. Among these, genes were found to be related to skull formation and neurogenesis, with two genes, TYRP1 and TYR, also encoding for crucial melanogenesis enzymes. The most common haplotypes associated with regions under selection for the Great Smoky Mountains population were also common among other populations throughout the region, indicating a key role of putatively selective variants in the fitness of invasive populations. Interestingly, many of these haplotypes were absent among European wild boar reference genotypes, indicating feralization through genetic adaptation.


Subject(s)
Genetics, Population , Introduced Species , Polymorphism, Single Nucleotide , Selection, Genetic , Sus scrofa , Animals , United States , Polymorphism, Single Nucleotide/genetics , Sus scrofa/genetics , Genotype , Hybridization, Genetic , Swine/genetics , Animals, Wild/genetics , Genetic Variation
11.
Anim Genet ; 55(4): 511-526, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38726735

ABSTRACT

Kashmir cattle, which were kept by local pastoralists for centuries, are exceptionally resilient and adaptive to harsh environments. Despite its significance, the genomic characteristics of this cattle breed remain elusive. This study utilized whole genome sequences of Kashmir cattle (n = 20; newly sequenced) alongside published whole genomes of 32 distinct breeds and seven core cattle populations (n = 135). The analysis identified ~25.87 million biallelic single nucleotide polymorphisms in Kashmir cattle, predominantly in intergenic and intron regions. Population structure analyses revealed distinct clustering patterns of Kashmir cattle with proximity to the South Asian, African and Chinese indicine cattle populations. Genetic diversity analysis of Kashmir cattle demonstrated lower inbreeding and greater nucleotide diversity than analyzed global breeds. Homozygosity runs indicated less consanguineous mating in Kashmir cattle compared with European taurine breeds. Furthermore, six selection sweep detection methods were used within Kashmir cattle and other cattle populations to identify genes associated with vital traits, including immunity (BOLA-DQA5, BOLA-DQB, TNFAIP8L, FCRL4, AOAH, HIF1AN, FBXL3, MPEG1, CDC40, etc.), reproduction (GOLGA4, BRWD1, OSBP2, LEO1 ADCY5, etc.), growth (ADPRHL1, NRG2, TCF12, TMOD4, GBP4, IGF2, RSPO3, SCD, etc.), milk composition (MRPS30 and CSF1) and high-altitude adaptation (EDNRA, ITPR2, AGBL4 and SCG3). These findings provide essential genetic insights into the characteristics and establish the foundation for the scientific conservation and utilization of Kashmir cattle breed.


Subject(s)
Phylogeny , Polymorphism, Single Nucleotide , Animals , Cattle/genetics , Whole Genome Sequencing/veterinary , Genetic Variation , Breeding , India
12.
Anim Genet ; 55(3): 377-386, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38561945

ABSTRACT

The Kazakh cattle in the Xinjiang Uygur Autonomous Region of China are highly adaptable and have multiple uses, including milk and meat production, and use as draft animals. They are an excellent original breed that could be enhanced by breeding and hybrid improvement. However, the genomic diversity and signature of selection underlying the germplasm characteristics require further elucidation. Herein, we evaluated 26 Kazakh cattle genomes in comparison with 103 genomes of seven other cattle breeds from regions around the world to assess the Kazakh cattle genetic variability. We revealed that the relatively low linkage disequilibrium at large SNP distances was strongly correlated with the largest effective population size among Kazakh cattle. Using population structural analysis, we next demonstrated a taurine lineage with restricted Bos indicus introgression among Kazakh cattle. Notably, we identified putative selected genes associated with resistance to disease and body size within Kazakh cattle. Together, our findings shed light on the evolutionary history and breeding profile of Kazakh cattle, as well as offering indispensable resources for germplasm resource conservation and crossbreeding program implementation.


Subject(s)
Polymorphism, Single Nucleotide , Whole Genome Sequencing , Animals , Cattle/genetics , Whole Genome Sequencing/veterinary , China , Breeding , Genome , Linkage Disequilibrium , Genetic Variation , Selection, Genetic
13.
Plant J ; 110(4): 1182-1197, 2022 05.
Article in English | MEDLINE | ID: mdl-35277890

ABSTRACT

Japanese apricot (Prunus mume) is an attractive fruit tree originating from China, and its cultivation history dates back 7000 years. In this study, we investigated the genetic diversity, population structure, and genetic relationship of Japanese apricots in different regions of China and Japan. The analyses of the genetic variation between wild and cultivated populations improved our understanding of the general mechanisms of domestication and improvement. A total of 146 accessions of Japanese apricot from different geographic locations were sequenced. The genetic diversity of wild and domesticated accessions (3.60 × 10-3 and 3.51 × 10-3 , respectively) from China was high, and the effect of artificial selection pressure on domesticated accessions was small; however, the genetic diversity of artificially bred accessions decreased significantly (2.68 × 10-3 ) compared to domesticated accessions, which had an obvious improvement bottleneck effect. The chloroplast genome results showed that 41 haplotypes were detected, and Japanese apricots from the Yunnan region had the most haplotypes and the highest genetic diversity. The results revealed the dissemination route of Japanese apricot, not only along the Yangtze River basin system (from southwest China to Hunan, Jiangxi, and Anhui, and finally to the Jiangsu, Zhejiang, and Shanghai areas). Additionally, we discovered a second route for Japanese apricot dispersion, which was mostly in the Pearl River basin system, from southwest China to Libo of Guizhou and then to the Guangdong, Fujian, and Taiwan areas. This also showed that Japanese-bred accessions originated from Zhejiang, China. In addition, selective sweep analysis showed that most of the high-impact single nucleotide polymorphisms were identified in genes related to glucose metabolism, aromatic compound metabolism, flowering time, dormancy, and resistance to abiotic stress during the domestication and improvement of Japanese apricot.


Subject(s)
Prunus armeniaca , Prunus , China , Fruit/chemistry , Genomics , Plant Breeding , Prunus/genetics , Prunus armeniaca/genetics
14.
BMC Genomics ; 24(1): 547, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37715145

ABSTRACT

BACKGROUND: Genetic diversity and heterogeneous genomic signatures in marine fish populations may result from selection pressures driven by the strong effects of environmental change. Nearshore fishes are often exposed to complex environments and human activities, especially those with small ranges. However, studies on genetic diversity and population selection signals in these species have mostly been based on a relatively small number of genetic markers. As a newly recorded species of Sillaginidae, the population genetics and genomic selection signals of Sillago sinica are fragmented or even absent. RESULTS: To address this theoretical gap, we performed whole-genome resequencing of 43 S. sinica individuals from Dongying (DY), Qingdao (QD) and Wenzhou (WZ) populations and obtained 4,878,771 high-quality SNPs. Population genetic analysis showed that the genetic diversity of S. sinica populations was low, but the genetic diversity of the WZ population was higher than that of the other two populations. Interestingly, the three populations were not strictly clustered within the group defined by their sampling location but showed an obvious geographic structure signal from the warm temperate to the subtropics. With further analysis, warm-temperate populations exhibited strong selection signals in genomic regions related to nervous system development, sensory function and immune function. However, subtropical populations showed more selective signalling for environmental tolerance and stress signal transduction. CONCLUSIONS: Genome-wide SNPs provide high-quality data to support genetic studies and localization of selection signals in S. sinica populations. The reduction in genetic diversity may be related to the bottleneck effect. Considering that low genetic diversity leads to reduced environmental adaptability, conservation efforts and genetic diversity monitoring of this species should be increased in the future. Differences in genomic selection signals between warm temperate and subtropical populations may be related to human activities and changes in environmental complexity. This study deepened the understanding of population genetics and genomic selection signatures in nearshore fishes and provided a theoretical basis for exploring the potential mechanisms of genomic variation in marine fishes driven by environmental selection pressures.


Subject(s)
Data Accuracy , Genomics , Humans , Animals , Sequence Analysis, DNA , Fishes/genetics , Polymorphism, Single Nucleotide
15.
BMC Genomics ; 24(1): 100, 2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36879226

ABSTRACT

BACKGROUND: Apis cerana is widely distributed in China and, prior to the introduction of western honeybees, was the only bee species kept in China. During the long-term natural evolutionary process, many unique phenotypic variations have occurred among A. cerana populations in different geographical regions under varied climates. Understanding the molecular genetic basis and the effects of climate change on the adaptive evolution of A. cerana can promote A. cerana conservation in face of climate change and allow for the effective utilization of its genetic resources. RESULT: To investigate the genetic basis of phenotypic variations and the impact of climate change on adaptive evolution, A. cerana workers from 100 colonies located at similar geographical latitudes or longitudes were analyzed. Our results revealed an important relationship between climate types and the genetic variation of A. cerana in China, and a greater influence of latitude compared with longitude was observed. Upon selection and morphometry analyses combination for populations under different climate types, we identified a key gene RAPTOR, which was deeply involved in developmental processes and influenced the body size. CONCLUSION: The selection of RAPTOR at the genomic level during adaptive evolution could allow A. cerana to actively regulate its metabolism, thereby fine-tuning body sizes in response to harsh conditions caused by climate change, such as food shortages and extreme temperatures, which may partially elucidate the size differences of A. cerana populations. This study provides crucial support for the molecular genetic basis of the expansion and evolution of naturally distributed honeybee populations.


Subject(s)
Acclimatization , Climate Change , Bees/genetics , Animals , China , Body Size , Genomics
16.
Mol Biol Evol ; 39(1)2022 01 07.
Article in English | MEDLINE | ID: mdl-34888675

ABSTRACT

Detecting signals of selection from genomic data is a central problem in population genetics. Coupling the rich information in the ancestral recombination graph (ARG) with a powerful and scalable deep-learning framework, we developed a novel method to detect and quantify positive selection: Selection Inference using the Ancestral recombination graph (SIA). Built on a Long Short-Term Memory (LSTM) architecture, a particular type of a Recurrent Neural Network (RNN), SIA can be trained to explicitly infer a full range of selection coefficients, as well as the allele frequency trajectory and time of selection onset. We benchmarked SIA extensively on simulations under a European human demographic model, and found that it performs as well or better as some of the best available methods, including state-of-the-art machine-learning and ARG-based methods. In addition, we used SIA to estimate selection coefficients at several loci associated with human phenotypes of interest. SIA detected novel signals of selection particular to the European (CEU) population at the MC1R and ABCC11 loci. In addition, it recapitulated signals of selection at the LCT locus and several pigmentation-related genes. Finally, we reanalyzed polymorphism data of a collection of recently radiated southern capuchino seedeater taxa in the genus Sporophila to quantify the strength of selection and improved the power of our previous methods to detect partial soft sweeps. Overall, SIA uses deep learning to leverage the ARG and thereby provides new insight into how selective sweeps shape genomic diversity.


Subject(s)
Deep Learning , Selection, Genetic , Genetics, Population , Models, Genetic , Recombination, Genetic
17.
Curr Issues Mol Biol ; 45(4): 2972-2983, 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37185719

ABSTRACT

Some people resist or recover from health challenges better than others. We studied Lithuanian clean-up workers of the Chornobyl nuclear disaster (LCWC) who worked in the harshest conditions and, despite high ionising radiation doses as well as other factors, continue ageing relatively healthily. Thus, we hypothesised that there might be individual features encoded by the genome which act protectively for better adaptiveness and health that depend on unique positive selection signatures. Whole-genome sequencing was performed for 40 LCWC and a control group composed of 25 men from the general Lithuanian population (LTU). Selective sweep analysis was performed to identify genomic regions which may be under recent positive selection and determine better adaptiveness. Twenty-two autosomal loci with the highest positive selection signature values were identified. Most important, unique loci under positive selection have been identified in the genomes of the LCWC, which may influence the survival and adaptive qualities to extreme conditions, and the disaster itself. Characterising these loci provide a better understanding of the interaction between ongoing microevolutionary processes, multifactorial traits, and diseases. Studying unique groups of disease-resistant individuals could help create new insights for better, more individualised, disease diagnostics and prevention strategies.

18.
BMC Plant Biol ; 23(1): 315, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37316827

ABSTRACT

Southeast Europe (SEE) is a very important maize-growing region, comparable to the Corn belt region of the United States, with similar dent germplasm (dent by dent hybrids). Historically, this region has undergone several genetic material swaps, following the trends in the US, with one of the most significant swaps related to US aid programs after WWII. The imported accessions used to make double-cross hybrids were also mixed with previously adapted germplasm originating from several more distant OPVs, supporting the transition to single cross-breeding. Many of these materials were deposited at the Maize Gene Bank of the Maize Research Institute Zemun Polje (MRIZP) between the 1960s and 1980s. A part of this Gene Bank (572 inbreds) was genotyped with Affymetrix Axiom Maize Genotyping Array with 616,201 polymorphic variants. Data were merged with two other genotyping datasets with mostly European flint (TUM dataset) and dent (DROPS dataset) germplasm. The final pan-European dataset consisted of 974 inbreds and 460,243 markers. Admixture analysis showed seven ancestral populations representing European flint, B73/B14, Lancaster, B37, Wf9/Oh07, A374, and Iodent pools. Subpanel of inbreds with SEE origin showed a lack of Iodent germplasm, marking its historical context. Several signatures of selection were identified at chromosomes 1, 3, 6, 7, 8, 9, and 10. The regions under selection were mined for protein-coding genes and were used for gene ontology (GO) analysis, showing a highly significant overrepresentation of genes involved in response to stress. Our results suggest the accumulation of favorable allelic diversity, especially in the context of changing climate in the genetic resources of SEE.


Subject(s)
Genetic Variation , Plant Breeding , Zea mays , Alleles , Europe , Zea mays/genetics
19.
Plant Biotechnol J ; 21(5): 1058-1072, 2023 05.
Article in English | MEDLINE | ID: mdl-36710373

ABSTRACT

The rubber tree (Hevea brasiliensis) is grown in tropical regions and is the major source of natural rubber. Using traditional breeding approaches, the latex yield has increased by sixfold in the last century. However, the underlying genetic basis of rubber yield improvement is largely unknown. Here, we present a high-quality, chromosome-level genome sequence of the wild rubber tree, the first report on selection signatures and a genome-wide association study (GWAS) of its yield traits. Population genomic analysis revealed a moderate population divergence between the Wickham clones and wild accessions. Interestingly, it is suggestive that H. brasiliensis and six relatives of the Hevea genus might belong to the same species. The selective sweep analysis found 361 obvious signatures in the domesticated clones associated with 245 genes. In a 15-year field trial, GWAS identified 155 marker-trait associations with latex yield, in which 326 candidate genes were found. Notably, six genes related to sugar transport and metabolism, and four genes related to ethylene biosynthesis and signalling are associated with latex yield. The homozygote frequencies of the causal nonsynonymous SNPs have been greatly increased under selection, which may have contributed to the fast latex yield improvement during the short domestication history. Our study provides insights into the genetic basis of the latex yield trait and has implications for genomic-assisted breeding by offering valuable resources in this new domesticated crop.


Subject(s)
Hevea , Rubber , Rubber/metabolism , Hevea/genetics , Hevea/metabolism , Latex/metabolism , Genome-Wide Association Study , Plant Breeding , Genomics , Chromosomes/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics
20.
Mol Ecol ; 32(8): 1955-1971, 2023 04.
Article in English | MEDLINE | ID: mdl-36704928

ABSTRACT

Anthropogenic biological invasions represent major concerns but enable us to investigate rapid evolutionary changes and adaptation to novel environments. The goldfish Carassius auratus with sexual diploids and unisexual triploids coexisting in natural waters is one of the most widespread invasive fishes in Tibet, providing an ideal model to study evolutionary processes during invasion in different reproductive forms from the same vertebrate. Here, using whole-genome resequencing data of 151 C. auratus individuals from invasive and native ranges, we found different patterns of genomic responses between diploid and triploid populations during their invasion of Tibet. For diploids, although invasive individuals derived from two different genetically distinct sources had a relative higher diversity (π) at the population level, their individual genetic diversity (genome-wide observed heterozygosity) was significantly lower (21.4%) than that of source individuals. Population structure analysis revealed that the invasive individuals formed a specific genetic cluster distinct from the source populations. Runs of homozygosity analysis showed low inbreeding only in invasive individuals, and only the invasive population experienced a recent decline in effective population size reflecting founder events. For triploids, however, invasive populations showed no loss of individual genetic diversity and no genetic differentiation relative to source populations. Regions of putative selective sweeps between invasive and source populations of diploids mainly involved genes associated with mannosidase activity and embryo development. Our results suggest that invasive diploids deriving from distinct sources still lost individual genetic diversity resulting from recent inbreeding and founder events and selective sweeps, and invasive triploids experienced no change in genetic diversity owing to their reproduction mode of gynogenesis that precludes inbreeding and founder effects and may make them more powerful invaders.


Subject(s)
Diploidy , Goldfish , Animals , Goldfish/genetics , Triploidy , Altitude , Biological Evolution , Genetic Variation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL