Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 318
Filter
Add more filters

Publication year range
1.
J Appl Microbiol ; 135(1)2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38140942

ABSTRACT

AIMS: To evaluate the capacity of fourteen sesquiterpenes to enhance the action of known antibiotics against two ß-lactam resistant strains, and to determine a possible mechanism of antibiotic sensitization by assessing their ability to inhibit a ß-lactamase enzyme. METHODS AND RESULTS: The broth microdilution method was used to determine the minimum inhibitory concentration (MIC) of ß-lactams cefuroxime (CEFM) and cefepime (CPM) against Staphylococcus aureus 23MR and Escherichia coli 82MR strains in the absence and presence of subinhibitory concentrations of fourteen natural sesquiterpenes. (1R,4R)-4H-1,2,3,4-tetrahydro-1-hydroxycadalen-15-oic acid (5), xerantolide (8), estafiatin (11), and ambrosin (12) exhibited the best sensitizing effects in both strains. These compounds were able to reduce the MIC of CEFM by 2-fold (from 15.0 to 7.5 µg/mL) and CPM by 15-fold (from 0.9 to 0.06 µg/mL) in S. aureus 23MR. For E. coli 82MR, the MIC of CEFM was reduced up to 8-fold (from 120.0 to 15.0 µg/mL). In this strain, the activity of 8 and 11 surpassed that of clavulanic acid (positive reference), which reduced the MIC of CEFM from 120.0 to 60.0 µg/mL. To elucidate a possible mechanism of antibiotic sensitization, molecular docking studies were conducted with ß-lactamases. These studies revealed an affinity with the enzymes (energies > -4.93 kcal/mol) by the formation of hydrogen bonds with certain conserved amino acid residues within the active sites. However, the in vitro results indicated only marginal inhibition, with percentages <50%. CONCLUSIONS: The bioevaluations indicate that nine of fourteen sesquiterpenes enhance the action of CEFM and CPM against the ß-lactam resistant strains, and these compounds displayed moderate activity as inhibitors of ß-lactamase.


Subject(s)
Escherichia coli , beta-Lactamase Inhibitors , beta-Lactamase Inhibitors/pharmacology , Staphylococcus aureus/metabolism , Molecular Docking Simulation , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , beta-Lactams/pharmacology , Microbial Sensitivity Tests , beta-Lactamases/genetics , beta-Lactamases/metabolism
2.
Chem Biodivers ; 21(3): e202302023, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38314937

ABSTRACT

Sesquiterpene lactones are an important class of secondary metabolites frequently isolated from Lessingianthus genus that present a variety of biological properties, such as antimalarial, anti-inflammatory, antileishmanial, antitrypanosomal and anticancer. The limited phytochemical studies and the importance of this class of compounds isolated from Lessingianthus led us to study this genus. In this work, we focused on the phytochemical investigation and dereplication based on UHPLC-HRMS/MS and molecular networking of L. rubricaulis. Chemical investigation resulted in the isolation of several hirsutinolide-type sesquiterpene lactones including a new hirsutinolide derivative, 8,10α-hydroxy-1,13-bis-O-methylhirsutinolide, besides a cadinanolide and flavonoids. The dereplication study resulted in the identification of three known flavonoids, six known hirsutinolides and two known cadinanolides. Moreover, a fragmentation pathway for cadinanolide-type sesquiterpene lactones was proposed. These results contribute to chemotaxonomic studies and demonstrates the potential of Lessingianthus genus.


Subject(s)
Asteraceae , Sesquiterpenes , Asteraceae/chemistry , Flavonoids/pharmacology , Phytochemicals , Sesquiterpenes/chemistry , Lactones/chemistry
3.
Chem Biodivers ; : e202401063, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38924351

ABSTRACT

In the process of searching for anti-breast cancer agents, five sesquiterpene lactones (1-5), including two previously undescribed ones, yjaponica B-C (1-2), were isolated from the herb of Youngia japonica. Their structures were elucidated by spectroscopic data analyses and Marfey's method. Cytotoxic activities of all compounds against A549, U87, and 4T1 cell lines were tested using the CCK8 assay. The result showed that compound 3 possessed the highest cytotoxic activity against 4T1 cells with an IC50 value of 10.60 µM. Furthermore, compound 3 distinctly induced apoptosis, inhibited immigration, and blocked the cell cycle of 4T1 cells. In addition, compound 3 induced the production of reactive oxygen species. Further anticancer mechanism studies showed that compound 3 significantly upregulated expression of the cleaved caspase 3 and PARP, whereas it downregulated the expression of Bcl-2, cyclin D1, cyclin A2, CDK4, and CDK2. Taken together, our results demonstrate that compound 3 has a high potential of being used as a leading compound for the discovery of new anti-breast cancer agent.

4.
J Asian Nat Prod Res ; : 1-8, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963349

ABSTRACT

The preliminary study revealed that the ethyl acetate eluate of Youngia japonica (YJ-E) could inhibit the expression of key proteins of p-p65, p-IκBα, p-IKKα/ß, and p-AKT in LPS stimulated BV2 cell. Further phytochemical study led to the isolation of eight compounds from YJ-E, including one new sesquiterpene lactone. Their structures were elucidated by several spectroscopic data, and comparing the NMR data of known compound. In addition, all of the isolates were evaluated for the anti-inflammatory effect. As a result, compounds 3 and 4 distinctly attenuated the expressions of p-IκBα, p-p65, and p-AKT in LPS stimulated BV2 cell, respectively.

5.
Molecules ; 29(2)2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38257306

ABSTRACT

Hepatocellular carcinoma (HCC), one of the most common malignant cancers with a low 5-year survival rate, is the third leading cause of cancer-related deaths worldwide. The finding of novel agents and strategies for the treatment of HCC is an urgent need. Sesquiterpene lactones (SLs) have attracted extensive attention because of their potent antitumor activity. In this study, a new series of SL derivatives (3-18) were synthesized using epimers 1 and 2 as parent molecules, isolated from Sphagneticola trilobata, and evaluated for their anti-HCC activity. Furthermore, the structures of 4, 6, and 14 were confirmed by X-ray single-crystal diffraction analyses. The cytotoxic activities of 3-18 on two HCC cell lines, including HepG2 and Huh7, were evaluated using the CCK-8 assay. Among them, compound 10 exhibited the best activity against the HepG2 and Huh7 cell lines. Further studies showed that 10 induced cell apoptosis, arrested the cell cycle at the S phase, and induced the inhibition of cell proliferation and migration in HepG2 and Huh7. In addition, absorption, distribution, metabolism, and excretion (ADME) properties prediction showed that 10 may possess the properties to be a drug candidate. Thus, 10 may be a promising lead compound for the treatment of HCC.


Subject(s)
Butyrates , Carcinoma, Hepatocellular , Furans , Liver Neoplasms , Sesquiterpenes , Humans , Carcinoma, Hepatocellular/drug therapy , Isobutyrates , Liver Neoplasms/drug therapy , Sesquiterpenes/pharmacology , Lactones/pharmacology
6.
Inflammopharmacology ; 32(2): 1489-1498, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37962696

ABSTRACT

Ten sesquiterpene lactones isolated from Anvillea garcinii (Burm.f.) DC ethanolic extract were assessed for their anti-inflammatory potential by myeloperoxidase (MPO) activity assignment, and mice paw swelling model. 3α,4α-10ß-trihydroxy-8α-acetyloxyguaian-12,6α-olide (1), epi-vulgarin (3), 9a-hydroxyparthenolide (4), garcinamine C (7), garcinamine D (8), garcinamine E (9), and 4, 9-dihydroxyguaian-10(14)-en-12-olide (10) showed explicit anti-inflammatory activity in rodent paw edema and MPO assignment. The findings of this study showed that the α-methylene γ-lactone moiety does not always guarantee an anti-inflammatory effect, but the presence of proline at the C3 of the lactone ring improves the binding of sesquiterpene lactones with MPO isoenzymes, resulting in a more potent inhibition.


Subject(s)
Sesquiterpenes, Guaiane , Sesquiterpenes , Mice , Animals , Sesquiterpenes, Guaiane/pharmacology , Anti-Inflammatory Agents/pharmacology , Sesquiterpenes/pharmacology , Lactones/pharmacology
7.
Molecules ; 29(4)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38398567

ABSTRACT

Asteraceae (Compositae), commonly known as the sunflower family, is one of the largest plant families in the world and includes several species with pharmacological properties. In the search for new antiviral candidates, an in vitro screening against dengue virus (DENV) was performed on a series of dichloromethane and methanolic extracts prepared from six Asteraceae species, including Acmella bellidioides, Campuloclinium macrocephalum, Grindelia pulchella, Grindelia chiloensis, Helenium radiatum, and Viguiera tuberosa, along with pure phytochemicals isolated from Asteraceae: mikanolide (1), eupatoriopicrin (2), eupahakonenin B (3), minimolide (4), estafietin (5), 2-oxo-8-deoxyligustrin (6), santhemoidin C (7), euparin (8), jaceidin (9), nepetin (10), jaceosidin (11), eryodictiol (12), eupatorin (13), and 5-demethylsinensetin (14). Results showed that the dichloromethane extracts of C. macrocephalum and H. radiatum and the methanolic extracts prepared from C. macrocephalum and G. pulchella were highly active and selective against DENV-2, affording EC50 values of 0.11, 0.15, 1.80, and 3.85 µg/mL, respectively, and SIs of 171.0, 18.8, >17.36, and 64.9, respectively. From the pool of phytochemicals tested, compounds 6, 7, and 8 stand out as the most active (EC50 = 3.7, 3.1, and 6.8 µM, respectively; SI = 5.9, 6.7, and >73.4, respectively). These results demonstrate that Asteraceae species and their chemical constituents represent valuable sources of new antiviral molecules.


Subject(s)
Asteraceae , Sesquiterpenes , Plant Extracts/pharmacology , Plant Extracts/chemistry , Asteraceae/chemistry , Methylene Chloride , Phytochemicals/pharmacology , Antiviral Agents/pharmacology , Sesquiterpenes/chemistry
8.
Molecules ; 29(12)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38930831

ABSTRACT

In recent years, researchers have often encountered the significance of the aberrant metabolism of tumor cells in the pathogenesis of malignant neoplasms. This phenomenon, known as the Warburg effect, provides a number of advantages in the survival of neoplastic cells, and its application is considered a potential strategy in the search for antitumor agents. With the aim of developing a promising platform for designing antitumor therapeutics, we synthesized a library of conjugates of 3,5-bis(arylidene)-4-piperidone and sesquiterpene lactones. To gain insight into the determinants of the biological activity of the prepared compounds, we showed that the conjugates of 3,5-bis(arylidene)-4-piperidone and sesquiterpene lactones, which are cytotoxic agents, demonstrate selective activity toward a number of tumor cell lines with glycolysis-inhibiting ability. Moreover, the results of molecular and in silico screening allowed us to identify these compounds as potential inhibitors of the pyruvate kinase M2 oncoprotein, which is the rate-determining enzyme of glycolysis. Thus, the results of our work indicate that the synthesized conjugates of 3,5-bis(arylidene)-4-piperidone and sesquiterpene lactones can be considered a promising platform for designing selective cytotoxic agents against the glycolysis process, which opens new possibilities for researchers involved in the search for antitumor therapeutics among compounds containing piperidone platforms.


Subject(s)
Antineoplastic Agents , Lactones , Piperidones , Sesquiterpenes , Humans , Sesquiterpenes/pharmacology , Sesquiterpenes/chemistry , Lactones/chemistry , Lactones/pharmacology , Lactones/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Cell Line, Tumor , Piperidones/pharmacology , Piperidones/chemistry , Glycolysis/drug effects , Cell Proliferation/drug effects , Molecular Docking Simulation , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Drug Screening Assays, Antitumor
9.
World J Microbiol Biotechnol ; 40(8): 254, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916754

ABSTRACT

Sesquiterpenes and tetraterpenes are classes of plant-derived natural products with antineoplastic effects. While plant extraction of the sesquiterpene, germacrene A, and the tetraterpene, lycopene suffers supply chain deficits and poor yields, chemical synthesis has difficulties in separating stereoisomers. This review highlights cutting-edge developments in producing germacrene A and lycopene from microbial cell factories. We then summarize the antineoplastic properties of ß-elemene (a thermal product from germacrene A), sesquiterpene lactones (metabolic products from germacrene A), and lycopene. We also elaborate on strategies to optimize microbial-based germacrene A and lycopene production.


Subject(s)
Antineoplastic Agents , Lycopene , Sesquiterpenes, Germacrane , Lycopene/metabolism , Sesquiterpenes, Germacrane/metabolism , Antineoplastic Agents/metabolism , Humans , Carotenoids/metabolism , Carotenoids/chemistry , Sesquiterpenes/metabolism , Biosynthetic Pathways
10.
Chem Biodivers ; 20(4): e202300079, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36914847

ABSTRACT

Six undescribed germacrane-type sesquiterpene lactones, millefoliumons A-F, and two known analogs were isolated from the ethyl acetate fraction of the whole plant of Achillea millefolium L. growing in Xinjiang, China. The structures of these compounds were fully elucidated by their 1D and 2D nuclear magnetic resonance (NMR), and high resolution mass (HR-ESI-MS) spectral data, and comparison with literatures. The absolute configurations of millefoliumons A-F were confirmed by experimental and calculated electronic circular dichroism data (ECD), and 13 C-NMR calculations and DP4+ probability analysis. All compounds displayed the approximate tendency to inhibit the nitric oxide (NO) release in lipopolysaccharide (LPS)-induced BV2 cells.


Subject(s)
Achillea , Anti-Inflammatory Agents , Sesquiterpenes, Germacrane , Achillea/chemistry , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Lactones/pharmacology , Lactones/chemistry , Molecular Structure , Sesquiterpenes/pharmacology , Sesquiterpenes/chemistry , Sesquiterpenes, Germacrane/pharmacology , Sesquiterpenes, Germacrane/chemistry
11.
Molecules ; 28(3)2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36770909

ABSTRACT

Sesquiterpene lactone (SL) subtypes including hirsutinolide and cadinanolide have a controversial genesis. Metabolites of these classes are either described as natural products or as artifacts produced via the influence of solvents, chromatographic mobile phases, and adsorbents used in phytochemical studies. Based on this divergence, and to better understand the sensibility of these metabolites, different pH conditions were used to prepare semisynthetic SLs and evaluate the anti-inflammatory and antiproliferative activities. Therefore, glaucolide B (1) was treated with various Brønsted-Lowry and Lewis acids and bases-the same approach was applied to some of its derivatives-allowing us to obtain 14 semisynthetic SL derivatives, 10 of which are hereby reported for the first time. Hirsutinolide derivatives 7a (CC50 = 5.0 µM; SI = 2.5) and 7b (CC50 = 11.2 µM; SI = 2.5) and the germacranolide derivative 8a (CC50 = 3.1 µM; SI = 3.0) revealed significant cytotoxic activity and selectivity against human melanoma SK-MEL-28 cells when compared with that against non-tumoral HUVEC cells. Additionally, compounds 7a and 7c.1 showed strongly reduced interleukin-6 (IL-6) and nitrite (NOx) release in pre-treated M1 macrophages J774A.1 when stimulated with lipopolysaccharide. Despite the fact that hirsutinolide and cadinanolide SLs may be produced via plant metabolism, this study shows that acidic and alkaline extraction and solid-phase purification processes can promote their formation.


Subject(s)
Antineoplastic Agents , Sesquiterpenes , Humans , Sesquiterpenes/pharmacology , Sesquiterpenes/chemistry , Anti-Inflammatory Agents/pharmacology , Lactones/pharmacology , Lactones/chemistry
12.
Molecules ; 28(2)2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36677732

ABSTRACT

Centaurea is a genus compromising over 250 herbaceous flowering species and is used traditionally to treat several ailments. Among the Egyptian Centaurea species, C. lipii was reported to be cytotoxic against multidrug-resistant cancer cells. In this context, we aimed to explore the metabolome of C. lipii and compare it to other members of the genus in pursuance of identifying its bioactive principles. An LC-MS/MS analysis approach synchronized with feature-based molecular networks was adopted to offer a holistic overview of the metabolome diversity of the Egyptian Centaurea species. The studied plants included C. alexandrina, C. calcitrapa, C. eryngioides, C. glomerata, C. lipii, C. pallescens, C. pumilio, and C. scoparia. Their constitutive metabolome showed diverse chemical classes such as cinnamic acids, sesquiterpene lactones, flavonoids, and lignans. Linking the recorded metabolome to the previously reported cytotoxicity identified sesquiterpene lactones as the major contributors to this activity. To confirm our findings, bioassay-guided fractionation of C. lipii was adopted and led to the isolation of the sesquiterpene lactone cynaropicrin with an IC50 of 1.817 µM against the CCRF-CEM leukemia cell line. The adopted methodology highlighted the uniqueness of the constitutive metabolome of C. lipii and determined the sesquiterpene lactones to be the responsible cytotoxic metabolites.


Subject(s)
Antineoplastic Agents , Centaurea , Sesquiterpenes , Plant Extracts/chemistry , Chromatography, Liquid , Drug Resistance, Multiple , Egypt , Drug Resistance, Neoplasm , Tandem Mass Spectrometry , Centaurea/chemistry , Phytochemicals/pharmacology , Sesquiterpenes/chemistry , Lactones/chemistry
13.
Molecules ; 28(3)2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36771031

ABSTRACT

The recovery of bioactive compounds from crop byproducts leads to a new perspective way of waste reutilization as a part of the circular economy. The present study aimed at an exhaustive metabolite profile characterization of globe artichoke and cauliflower byproducts (leaves, stalks, and florets for cauliflower only) as a prerequisite for their valorization and future implementations. The metabolite profile of aqueous and organic extracts of byproducts was analyzed using the NMR-based metabolomics approach. Free amino acids, organic acids, sugars, polyols, polyphenols, amines, glucosinolates, fatty acids, phospho- and galactolipids, sterols, and sesquiterpene lactones were identified and quantified. In particular, globe artichoke byproducts are a source of health-beneficial compounds including chiro-inositol (up to 10.1 mg/g), scyllo-inositol (up to 1.8 mg/g), sesquiterpene lactones (cynaropicrin, grosheimin, dehydrocynaropicrin, up to 45.5 mg/g in total), inulins, and chlorogenic acid (up to 7.5 mg/g), whereas cauliflower byproducts enclose bioactive sulfur-containing compounds S-methyl-L-cysteine S-oxide (methiin, up to 20.7 mg/g) and glucosinolates. A variable content of all metabolites was observed depending on the crop type (globe artichoke vs. cauliflower) and the plant part (leaves vs. stalks). The results here reported can be potentially used in different ways, including the formulation of new plant biostimulants and food supplements.


Subject(s)
Cynara scolymus , Sesquiterpenes , Cynara scolymus/chemistry , Phenols/chemistry , Conservation of Energy Resources , Glucosinolates/metabolism , Lactones/chemistry , Sesquiterpenes/chemistry , Plant Extracts/chemistry
14.
Molecules ; 28(7)2023 Mar 23.
Article in English | MEDLINE | ID: mdl-37049671

ABSTRACT

Phytochemical investigation of the aerial parts of Artemisia heptapotamica Poljak led to the isolation of ten known compounds, including four alkyl p-coumarates: octadecyl trans-p-coumarate (1), icosy trans-p-coumarate (2), docosyl trans-p-coumarate (3), and tetracosyl trans-p-coumarate (4), one sesquiterpene lactone: santonin (5), four flavonoids; axillarin (6), quercetin 3-O-methyl ether (7), luteolin (8), and quercetin (9), and one phenolic acid derivative: p-coumaric acid (10). The structures of the isolated compounds were identified by various spectroscopic analyses. Additionally, the antimicrobial activity of the total extract and different fractions was screened, and they exhibited no inhibition of the growth of Candida albicans, C. neoformans, Aspergillus fumigatus, methicillin-resistant Staphylococcus aureus (MRS), E. coli, Pseudomonas aeruginosa, Klebsiella pneumonia, and Vancomycin-resistant Enterococci (VRE) at the tested concentrations ranging from 8 to 200 µg/mL. The identification and tentative characterization of the secondary metabolites were conducted using LC-QToF analysis. This method helps in the putative characterization of sesquiterpene lactones, flavonoids, coumarate derivatives, and aliphatic compounds. The developed method identified 43 compounds, of which the majority were sesquiterpene lactones, such as eudesmanolides, germacranolides, and guaianolide derivatives, followed by flavonoids. The proposed LC-QToF method helps develop dereplication strategies and understand the major class of chemicals before proceeding with the isolation of compounds.


Subject(s)
Artemisia , Methicillin-Resistant Staphylococcus aureus , Sesquiterpenes , Artemisia/chemistry , Escherichia coli , Plant Extracts/pharmacology , Plant Extracts/chemistry , Phytochemicals/pharmacology , Lactones/chemistry , Sesquiterpenes/chemistry , Flavonoids
15.
Molecules ; 28(11)2023 May 27.
Article in English | MEDLINE | ID: mdl-37298857

ABSTRACT

Arnica montana is a valuable plant with high demand on the pharmaceutical and cosmetic market due to the presence of helenalin (H) and 11α, 13-dihydrohelenalin (DH) sesquiterpene lactones (SLs), with many applications and anti-inflammatory, anti-tumor, analgesic and other properties. Despite the great importance of these compounds for the protection of the plant and their medicinal value, the content of these lactones and the profile of the compounds present within individual elements of florets and flower heads have not been studied so far, and attempts to localize these compounds in flower tissues have also not been conducted. The three studied Arnica taxa synthesize SLs only in the aerial parts of plants, and the highest content of these substances was found in A. montana cv. Arbo; it was lower in wild species, and a very small amount of H was produced by A. chamissonis. Analysis of dissected fragments of whole inflorescences revealed a specific distribution pattern of these compounds. The lactones content in single florets increased from the top of the corolla to the ovary, with the pappus calyx being a significant source of their production. Histochemical tests for terpenes and methylene ketones indicated the colocalization of lactones with inulin vacuoles.


Subject(s)
Arnica , Sesquiterpenes , Arnica/chemistry , Lactones/chemistry , Plant Extracts/chemistry , Flowers/chemistry , Anti-Inflammatory Agents, Non-Steroidal/analysis , Sesquiterpenes/chemistry
16.
Physiol Mol Biol Plants ; 29(1): 87-91, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36733833

ABSTRACT

Saussurea costus (Asteraceae) commonly known as kuth, is an important medicinal plant with a rich repository of medicinally valuable compounds. During the present study, pharmacologically important sesquiterpene lactones namely costunolide, dehydrocostus lactone, betulinic acid and syringin were isolated from different plant extracts. Furthermore, the elicitation effect of jasmonic acid (JA) and different light regiments on the accumulation of secondary metabolites (costunolide and dehydrocostus lactone) was evaluated using HPLC. There was an increase in amount of costunolide and dehydrocostus lactone compared to control after 96 h of treatment with JA and continuous light. The amount of costunolide after 96 h was maximum 6.47 mg/g DW in response to JA as compared to control which was found to be 1.7 mg/g DW. Similarly, the concentration of dehydrocostus lactone after 96 h showed maximum accumulation of compound 4.7 mg/g DW in response to continuous light. The in vitro response in MS medium augmented with BAP (4 mg/l) produces friable and creamish coloured callus, however, number of days increased from 10 to 22 days with 70% culture response. Also, Agrobacterium rhizogenes strain LBA9402 was found to be most effective strain for the establishment of hairy root cultures among all the strains used. The genomic DNA was used as template in PCR to amplify rolB gene which confirmed the efficient transformation of the roots. Additionally, total metabolite content of in vitro raised hairy roots of S. costus was significantly higher than the field grown plants. The production of secondary metabolites through elicitation and hairy roots can serve as a potential tool for the conservation action programme in S. costus. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-022-01270-9.

17.
Saudi Pharm J ; 31(6): 773-782, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37228323

ABSTRACT

Two cytotoxic sesquiterpene lactones, 17-epichlorohyssopifolin A (1) and chlorjanerin (2), and a monoterpene lactone, loliolide (3) were isolated from Centaurea pseudosinaica. The cytotoxicity of the total extract and terpenoids 1-3 were evaluated against three human cancer cells (HepG2, PC-3, and HT-29), along with the human normal primary epidermal keratinocytes (HEKa) cells. With IC50 values ranging between 0.6 ± 0.04 and 5.0 ± 0.61 µg/mL against HepG2; 0.2 ± 0.01 and 11.9 ± 1.31 µg/mL against PC-3, and 0.04 ± 0.013 and 8.9 ± 0.97 µg/mL against HT-29, the total extract, and lactones 1-3 demonstrated cytotoxic effects. Compound 1 displayed the strongest impact on all cancer cells and a slightly safe effect on the normal cells HEKa. Compound 1 caused accumulation of HepG2 and HT-29 cells in G1 phase as displayed cell cycle analysis. On the other hand, the cell distributions were increased in the S phase in PC-3 cells. Furthermore, 1 caused apoptosis in PC-3 and HePG2 cells with 91.50%, and 79.72 %, respectively. A higher fraction of necrotic cells was observed in HT-29 cells amounting to 23.60%. These results suggested that the promising cytotoxicity exhibited by 1 is brought by the apoptosis induction in the cancer cells, which were evaluated. As the compounds showed antiproliferative effect against the HT-29 cells, the docking simulation was performed aiming at determining how they would interact with the EGFR enzyme, whose PDB: 4I23 is considered one of the two distinct wild types of EGFR enzymes. The antibacterial activity results revealed that 3 showed the most remarkable antibacterial effects, especially against the examined Gram-positive bacteria. The total extract exhibited potent activity against all examined bacteria. The total extract showed a potent antifungal effect against two Candida and two Aspergillus pathogens. The antioxidant activity revealed the potency of the total extract and 3 as antioxidant candidates. The obtained results refer to the importance of Centaurea pseudosinaica as a source of potent antiproliferative agents and the whole plant as an antipathogenic and antioxidant agent.

18.
Int J Mol Sci ; 23(19)2022 Sep 23.
Article in English | MEDLINE | ID: mdl-36232516

ABSTRACT

Inula racemosa Hook. f. (Pushkarmula), a perennial Himalayan herb known for its aromatic and phytopharmaceutical attributes, is not yet explored at genomic/transcriptomic scale. In this study, efforts were made to unveil the global transcriptional atlas underlying organ-specific specialized metabolite biosynthesis by integrating RNA-Seq analysis of 433 million sequenced reads with the phytochemical analysis of leaf, stem, and root tissues. Overall, 7242 of 83,772 assembled nonredundant unigenes were identified exhibiting spatial expression in leaf (3761), root (2748), and stem (733). Subsequently, integration of the predicted transcriptional interactome network of 2541 unigenes (71,841 edges) with gene ontology and KEGG pathway enrichment analysis revealed isoprenoid, terpenoid, diterpenoid, and gibberellin biosynthesis with antimicrobial activities in root tissue. Interestingly, the root-specific expression of germacrene-mediated alantolactone biosynthesis (GAS, GAO, G8H, IPP, DMAP, and KAO) and antimicrobial activities (BZR1, DEFL, LTP) well-supported with both quantitative expression profiling and phytochemical accumulation of alantolactones (726.08 µg/10 mg) and isoalantolactones (988.59 µg/10 mg), which suggests "roots" as the site of alantolactone biosynthesis. A significant interaction of leaf-specific carbohydrate metabolism with root-specific inulin biosynthesis indicates source (leaf) to sink (root) regulation of inulin. Our findings comprehensively demonstrate the source-sink transcriptional regulation of alantolactone and inulin biosynthesis, which can be further extended for upscaling the targeted specialized metabolites. Nevertheless, the genomic resource created in this study can also be utilized for development of genome-wide functionally relevant molecular markers to expedite the breeding strategies for genetic improvement of I. racemosa.


Subject(s)
Anti-Infective Agents , Diterpenes , Inula , Anti-Infective Agents/metabolism , Carbohydrate Metabolism , Diterpenes/chemistry , Gene Expression Profiling , Gene Expression Regulation, Plant , Gene Regulatory Networks , Gibberellins/metabolism , Inula/chemistry , Inulin/metabolism , Lactones , Phytochemicals/analysis , Plant Breeding , Plant Roots/metabolism , Sesquiterpenes, Eudesmane , Terpenes/metabolism , Transcriptome
19.
Int J Mol Sci ; 23(3)2022 Jan 20.
Article in English | MEDLINE | ID: mdl-35163037

ABSTRACT

Despite notable advances in utilising PARP inhibitor monotherapy, many cancers are not PARP inhibitor-sensitive or develop treatment resistance. In this work, we show that the two structurally-related sesquiterpene lactones, a 2-bromobenzyloxy derivative of dehydrosantonin (BdS) and alantolactone (ATL) sensitise p53 wildtype, homologous recombination-proficient cancer cells to low-dose treatment with the PARP inhibitor, olaparib. Exposure to combination treatments of olaparib with BdS or ATL induces cell-cycle changes, chromosomal instability, as well as considerable increases in nuclear area. Mechanistically, we uncover that mitotic errors likely depend on oxidative stress elicited by the electrophilic lactone warheads and olaparib-mediated PARP-trapping, culminating in replication stress. Combination treatments exhibit moderately synergistic effects on cell survival, probably attenuated by a p53-mediated, protective cell-cycle arrest in the G2 cell-cycle phase. Indeed, using a WEE1 inhibitor, AZD1775, to inhibit the G2/M cell-cycle checkpoint further decreased cell survival. Around half of all cancers diagnosed retain p53 functionality, and this proportion could be expected to increase with improved diagnostic approaches in the clinic. Utilising sublethal oxidative stress to sensitise p53 wildtype, homologous recombination-proficient cancer cells to low-dose PARP-trapping could therefore serve as the basis for future research into the treatment of cancers currently refractory to PARP inhibition.


Subject(s)
Lactones/pharmacology , Neoplasms/genetics , Phthalazines/pharmacology , Piperazines/pharmacology , Sesquiterpenes/pharmacology , Tumor Suppressor Protein p53/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Chromosomal Instability , Dose-Response Relationship, Drug , Drug Synergism , Humans , Neoplasms/drug therapy , Oxidative Stress/drug effects , Pyrazoles/pharmacology , Pyrimidinones/pharmacology , Sesquiterpenes, Eudesmane/pharmacology
20.
Molecules ; 27(10)2022 May 22.
Article in English | MEDLINE | ID: mdl-35630799

ABSTRACT

Sesquiterpene lactones (STLs) from the cocklebur Xanthium sibiricum exhibit significant anti-tumor activity. Although germacrene A oxidase (GAO), which catalyzes the production of Germacrene A acid (GAA) from germacrene A, an important precursor of germacrene-type STLs, has been reported, the remaining GAOs corresponding to various STLs' biosynthesis pathways remain unidentified. In this study, 68,199 unigenes were studied in a de novo transcriptome assembly of X. sibiricum fruits. By comparison with previously published GAO sequences, two candidate X. sibiricum GAO gene sequences, XsGAO1 (1467 bp) and XsGAO2 (1527 bp), were identified, cloned, and predicted to encode 488 and 508 amino acids, respectively. Their protein structure, motifs, sequence similarity, and phylogenetic position were similar to those of other GAO proteins. They were most strongly expressed in fruits, according to a quantitative real-time polymerase chain reaction (qRT-PCR), and both XsGAO proteins were localized in the mitochondria of tobacco leaf epidermal cells. The two XsGAO genes were cloned into the expression vector for eukaryotic expression in Saccharomyces cerevisiae, and the enzyme reaction products were detected by gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) methods. The results indicated that both XsGAO1 and XsGAO2 catalyzed the two-step conversion of germacrene A (GA) to GAA, meaning they are unlike classical GAO enzymes, which catalyze a three-step conversion of GA to GAA. This cloning and functional study of two GAO genes from X. sibiricum provides a useful basis for further elucidation of the STL biosynthesis pathway in X. sibiricum.


Subject(s)
Xanthium , Cloning, Molecular , Oxidoreductases/metabolism , Phylogeny , Plant Proteins/metabolism , Sesquiterpenes, Germacrane , Xanthium/genetics
SELECTION OF CITATIONS
SEARCH DETAIL