Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 250
Filter
Add more filters

Publication year range
1.
J Physiol ; 602(12): 2823-2838, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38748778

ABSTRACT

Skeletal muscle dysfunction is a major problem in critically ill patients suffering from sepsis. This condition is associated with mitochondrial dysfunction and increased autophagy in skeletal muscles. Autophagy is a proteolytic mechanism involved in eliminating dysfunctional cellular components, including mitochondria. The latter process, referred to as mitophagy, is essential for maintaining mitochondrial quality and skeletal muscle health. Recently, a fluorescent reporter system called mito-QC (i.e. mitochondrial quality control) was developed to specifically quantify mitophagy levels. In the present study, we used mito-QC transgenic mice and confocal microscopy to morphologically monitor mitophagy levels during sepsis. To induce sepsis, Mito-QC mice received Escherichia coli lipopolysaccharide (10 mg kg-1 i.p.) or phosphate-buffered saline and skeletal muscles (hindlimb and diaphragm) were excised 48 h later. In control groups, there was a negative correlation between the basal mitophagy level and overall muscle mitochondrial content. Sepsis increased general autophagy in both limb muscles and diaphragm but had no effect on mitophagy levels. Sepsis was associated with a downregulation of certain mitophagy receptors (Fundc1, Bcl2L13, Fkbp8 and Phbb2). The present study suggests that general autophagy and mitophagy can be dissociated from one another, and that the characteristic accumulation of damaged mitochondria in skeletal muscles under the condition of sepsis may reflect a failure of adequate compensatory mitophagy. KEY POINTS: There was a negative correlation between the basal level of skeletal muscle mitophagy and the mitochondrial content of individual muscles. Mitophagy levels in limb muscles and the diaphragm were unaffected by lipopolysaccharide (LPS)-induced sepsis. With the exception of BNIP3 in sepsis, LPS administration induced either no change or a downregulation of mitophagy receptors in skeletal muscles.


Subject(s)
Mice, Transgenic , Mitophagy , Muscle, Skeletal , Sepsis , Animals , Sepsis/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Mice , Lipopolysaccharides/pharmacology , Mice, Inbred C57BL , Male , Mitochondria, Muscle/metabolism , Autophagy/physiology
2.
Biochem Biophys Res Commun ; 715: 150001, 2024 06 30.
Article in English | MEDLINE | ID: mdl-38676996

ABSTRACT

The skeletal muscle is a pivotal organ involved in the regulation of both energy metabolism and exercise capacity. There is no doubt that exercise contributes to a healthy life through the consumption of excessive energy or the release of myokines. Skeletal muscles exhibit insulin sensitivity and can rapidly uptake blood glucose. In addition, they can undergo non-shivering thermogenesis through actions of both the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) and small peptide, sarcolipin, resulting in systemic energy metabolism. Accordingly, the maintenance of skeletal muscles is important for both metabolism and exercise. Prolyl isomerase Pin1 is an enzyme that converts the cis-trans form of proline residues and controls substrate function. We have previously reported that Pin1 plays important roles in insulin release, thermogenesis, and lipolysis. However, the roles of Pin1 in skeletal muscles remains unknown. To clarify this issue, we generated skeletal muscle-specific Pin1 knockout mice. Pin1 deficiency had no effects on muscle weights, morphology and ratio of fiber types. However, they showed exacerbated obesity or insulin resistance when fed with a high-fat diet. They also showed a lower ability to exercise than wild type mice did. We also found that Pin1 interacted with SERCA and elevated its activity, resulting in the upregulation of oxygen consumption. Overall, our study reveals that Pin1 in skeletal muscles contributes to both systemic energy metabolism and exercise capacity.


Subject(s)
Energy Metabolism , Muscle, Skeletal , NIMA-Interacting Peptidylprolyl Isomerase , Physical Conditioning, Animal , Sarcoplasmic Reticulum Calcium-Transporting ATPases , Animals , Male , Mice , Diet, High-Fat , Energy Metabolism/genetics , Insulin Resistance , Mice, Inbred C57BL , Mice, Knockout , Muscle, Skeletal/metabolism , NIMA-Interacting Peptidylprolyl Isomerase/metabolism , NIMA-Interacting Peptidylprolyl Isomerase/genetics , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics
3.
Arch Biochem Biophys ; 752: 109881, 2024 02.
Article in English | MEDLINE | ID: mdl-38185233

ABSTRACT

Tropomyosin (Tpm) is a regulatory actin-binding protein involved in Ca2+ activation of contraction of striated muscle. In human slow skeletal muscles, two distinct Tpm isoforms, γ and ß, are present. They interact to form three types of dimeric Tpm molecules: γγ-homodimers, γß-heterodimers, or ßß-homodimers, and a majority of the molecules are present as γß-Tpm heterodimers. Point mutation R91P within the TPM3 gene encoding γ-Tpm is linked to the condition known as congenital fiber-type disproportion (CFTD), which is characterized by severe muscle weakness. Here, we investigated the influence of the R91P mutation in the γ-chain on the properties of the γß-Tpm heterodimer. We found that the R91P mutation impairs the functional properties of γß-Tpm heterodimer more severely than those of earlier studied γγ-Tpm homodimer carrying this mutation in both γ-chains. Since a significant part of Tpm molecules in slow skeletal muscle is present as γß-heterodimers, our results explain why this mutation leads to muscle weakness in CFTD.


Subject(s)
Muscular Diseases , Tropomyosin , Humans , Tropomyosin/chemistry , Muscle, Skeletal/metabolism , Muscular Diseases/genetics , Mutation , Muscle Weakness/metabolism , Actins/genetics , Actins/metabolism
4.
BMC Vet Res ; 20(1): 73, 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38402164

ABSTRACT

BACKGROUND: Telocytes are modified interstitial cells that communicate with other types of cells, including stem cells. Stemness properties render them more susceptible to environmental conditions. The current morphological investigation examined the reactions of telocytes to salt stress in relation to stem cells and myoblasts. The common carp are subjected to salinity levels of 0.2, 6, and 10 ppt. The gill samples were preserved and prepared for TEM. RESULTS: The present study observed that telocytes undergo morphological change and exhibit enhanced secretory activities in response to changes in salinity. TEM can identify typical telocytes. This research gives evidence for the communication of telocytes with stem cells, myoblasts, and skeletal muscles. Telocytes surround stem cells. Telopodes made planar contact with the cell membrane of the stem cell. Telocytes and their telopodes surrounded the skeletal myoblast. These findings show that telocytes may act as nurse cells for skeletal stem cells and myoblasts, which undergo fibrillogenesis. Not only telocytes undergo morphological alternations, but also skeletal muscles become hypertrophied, which receive telocyte secretory vesicles in intercellular compartments. CONCLUSION: In conclusion, the activation of telocytes is what causes stress adaptation. They might act as important players in intercellular communication between cells. It is also possible that reciprocal interaction occurs between telocytes and other cells to adapt to changing environmental conditions.


Subject(s)
Carps , Telocytes , Animals , Salinity , Telocytes/metabolism , Microscopy, Electron, Transmission/veterinary , Muscle, Skeletal , Stem Cells , Myoblasts
5.
Postgrad Med J ; 100(1185): 488-495, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38449066

ABSTRACT

BACKGROUND: The diagnosis of myasthenia gravis (MG) in children remains difficult. Circulating small extracellular vesicle (sEV)-derived miRNAs (sEV-miRNAs) have been recognized as biomarkers of various diseases and can be excreted by different cell types. These biomarker candidates also play a vital role in autoimmune diseases via intercellular communication. METHODS: In the present study, we used sEV isolation and purification methods to extract the plasma-derived sEV-miRNAs from children with MG and healthy controls. A small RNA sequencing analysis confirmed the miRNA expression features in plasma-derived sEVs from MG patients. The miRNA expression analysis in vitro was determined using microarray analysis. The enrichment and network analyses of altered sEV-miRNAs were performed using miRNA databases and Database for Annotation, Visualization, and Integrated Discovery website. Quantitative real-time polymerase chain reaction was performed for validation of sEV-miRNA. The diagnostic power of altered sEV-miRNAs was evaluated using receiver operating characteristic curve analyses. RESULTS: Twenty-four sEV-miRNAs with altered expression level were identified between groups by DESeq2 method. The miRNAs were extracted from the sEVs, which were isolated from human primary skeletal muscle cell culture treated with mAb198. The target genes and enriched pathways of sEV-miRNAs partially overlapped between cell supernatant and plasma samples. The significantly downregulated miR-143-3p was validated in quantitative real-time polymerase chain reaction analysis. CONCLUSIONS: For the first time, we report that plasma-derived sEV-miRNAs may act as novel circulating biomarkers and therapeutic targets in pediatric MG.


Subject(s)
Biomarkers , Extracellular Vesicles , MicroRNAs , Muscle, Skeletal , Myasthenia Gravis , Humans , Myasthenia Gravis/genetics , Myasthenia Gravis/blood , Myasthenia Gravis/diagnosis , Extracellular Vesicles/metabolism , Child , MicroRNAs/blood , Male , Female , Biomarkers/blood , Muscle, Skeletal/metabolism , Case-Control Studies , Adolescent , Real-Time Polymerase Chain Reaction , Circulating MicroRNA/blood
6.
Mar Drugs ; 22(3)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38535454

ABSTRACT

Muscle atrophy is a detrimental and injurious condition that leads to reduced skeletal muscle mass and disruption of protein metabolism. Oyster (Crassostrea nippona) is a famous and commonly consumed shellfish in East Asia and has become a popular dietary choice worldwide. The current investigation evaluated the efficacy of C. nippona against muscle atrophy, which has become a severe health issue. Mammalian skeletal muscles are primarily responsible for efficient metabolism, energy consumption, and body movements. The proteins that regulate muscle hypertrophy and atrophy are involved in muscle growth. C. nippona extracts were enzymatically hydrolyzed using alcalase (AOH), flavourzyme (FOH), and protamex (POH) to evaluate their efficacy in mitigating dexamethasone-induced muscle damage in C2C12 cells in vitro. AOH exhibited notable cell proliferative abilities, promoting dose-dependent myotube formation. These results were further solidified by protein expression analysis. Western blot and gene expression analysis via RT-qPCR demonstrated that AOH downregulated MuRF-1, Atrogin, Smad 2/3, and Foxo-3a, while upregulating myogenin, MyoD, myosin heavy chain expression, and mTOR, key components of the ubiquitin-proteasome and mTOR signaling pathways. Finally, this study suggests that AOH holds promise for alleviating dexamethasone-induced muscle atrophy in C2C12 cells in vitro, offering insights for developing functional foods targeting conditions akin to sarcopenia.


Subject(s)
Crassostrea , Animals , Muscular Atrophy , Dietary Supplements , TOR Serine-Threonine Kinases , Dexamethasone , Mammals
7.
Int J Mol Sci ; 25(18)2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39337421

ABSTRACT

Obesity is a major global health concern. Studies suggest that the gut microflora may play a role in protecting against obesity. Probiotics, including lactic acid bacteria and Bifidobacterium, have garnered attention for their potential in obesity prevention. However, the effects of Bifidobacterium-fermented products on obesity have not been thoroughly elucidated. Bifidobacterium, which exists in the gut of animals, is known to enhance lipid metabolism. During fermentation, it produces acetic acid, which has been reported to improve glucose tolerance and insulin resistance, and exhibit anti-obesity and anti-diabetic effects. Functional foods have been very popular around the world, and fermented milk is a good candidate for enrichment with probiotics. In this study, we aim to evaluate the beneficial effects of milks fermented with Bifidobacterium strains on energy metabolism and obesity prevention. Three Bifidobacterium strains (Bif-15, Bif-30, and Bif-39), isolated from newborn human feces, were assessed for their acetic acid production and viability in milk. These strains were used to ferment milk. Otsuka-Long-Evans Tokushima Fatty (OLETF) rats administered Bif-15-fermented milk showed significantly lower weight gain compared to those in the water group. The phosphorylation of AMPK was increased and the expression of lipogenic genes was suppressed in the liver of rats given Bif-15-fermented milk. Additionally, gene expression related to respiratory metabolism was significantly increased in the soleus muscle of rats given Bif-15-fermented milk. These findings suggest that milk fermented with the Bifidobacterium strain Bif-15 can improve lipid metabolism and suppress obesity.


Subject(s)
Bifidobacterium , Lipid Metabolism , Lipogenesis , Obesity , Animals , Obesity/metabolism , Obesity/microbiology , Bifidobacterium/metabolism , Rats , Humans , Male , Probiotics , Muscle, Skeletal/metabolism , Cultured Milk Products/microbiology , Milk/metabolism , Milk/microbiology , Fermentation , Rats, Inbred OLETF , Liver/metabolism , Energy Metabolism
8.
J Res Med Sci ; 29: 40, 2024.
Article in English | MEDLINE | ID: mdl-39239086

ABSTRACT

Background: Sarcopenia, characterized by reduced muscle strength and mass, is commonly observed in patients with kidney disease. This study aimed to investigate the factors that influence sarcopenia in patients undergoing maintenance hemodialysis (HD patients). Materials and Methods: A case-control study was conducted from 2022 to 2023, involving a total of 137 HD patients receiving regular dialysis. Relevant data were collected, and based on diagnostic criteria, patients were classified into sarcopenia and nonsarcopenia groups. All patients received polysulfone membrane HD at a flow rate of 500 mL/min. Bioelectrical impedance analysis was used to evaluate phase angle (PhA), muscle volume, and body composition. Results: The prevalence of sarcopenia among maintenance HD patients was found to be 40.14%. There was a higher proportion of women (76.36%) with sarcopenia compared to men (P < 0.001). Furthermore, a significant difference was observed in PhA (P < 0.006) between patients undergoing maintenance HD with and without sarcopenia. PhA was positively associated with body mass index, body cell mass, basal metabolic rate, fat-free mass, soft lean mass, and minerals, whereas age and skeletal muscle index showed an inverse significant correlation. Conclusion: Sarcopenia, a condition associated with increased mortality risk, affects a considerable proportion of dialysis patients. It is imperative to urgently identify and develop preventive and therapeutic strategies to counteract the detrimental effects of sarcopenia on the health outcomes of kidney patients.

9.
Curr Issues Mol Biol ; 45(10): 8492-8501, 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37886978

ABSTRACT

ATP, being a well-known universal high-energy compound, plays an important role as a signaling molecule and together with its metabolite adenosine they both attenuate the release of acetylcholine in the neuro-muscular synapse acting through membrane P2 and P1 receptors, respectively. In this work, using a mechanomyographic method, we analyzed the presynaptic mechanisms by which ATP and adenosine can modulate the transduction in the rat m. soleus and m. extensor digitorum longus. N-ethylmaleimide, a G-protein antagonist, prevents the modulating effects of both ATP and adenosine. The action of ATP is abolished by chelerythrin, a specific phospholipase C inhibitor, while the inhibitory effect of adenosine is slightly increased by Rp-cAMPS, an inhibitor of protein kinase A, and by nitrendipine, a blocker of L-type Ca2+ channels. The addition of DPCPX, an A1 receptor antagonist, fully prevents the inhibitory action of adenosine in both muscles. Our data indicate that the inhibitory action of ATP involves metabotropic P2Y receptors and is mediated by phospholipase C dependent processes in rat motor neuron terminals. We suggest that the presynaptic effect of adenosine consists of negative and positive actions. The negative action occurs by stimulation of adenosine A1 receptors while the positive action is associated with the stimulation of adenosine A2A receptors, activation of protein kinase A and opening of L-type calcium channels. The combined mechanism of the modulating action of ATP and adenosine provides fine tuning of the synapse to fast changing conditions in the skeletal muscles.

10.
Genes Cells ; 27(2): 138-144, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34929062

ABSTRACT

Skeletal muscle atrophy is the loss of muscle tissue caused by factors such as inactivity, malnutrition, aging, and injury. In this study, we aimed to investigate whether egg components exert inhibitory effects on muscle atrophy. An egg mix solution was orally administered for 10 consecutive days to male C57BL/6J mice injected with cardiotoxin in the tibialis anterior (TA) muscle. The administration of egg mixture significantly decreased the atrogin-1 and MuRF-1 protein levels, key factors in muscle atrophy, as observed by western blotting. Furthermore, we investigated the effects of egg components such as avidin, lecithin, biotin, 3-sn-phosphatidylcholine, and L-α-phosphatidylcholine on dexamethasone (DEX)-treated C2C12 myotubes. Lecithin, biotin, 3-sn-phosphatidylcholine, and L-α-phosphatidylcholine in egg yolk significantly recovered the diameters of C2C12 myotubes decreased upon DEX application. Avidin did not show such reversal. Biotin, 3-sn-phosphatidylcholine, and L-α-phosphatidylcholine also attenuated atrogin-1 protein expression enhanced by DEX. Our findings reveal that egg yolk components could contribute to the reversal of skeletal muscle atrophy induced by muscle injury.


Subject(s)
Dexamethasone , Muscular Atrophy , Animals , Dexamethasone/metabolism , Male , Mice , Mice, Inbred C57BL , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/pathology , Muscle, Skeletal/metabolism , Muscular Atrophy/chemically induced , Muscular Atrophy/drug therapy , Muscular Atrophy/metabolism , Ubiquitin-Protein Ligases/metabolism
11.
Mol Cell Biochem ; 478(8): 1661-1667, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36471123

ABSTRACT

Statins are known to block cholesterol synthesis in the liver. They also exhibit non-lipid pleiotropic effects due to the inhibition of protein prenylation, thereby modulating various signaling pathways of cellular homeostasis and integrity. Both lipid control and pleiotropic action of statins are clinically used, mainly for treatment of hypercholesterolemia and primary and secondary prevention of cardiovascular diseases. Because the prescription of statins is increasing and statin therapy is often lifelong, in particular in patients with other risk factors, safety issues being associated with polymorbidity and polypragmasia as well as the persistence with and adherence to statins are specific points of attention of clinicians and clinical pharmacologists. Furthermore, because skeletal myocytes have a cholesterol inhibitory sensitivity greater than hepatocytes, a choice of an appropriate statin based on its lipophilicity and the associated likelihood of its side effects on skeletal muscle cells and bone is warranted in such polymorbid patients. These approaches can effectively modulate the risk: benefit ratio and highlight a need for personalized therapy as much as possible, thereby minimizing risk of discontinuation of therapy and poor compliance.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors , Hypercholesterolemia , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Cholesterol , Hypercholesterolemia/chemically induced , Muscle Fibers, Skeletal , Muscle, Skeletal
12.
Clin Chem Lab Med ; 61(10): 1688-1699, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37184941

ABSTRACT

Skeletal muscle tissue (SKM) may be damaged due to mechanical, metabolic, and exertional causes. However, drug-induced myopathy is among the most frequent causes of muscle disease. The clinical picture of drug-induced myopathies may be highly variable. It may present as asymptomatic or mild myalgias, with or without muscle weakness, which are likely underreported. However, it may also appear as chronic myopathy with severe weakness and, rarely, even as massive rhabdomyolysis with acute kidney injury (AKI). Unfortunately, the available biomarkers for SKM injury do not fully meet the needs for satisfactory detection of drug-induced damage, both in clinical and research settings, mainly due to their low sensitivity and specificity. Therefore, the present study proposes a strategy for drug safety monitoring using the available biomarkers of SKM injury. Moreover, we will discuss mechanisms of drug-induced SKM injury, traditional laboratory testing for SKM injury, and novel skeletal myocyte biomarkers under investigation. This can be incredibly useful in both clinical practice and for de-challenge/re-challenge investigational trials where the risk of drug-induced SKM injury is present.


Subject(s)
Acute Kidney Injury , Muscular Diseases , Rhabdomyolysis , Humans , Muscular Diseases/chemically induced , Muscular Diseases/diagnosis , Muscular Diseases/complications , Rhabdomyolysis/chemically induced , Rhabdomyolysis/diagnosis , Muscle, Skeletal/injuries , Biomarkers/metabolism , Acute Kidney Injury/etiology
13.
Cell Mol Life Sci ; 79(12): 608, 2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36441348

ABSTRACT

Hydrogen sulfide (H2S) has been known for years as a poisoning gas and until recently evoked mostly negative associations. However, the discovery of its gasotransmitter functions suggested its contribution to various physiological and pathological processes. Although H2S has been found to exert cytoprotective effects through modulation of antioxidant, anti-inflammatory, anti-apoptotic, and pro-angiogenic responses in a variety of conditions, its role in the pathophysiology of skeletal muscles has not been broadly elucidated so far. The classical example of muscle-related disorders is Duchenne muscular dystrophy (DMD), the most common and severe type of muscular dystrophy. Mutations in the DMD gene that encodes dystrophin, a cytoskeletal protein that protects muscle fibers from contraction-induced damage, lead to prominent dysfunctions in the structure and functions of the skeletal muscle. However, the main cause of death is associated with cardiorespiratory failure, and DMD remains an incurable disease. Taking into account a wide range of physiological functions of H2S and recent literature data on its possible protective role in DMD, we focused on the description of the 'old' and 'new' functions of H2S, especially in muscle pathophysiology. Although the number of studies showing its essential regulatory action in dystrophic muscles is still limited, we propose that H2S-based therapy has the potential to attenuate the progression of DMD and other muscle-related disorders.


Subject(s)
Hydrogen Sulfide , Muscular Dystrophy, Duchenne , Humans , Muscular Dystrophy, Duchenne/drug therapy , Muscular Dystrophy, Duchenne/genetics , Hydrogen Sulfide/therapeutic use , Muscle, Skeletal , Muscle Fibers, Skeletal , Mutation
14.
Anim Biotechnol ; 34(7): 3074-3084, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36244007

ABSTRACT

In diploid organisms, interactions between alleles determine phenotypic variation. In previous experiments, only MYH1F was found to show both ASE (spatiotemporal allele-specific expression) and TRD (allelic transmission ratio distortion) characteristics in the pectoral muscle by comparing the genome-wide allele lists of hybrid populations (F1) of meat- and egg- type chickens. In addition, MYH1F is a member of the MYH gene family, which plays an important role in skeletal muscle and non-muscle cells of animals, but the specific expression and function of this gene in chickens are still unknown. Therefore, qRT-PCR was used to detect the expression of MYH1F in different tissues of chicken. Proliferation and differentiation of chicken skeletal muscle satellite cells (SMSCs) have been detected by transfection of MYH1F-specific small interfering RNA (siRNA). The results showed that the expression of MYH1F in chicken skeletal muscle was higher than that in other tissues. Combined with CCK-8 assay, EdU assay, immunofluorescence, and Western blot Assay, it was found that MYH1F knockdown could significantly suppress the proliferation of chicken SMSCs and depress the differentiation and fusion of the cells. These results suggest that MYH1F plays a critical role in myogenesis in poultry, which is of great significance for exploring the regulatory mechanisms of muscle development and improving animal productivity.


Subject(s)
Chickens , Satellite Cells, Skeletal Muscle , Animals , Chickens/genetics , Cell Differentiation/genetics , Muscle Fibers, Skeletal , Muscle, Skeletal , RNA, Small Interfering , Cell Proliferation/genetics , Muscle Development/physiology
15.
Int J Mol Sci ; 24(20)2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37894813

ABSTRACT

Type 2 diabetes mellitus accounts for about 90% of cases of diabetes and is considered one of the most important problems of our time. Despite a significant number of studies on glucose metabolism, the molecular mechanisms of its regulation in health and disease remain insufficiently studied. That is why non-drug treatment of metabolic disorders is of great relevance, including physical activity. Metabolic changes under the influence of physical activity are very complex and are still difficult to understand. This study aims to deepen the understanding of the effect of physical exercise on metabolic changes in mice with diabetes mellitus. We studied the effect of forced treadmill running on body weight and metabolic parameters in mice with metabolic disorders. We developed a high-fat-diet-induced diabetic model of metabolic disorders. We exposed mice to forced treadmill running for 4 weeks. We determined glucose and insulin levels in the blood plasma biochemically and analyzed Glut-4 and citrate synthase in M. gastrocnemius muscle tissue using Western blotting. The research results show that daily treadmill running has different effects on different age groups of mice with metabolic disorders. In young-age animals, forced running has a more pronounced effect on body weight. At week 12, young obese mice had a 17% decrease in body weight. Body weight did not change in old mice. Moreover, at weeks 14 and 16, the decrease in body weight was more significant in the young mice (by 17%) compared to the old mice (by 6%) (p < 0.05). In older animals, it influences the rate of glucose uptake. At 60 min, the blood glucose in the exercised older mice decreased to 14.46 mmol/L, while the glucose concentration in the non-exercised group remained at 17 mmol/L. By 120 min, in mice subjected to exercise, the blood glucose approached the initial value (6.92 mmol/L) and amounted to 8.35 mmol/L. In the non-exercised group, this difference was 45%. The effects of physical activity depend on the time of day. The greater effect is observed when performing shift training or exercise during the time when animals are passive (light phase). In young mice, light phase training had a significant effect on increasing the content of Glut-4 in muscle tissue (84.3 ± 11.3%, p < 0.05 with control group-59.3 ± 7.8%). In aged mice, shift training caused an increase in the level of Glut-4 in muscle tissue (71.3 ± 4.1%, p < 0.05 with control group-56.4 ± 10,9%). In the group of aged mice, a lower CS level was noticed in all groups in comparison with young mice. It should also be noted that we observed that CS increased during exercise in the group of young mice, especially during light phase training. The CS content in the light phase subgroup (135.8 ± 7.0%) was higher than in the dark phase subgroup (113.3 ± 7.7%) (p = 0.0006). The CS decreased in aged chow-fed mice and increased in the high-fat-fed group. The CS content in the chow diet group (58.2 ± 5.0%) was 38% lower than in the HFD group (94.9 ± 8.8%).


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Physical Conditioning, Animal , Mice , Animals , Blood Glucose/metabolism , Insulin/metabolism , Insulin Resistance/physiology , Diabetes Mellitus, Type 2/metabolism , Photoperiod , Glucose/metabolism , Body Weight/physiology , Diet, High-Fat/adverse effects , Muscle, Skeletal/metabolism , Physical Conditioning, Animal/physiology , Mice, Inbred C57BL
16.
Int J Mol Sci ; 24(17)2023 Sep 02.
Article in English | MEDLINE | ID: mdl-37686405

ABSTRACT

Climate change is a current concern that directly and indirectly affects agriculture, especially the livestock sector. Neonatal piglets have a limited thermoregulatory capacity and are particularly stressed by ambient temperatures outside their optimal physiological range, which has a major impact on their survival rate. In this study, we focused on the effects of thermal stress (35 °C, 39 °C, and 41 °C compared to 37 °C) on differentiating myotubes derived from the satellite cells of Musculus rhomboideus, isolated from two different developmental stages of thermolabile 5-day-old (p5) and thermostable 20-day-old piglets (p20). Analysis revealed statistically significant differential expression genes (DEGs) between the different cultivation temperatures, with a higher number of genes responding to cold treatment. These DEGs were involved in the macromolecule degradation and actin kinase cytoskeleton categories and were observed at lower temperatures (35 °C), whereas at higher temperatures (39 °C and 41 °C), the protein transport system, endoplasmic reticulum system, and ATP activity were more pronounced. Gene expression profiling of HSP and RBM gene families, which are commonly associated with cold and heat responses, exhibited a pattern dependent on temperature variability. Moreover, thermal stress exhibited an inhibitory effect on cell cycle, with a more pronounced downregulation during cold stress driven by ADGR genes. Additionally, our analysis revealed DEGs from donors with an undeveloped thermoregulation capacity (p5) and those with a fully developed thermoregulation capacity (p20) under various cultivation temperature. The highest number of DEGs and significant GO terms was observed under temperatures of 35 °C and 37 °C. In particular, under 35 °C, the DEGs were enriched in insulin, thyroid hormone, and calcium signaling pathways. This result suggests that the different thermoregulatory capacities of the donor piglets determined the ability of the primary muscle cell culture to differentiate into myotubes at different temperatures. This work sheds new light on the underlying molecular mechanisms that govern piglet differentiating myotube response to thermal stress and can be leveraged to develop effective thermal management strategies to enhance skeletal muscle growth.


Subject(s)
Body Temperature Regulation , Muscle Fibers, Skeletal , Sus scrofa , Muscle, Skeletal , Heat-Shock Response , Sus scrofa/growth & development , Sus scrofa/physiology , Transcriptome , Muscle Fibers, Skeletal/physiology , Cold-Shock Response , Animals
17.
Int J Mol Sci ; 24(6)2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36982633

ABSTRACT

The purpose of the study was to assess the impact of single whole-body cryostimulation (WBC) preceding submaximal exercise on oxidative stress and inflammatory biomarkers in professional, male athletes. The subjects (n = 32, age 25.2 ± 37) were exposed to low temperatures (-130 °C) in a cryochamber and then participated in 40 min of exercise (85% HRmax). Two weeks afterwards, the control exercise (without WBC) was performed. Blood samples were taken before the start of the study, immediately after the WBC procedure, after exercise preceded by WBC (WBC exercise) and after exercise without WBC. It has been shown that catalase activity after WBC exercise is lower in comparison with activity after control exercise. The interleukin 1ß (IL-1-1ß) level was higher after control exercise than after WBC exercise, after the WBC procedure and before the start of the study (p < 0.01). The WBC procedure interleukin 6 (IL-6) level was compared with the baseline level (p < 0.01). The level of Il-6 was higher both after WBC exercise and after control exercise compared with the level recorded after the WBC procedure (p < 0.05). Several significant correlations between the studied parameters were shown. In conclusion, the changes in the cytokine concentration in the athletes' blood confirm that body exposition to extremely low temperatures before exercise could regulate the inflammatory reaction course and secretion of cytokines during exercise. A single session of WBC in the case of well-trained, male athletes does not significantly affect the level of oxidative stress indicators.


Subject(s)
Cryotherapy , Cytokines , Humans , Male , Adult , Middle Aged , Cryotherapy/methods , Cross-Over Studies , Interleukin-6 , Physical Exertion , Oxidative Stress , Biomarkers
18.
Int J Mol Sci ; 24(3)2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36768550

ABSTRACT

Duchenne muscular dystrophy (DMD) is caused by the absence of the dystrophin protein and a properly functioning dystrophin-associated protein complex (DAPC) in muscle cells. DAPC components act as molecular scaffolds coordinating the assembly of various signaling molecules including ion channels. DMD shows a significant change in the functioning of the ion channels of the sarcolemma and intracellular organelles and, above all, the sarcoplasmic reticulum and mitochondria regulating ion homeostasis, which is necessary for the correct excitation and relaxation of muscles. This review is devoted to the analysis of current data on changes in the structure, functioning, and regulation of the activity of ion channels in striated muscles in DMD and their contribution to the disruption of muscle function and the development of pathology. We note the prospects of therapy based on targeting the channels of the sarcolemma and organelles for the correction and alleviation of pathology, and the problems that arise in the interpretation of data obtained on model dystrophin-deficient objects.


Subject(s)
Muscular Dystrophy, Duchenne , Mice , Animals , Muscular Dystrophy, Duchenne/metabolism , Dystrophin/metabolism , Sarcolemma/metabolism , Mice, Inbred mdx , Muscle, Skeletal/metabolism , Ion Channels/metabolism , Organelles/metabolism , Homeostasis
19.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 54(3): 552-557, 2023 May.
Article in Zh | MEDLINE | ID: mdl-37248583

ABSTRACT

Objective: To observe the effect of sepsis on skeletal muscle function and to explore the role of skeletal muscle mitochondrial calcium uptake protein 1 (MICU1). Methods: A total of 40 specific-pathogen-free (SPF) healthy male C57BL/6J mice were randomly assigned to 4 groups, a sham operation group (Sham group, n=8), a sepsis modeling 6 h group (cecal ligation and puncture [CLP]-6 h group, n=10), a sepsis modeling 12 h group (CLP-12 h group, n=10), and a sepsis modeling 24 h group (CLP-24 h, n=12). The sepsis model was established by CLP. Mice in the Sham group only underwent laparotomic exploration of the cecum. Another 20 SPF mice were selected. The tibialis anterior muscle on one side was empty-transfected with adeno-associated virus (AAV) as controls (AAV-C), and the tibialis anterior muscle on the other side was transfected with AAV to enhance MICU1 expression (AAV-M). The mice were randomly assigned to two groups, a sham operation group (AAV-C-Sham and AAV-M-Sham, n=8) and a sepsis model 24 h group (AAV-C-CLP and AAV-M-CLP, n=12). The grip strength and compound muscle action potential (CMAP) of the tibialis anterior muscle were measured in each group at the corresponding time points. The levels of inflammatory factors, including tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6), in the skeletal muscle were measured by ELISA. The morphological changes of skeletal muscle cells were observed through H&E staining. The expression levels of MICU1 and muscle atrophy-related proteins, including muscle RING-finger containing protein 1 (MuRF1) and muscle atrophy Fbox protein (MAFbx), were determined by Western blot. The expression levels of MICU1 mRNA in skeletal muscle were determined by RT-qPCR. Results: Compared with mice in the Sham group, mice in the CLP group showed decreased body weight ( P<0.05); their grip strength decreased with the prolongation of CLP modeling time ( P<0.05); the amplitude of CMAP decreased, showing prolonged duration and latency ( P<0.05); the expression levels of inflammatory factors, including TNF-α and IL-6, in skeletal muscle increased gradually ( P<0.05); the fiber diameter and cross-sectional area of skeletal muscle decreased gradually with the prolongation of modeling time ( P<0.05); the protein expression levels of MuRF1and MAFbx proteins increased gradually ( P<0.05); the expression levels of MICU1 protein and mRNA decreased gradually ( P<0.05). There was no significant difference in all indices between AAV-M-Sham and AAV-C-Sham groups ( P>0.05). Compared with mice in the AAV-C-CLP group, mice in the AAV-M-CLP group showed increased grip strength ( P<0.05); the amplitude of CMAP increased, showing shortened duration and latency ( P <0.05); the fiber diameter and cross-sectional area of skeletal muscle increased ( P<0.05); the expression levels of MuRF1and MAFbx decreased ( P<0.05). Conclusion: Sepsis leads to skeletal muscle dysfunction, which is related to the decrease in mitochondrial MICU1 expression.


Subject(s)
Sepsis , Tumor Necrosis Factor-alpha , Mice , Male , Animals , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Calcium/metabolism , Mice, Inbred C57BL , Muscle, Skeletal , Sepsis/complications , Sepsis/metabolism , Muscular Atrophy , Calcium-Binding Proteins , Mitochondrial Membrane Transport Proteins/metabolism
20.
Pol Merkur Lekarski ; 51(5): 521-526, 2023.
Article in English | MEDLINE | ID: mdl-38069853

ABSTRACT

OBJECTIVE: Aim: To determine the aerobic and anaerobic productivity of females from the mountain districts of Zakarpattia region, depending on the component composition of body weight. PATIENTS AND METHODS: Materials and Methods: A comparative analysis of physical health status of females in the post-pubertal period of ontogenesis, was carried out. Physical health status was assessed by indicators of aerobic and anaerobic productivity depending on the component composition of the body, which was determined by impedance measurement. RESULTS: Results: Physical health of females from the mountain districts depends on the component composition of the body, namely: an excellent level of aerobic productivity is observed in females who have a insufficient body weight with a normal relative fat content and a high relative content of skeletal muscles, VО2 max rel > 38 ml·min-1·kg-1; as a result, their physical health exceeds the "critical level" according to H.L. Apanasenko and corresponds to "excellent" according to Ya.P. Pyarnat's criteria. Females from the mountain districts with normal body weight, high relative fat and normal relative skeletal muscle have average level of aerobic performance., i.e., VО2 max rel. is within 28-33 ml∙min-1∙kg-1. As a result, their physical health is below the "critical level". CONCLUSION: Conclusions: "Excellent" and "good" level of aerobic productivity of females from the mountain districts of the Zakarpattia region guarantees "safe health level". Females from mountain districts with a high content of fat component have an "average" level of aerobic performance, which does not provide a "safe health level".


Subject(s)
Body Composition , Humans , Female , Anaerobiosis , Body Weight
SELECTION OF CITATIONS
SEARCH DETAIL