Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nanotechnology ; 33(21)2022 Mar 04.
Article in English | MEDLINE | ID: mdl-35158350

ABSTRACT

Motivated by recent progress in the two-dimensional (2D) materials of group VI elements and their experimental fabrication, we have investigated the stability, optoelectronic and thermal properties of Janusα-Te2S monolayer using first-principles calculations. The phonon dispersion and MD simulations confirm its dynamical and thermal stability. The moderate band gap (∼1.5 eV), ultrahigh carrier mobility (∼103cm2V-1s-1), small exciton binding energy (0.26 eV), broad optical absorption range and charge carrier separation ability due to potential difference (ΔV = 1.07 eV) on two surfaces of Janusα-Te2S monolayer makes it a promising candidate for solar energy conversion. We propose various type-II heterostructures consisting of Janusα-Te2S and other transition metal dichalcogenides for solar cell applications. The calculated power conversion efficiencies of the proposed heterostructures, i.e.α-Te2S/T-PdS2,α-Te2S/BP andα-Te2S/H-MoS2are ∼21%, ∼19% and 18%, respectively. Also, the ultralow value of lattice thermal conductivity (1.16 W m-1K-1) of Janusα-Te2S makes it a promising material for the fabrication of next-generation thermal energy conversion devices.

SELECTION OF CITATIONS
SEARCH DETAIL