Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Brain ; 147(6): 2085-2097, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38735647

ABSTRACT

Biallelic pathogenic variants in the PNPLA6 gene cause a broad spectrum of disorders leading to gait disturbance, visual impairment, anterior hypopituitarism and hair anomalies. PNPLA6 encodes neuropathy target esterase (NTE), yet the role of NTE dysfunction on affected tissues in the large spectrum of associated disease remains unclear. We present a systematic evidence-based review of a novel cohort of 23 new patients along with 95 reported individuals with PNPLA6 variants that implicate missense variants as a driver of disease pathogenesis. Measuring esterase activity of 46 disease-associated and 20 common variants observed across PNPLA6-associated clinical diagnoses unambiguously reclassified 36 variants as pathogenic and 10 variants as likely pathogenic, establishing a robust functional assay for classifying PNPLA6 variants of unknown significance. Estimating the overall NTE activity of affected individuals revealed a striking inverse relationship between NTE activity and the presence of retinopathy and endocrinopathy. This phenomenon was recaptured in vivo in an allelic mouse series, where a similar NTE threshold for retinopathy exists. Thus, PNPLA6 disorders, previously considered allelic, are a continuous spectrum of pleiotropic phenotypes defined by an NTE genotype:activity:phenotype relationship. This relationship, and the generation of a preclinical animal model, pave the way for therapeutic trials, using NTE as a biomarker.


Subject(s)
Phenotype , Animals , Female , Humans , Male , Mice , Acyltransferases , Carboxylic Ester Hydrolases/genetics , Mutation, Missense , Phospholipases/genetics , Retinal Diseases/genetics
2.
Ophthalmic Genet ; 44(6): 530-538, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37732399

ABSTRACT

BACKGROUND: Variants in the patatin-like phospholipase domain containing 6 (PNPLA6) gene cause a broad spectrum of neurological disorders characterized by gait disturbance, visual impairment, anterior hypopituitarism, and hair anomalies. This review examines the clinical, cellular, and biochemical features found across the five PNPLA6-related diseases, with a focus on future questions to be addressed. MATERIALS AND METHODS: A literature review was performed on published clinical reports on patients with PNPLA6 variants. Additionally, in vitro and in vivo models used to study the encoded protein, Neuropathy Target Esterase (NTE), are summarized to lend mechanistic perspective to human diseases. RESULTS: Biallelic pathogenic PNPLA6 variants cause five systemic neurological disorders: spastic paraplegia type 39, Gordon-Holmes, Boucher-Neuhäuser, Laurence-Moon, and Oliver-McFarlane syndromes. PNPLA6 encodes NTE, an enzyme involved in maintaining phospholipid homeostasis and trafficking in the nervous system. Retinal disease presents with a unique chorioretinal dystrophy that is phenotypically similar to choroideremia and Leber congenital amaurosis. Animal and cellular models support a loss-of-function mechanism. CONCLUSIONS: Clinicians should be aware of choroideremia-like ocular presentation in patients who also experience growth defects, motor dysfunction, and/or hair anomalies. Although NTE biochemistry is well characterized, further research on the relationship between genotype and the presence or absence of retinopathy should be explored to improve diagnosis and prognosis.


Subject(s)
Blepharoptosis , Choroideremia , Nervous System Diseases , Retinal Diseases , Animals , Humans , Eye , Retinal Diseases/genetics , Acyltransferases , Phospholipases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL