Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
Add more filters

Publication year range
1.
Pestic Biochem Physiol ; 194: 105504, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37532324

ABSTRACT

Insecticides are widely used as the primary management strategy for controlling Myzus persicae, the devastating pest ravaging various vegetables, fruits, crops, and ornamentals. This study examined the susceptibility of M. persicae field populations to bifenthrin, fosthiazate, acetamiprid, spirotetramat, afidopyropen, and flonicamid while exploring the possible metabolic mechanisms of resistance. The study findings revealed that M. persicae field populations exhibited susceptible-to-moderate resistance to bifenthrin (resistance ratio (RR) = 0.94-19.65) and acetamiprid (RR = 1.73-12.91), low-to-moderate resistance to fosthiazate (RR = 3.67-17.00), and susceptible-to-low resistance to spirotetramat (RR = 0.70-6.68). However, all M. persicae field populations were susceptible to afidopyropen (RR = 0.44-2.25) and flonicamid (RR = 0.40-2.08). As determined by the biochemical assays, carboxylesterases were involved in the resistance cases to bifenthrin and fosthiazate, whereas cytochrome P450 monooxygenases were implicated in the resistance cases to acetamiprid. However, glutathione S-transferases were not implicated in the documented resistance of M. persicae field populations. Overall, the susceptibility of M. persicae field populations to flonicamid and afidopyropen-two unregistered insecticides in Saudi Arabia-suggests their potential as promising chemicals that can expand the various alternatives available for controlling this devastating pest. Although the detected moderate levels of resistance to bifenthrin, fosthiazate, and acetamiprid indicate a shift in the selection pressure of insecticides for M. persicae due to Saudi regulations, which have resulted in eventual obsolescence of conventional insecticides in favor of novel insecticides. Finally, rotational use of aforementioned insecticides can help in managing insecticide resistance in M. persicae.


Subject(s)
Aphids , Insecticides , Animals , Insecticides/pharmacology , Saudi Arabia , Insecticide Resistance
2.
Molecules ; 28(12)2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37375316

ABSTRACT

Spirotetramat is a potential tetronic acid pesticide for controlling various pests with piercing-sucking mouthparts. To clarify its dietary risk on cabbage, we established an ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method and then investigated the residual levels of spirotetramat and its four metabolites in cabbage collected from field experiments under good agricultural practices (GAPs). The average recoveries of spirotetramat and its metabolites in cabbage were 74~110%, while the relative standard deviation (RSD) was 1~6%, and the limit of quantitation (LOQ) was 0.01 mg kg-1. The terminal residue of spirotetramat was in the range of <0.05~0.33 mg kg-1, the chronic dietary risk (RQc) was 17.56%, and the acute dietary risk (RQa) was 0.025~0.049%, which means an acceptable dietary intake risk. This study provides data to guide on the use of spirotetramat and to establish the maximum residue limits (MRLs) of spirotetramat on cabbage.


Subject(s)
Brassica , Pesticide Residues , Chromatography, High Pressure Liquid , Brassica/chemistry , Tandem Mass Spectrometry , Risk Assessment , Pesticide Residues/analysis
3.
Ecotoxicol Environ Saf ; 248: 114257, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36399991

ABSTRACT

The aim of this study was to evaluate the effects of the last generation insecticide spirotetramat (STM) on embryos and larvae of the freshwater prawn Macrobrachium borellii. Both embryos and larvae were exposed to serial dilutions of STM to determine the LC50 values. After 96-h of exposure, live larvae were fixed for histological analysis. In addition, ovigerous females were exposed to a sublethal concentration of STM (1.7 mg/L) for 96 h to evaluate the activity of the enzymes catalase, glutathione-S-transferase, and superoxide dismutase as well as the lipoperoxidation (LPO) and protein oxidation levels in embryos. The larvae showed a high sensitivity to STM evidenced by the LC50-96 h value (0.011 mg/L). On the contrary, the embryos were highly resistant to STM exposure, and no lethal effect was observed in the treatments with high concentrations of this insecticide (LC50-96 h > 150 mg/L). Among all the biochemical parameters evaluated in the embryos exposed to STM, only LPO showed a significant increase compared to controls. This was probably due to a restricted entry of the insecticide through the embryonic coat. Thus, a preliminary study of the structure and permeability of the embryonic coat was carried out in control embryos. The analysis by electron microscopy revealed that its structure is formed by four embryonic envelopes composed of multiple layers while the assay with a fluorescent probe revealed that the embryonic coat increases its permeability during development. STM caused significant histopathological alterations in the hepatopancreas and gills of larvae. This study showed that although the embryos of M. borellii could be protected by the embryonic coat, the larvae are very vulnerable to the STM toxicity. So, it is necessary to continue evaluating the effects of these new pesticides on non-target organisms, such as aquacultured species, to help predict their ecotoxicological risks derived from the increasing agricultural activity developed worldwide.


Subject(s)
Decapoda , Insecticides , Palaemonidae , Pesticides , Female , Animals , Larva , Insecticides/toxicity , Fresh Water , Glutathione Transferase
4.
Pestic Biochem Physiol ; 188: 105282, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36464337

ABSTRACT

Spirotetramat is a novel insecticide and acaricide that can effectively control many species of piercing-sucking pests by inhibiting lipid synthesis. The silkworm is an economically important insect and a model organism for genetics and biochemical research. However, the toxic effect on their development and reproduction remain unclear. In this study, we demonstrated the negative effects of spirotetramat on the development, vitality, silk protein synthesis, and fecundity of silkworm. We also compared expression changes of silkworm genes using digital gene expression (DGE). A total of 1567 differentially expressed genes (DEGs) were detected, of which 874 genes were downregulated and 693 genes were upregulated. Gene Ontology (GO) enrichment analysis showed that the DEGs were enriched in the oxidation-reduction process, oxidoreductase activity, and fatty-acyl-CoA reductase activity. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that the DEGs were mainly enriched in fatty acid metabolism and lysosome pathways. We detected the relative expression of silkworm genes related to fatty acid synthesis and decomposition pathways and the degradation pathway of juvenile hormone by quantitative real-time PCR. The expression levels of Acetyl CoA carboxylase (ACC), fatty acyl-CoA reductase (FACR), Enoyl-CoA hydratase (ECH), very-long-chain (3R)-3-hydroxyacyl-CoA dehydratase (LCHAD), juvenile hormone epoxide hydrolase (JHEH), and phytanoyl-CoA dioxygenase (PCD) genes were downregulated. These data demonstrate the effects of spirotetramat on silkworm and its effects on genes involved in fatty acid metabolism.


Subject(s)
Aza Compounds , Bombyx , Animals , Bombyx/genetics , Aza Compounds/toxicity , Reproduction , Fatty Acids
5.
Int J Mol Sci ; 23(4)2022 Feb 21.
Article in English | MEDLINE | ID: mdl-35216472

ABSTRACT

Chemosensory proteins (CSPs) are a class of transporters in arthropods. Deeper research on CSPs showed that CSPs may be involved in some physiological processes beyond chemoreception, such as insect resistance to pesticides. We identified two upregulated CSPs in two resistant strains of Aphis gossypii Glover. To understand their role in the resistance of aphids to pesticides, we performed the functional verification of CSP1 and CSP4 in vivo and in vitro. Results showed that the sensitivity of the thiamethoxam-resistant strain to thiamethoxam increased significantly with the silencing of CSP1 and CSP4 by RNAi (RNA interference), and the sensitivity of the spirotetramat-resistant strain to spirotetramat increased significantly with the silencing of CSP4. Transgenic Drosophila melanogaster expressing CSPs exhibited stronger resistance to thiamethoxam, spirotetramat, and alpha-cypermethrin than the control did. In the bioassay of transgenic Drosophila, CSPs showed different tolerance mechanisms for different pesticides, and the overexpressed CSPs may play a role in processes other than resistance to pesticides. In brief, the present results prove that CSPs are related to the resistance of cotton aphids to insecticides.


Subject(s)
Aphids/metabolism , Aza Compounds/metabolism , Insecticide Resistance , Membrane Transport Proteins/metabolism , Spiro Compounds/metabolism , Thiamethoxam/metabolism , Animals , Animals, Genetically Modified , Aphids/drug effects , Aphids/physiology , Drosophila melanogaster/genetics , Insect Proteins/metabolism , Insecticides/metabolism
6.
J Environ Sci Health B ; 57(9): 765-773, 2022.
Article in English | MEDLINE | ID: mdl-36093783

ABSTRACT

Research work featured in this article describes the impurity profile of spirotetramat, a widely used broad-spectrum pesticide targeting acetyl-CoA carboxylase. Technical grade spirotetramat from four different sources were analyzed and compared with commercial Movento using UPLC-MS. Seven potential impurities were detected and six of them except for the trans-isomer of spirotetramat were subsequently isolated using preparative HPLC. All impurities were characterized mainly by MS and NMR spectroscopy and their structures were further confirmed by chemical synthesis. The formation of the impurities was described in this report as well.


Subject(s)
Pesticides , Tandem Mass Spectrometry , Acetyl-CoA Carboxylase , Aza Compounds , Chromatography, High Pressure Liquid/methods , Chromatography, Liquid/methods , Drug Contamination , Spiro Compounds , Tandem Mass Spectrometry/methods
7.
Acta Vet Hung ; 2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36129792

ABSTRACT

During plant cultivation, the pesticides can get into the tissue of vegetables due to crop protection processes, and thus into the food chain. Therefore, they constitute a potential risk to the consumer's health. Depletion of pesticides [spirotetramat (Movento), azoxystrobin and difenoconazole (Amistar Top)] was monitored by testing tomatoes treated individually or simultaneously and tomato juices prepared from the treated tomatoes. The investigations aimed to reveal any kinetic interaction between the compounds tested and changes in their elimination, and thus to assess their compliance with the official Maximum Residue Limits (MRLs). The co-presence of pesticides prolonged the elimination of the individual compounds which reached significantly higher residue levels (P < 0.0001) in tomato, especially difenoconazole (45%) and azoxystrobin (50%) on day 8 after treatment that can cause food safety issues to the human consumers. However, the concentrations of pesticides applied alone or simultaneously were found to be below the corresponding MRL values after the withdrawal period in all investigated tomato and tomato juice samples. Accordingly, the investigated pesticides can be safely used simultaneously, their concentrations are in compliance with the legal regulations and thus their concomitant presence does not pose any risk to the consumers' health.

8.
Pestic Biochem Physiol ; 179: 104972, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34802522

ABSTRACT

Long non-coding RNAs (lncRNAs) represent the largest class of non-coding transcripts. They act a pivotal part in various insect developmental processes and stress responses. However, the investigation of lncRNA functions in insecticide resistant remains at an early phase. Herein, we conducted whole-transcriptome RNA sequencing for two cotton aphid (Aphis gossypii Glover) strains, i.e., insecticide-susceptible (SS) and spirotetramat-resistant (SR). We discovered 6059 lncRNAs in the RNA-Seq data, and 874 lncRNAs showed differential expression. In addition, 5 lncRNAs among 874 lncRNAs were predicted as targets of acetyl-CoA carboxylase (ACC). Reverse transcription real-time quantitative PCR (RT-qPCR) combined with RNA interference (RNAi) confirmed that selected ACC lncRNA was related to the expression of ACC. Moreover, we also identified two transcription factors, i.e., C/EBP and C/EBPzeta, that regulate the transcription level of ACC lncRNA. These results provide a good basis for the study of cotton aphid lncRNA functions in insecticide resistance development.


Subject(s)
Aphids , Aza Compounds , RNA, Long Noncoding , Acetyl-CoA Carboxylase/genetics , Animals , Aphids/genetics , Insecticide Resistance/genetics , RNA, Long Noncoding/genetics , Spiro Compounds
9.
Pestic Biochem Physiol ; 166: 104565, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32448419

ABSTRACT

Uridine diphosphate (UDP)-glycosyltransferases (UGTs) catalyze the conjugation of small lipophilic endogenous and exogenous compounds with sugars to produce water-soluble glycosides, playing an important role in insect endobiotic regulation and xenobiotic detoxification. In this study, two UGT-inhibitors, sulfinpyrazone and 5-nitrouracil, significantly increased spirotetramat toxicity against third instar nymphs of resistant Aphis gossypii, whereas there were no synergistic effects in apterous adult aphids, suggesting UGT involvement in spirotetramat resistance in cotton aphids. Furthermore, the UHPLC-MS/MS was employed to determine the content of spirotetramat and its four metabolites (S-enol, S-glu, S-mono, S-keto) in the honeydew of resistant cotton aphids under spirotetramat treatment. No residual spirotetramat was detected in the honeydew, while its four metabolites were detected at a S-enol: S-glu: S-mono: S-keto ratio of 69.30: 6.54: 1.44: 1.00. Therefore, glycoxidation plays a major role in spirotetramat inactivation and excretion in resistant aphids. Compared with the susceptible strain, the transcriptional levels of UGT344M2 were significantly upregulated in nymphs and adults of the resistant strain. RNA interference of UGT344M2 dramatically increased spirotetramat toxicity in nymphs, but no such effect were found in the resistant adult aphids. Overall, UGT-mediated glycoxidation were found to be involved in spirotetramat resistance. The suppression of UGT344M2 significantly increased the sensitivity of resistant nymphs to spirotetramat, suggesting that UGT344M2 upregulation might be associated with spirotetramat detoxification. This study provides an overview of the involvement of metabolic factors, UGTs, in the development of spirotetramat resistance.


Subject(s)
Aphids , Insecticides , Animals , Aza Compounds , Glycosyltransferases , Insecticide Resistance , Spiro Compounds , Tandem Mass Spectrometry , Uridine Diphosphate
10.
Pestic Biochem Physiol ; 169: 104604, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32828380

ABSTRACT

We have studied the mode of action of the insecticide spirotetramat in the nematode Caenorhabditis elegans. A combination of symptomology, forward genetics and genome editing show that spirotetramat acts on acetyl-CoA carboxylase (ACC) in C. elegans, as it does in insects. We found C. elegans embryos exposed to spirotetramat show a cell division defect which closely resembles the phenotype of loss-of-function mutations in the gene pod-2, which encodes ACC. We then identified two mutations in the carboxyl transferase domain of pod-2 (ACC) which confer resistance and were confirmed using CRISPR/Cas9. One of these mutations substitutes an invertebrate-specific amino acid with one ubiquitous in other taxa; this residue may, therefore, be a determinant of the selectivity of spirotetramat for invertebrates. Such a mutation may also be the target of selection for resistance in the field. Our study is a further demonstration of the utility of C. elegans in studying bioactive chemicals.


Subject(s)
Carboxyl and Carbamoyl Transferases , Insecticides , Acetyl-CoA Carboxylase , Animals , Caenorhabditis elegans , Mutation
11.
Bull Environ Contam Toxicol ; 104(1): 149-155, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31784766

ABSTRACT

This study was intended to develop an environment-friendly controlled release system for spirotetramat in an alginate matrix. Four formulations, starch-chitosan-calcium alginate (SCCA), starch-calcium alginate (SCA), chitosan-calcium alginate (CCA), and calcium alginate (CA) complex gel beads, were prepared by the extrusion-exogenous gelation method. The properties of the formulations were studied. The results showed that the release behaviors of the formulations in water could be well described by the logistic model, and the release occurred through Fickian diffusion. Among the four formulations, SCCA showed the highest entrapment efficiency, drug loading and the slowest release rate. Degradation studies revealed that the SCCA formulation exhibited an obvious slower degradation rate of spirotetramat in soils than the commercially available formulation. The estimated half-life of the SCCA formulation was 2.31, 3.25, and 4.51 days in waterloggogenic paddy soil, purplish soil, and montmorillonite, respectively, when the soils were moistened to 60% of its dry weight. This study provided a possible approach to prolong the duration of spirotetramat and to reduce environmental contamination.


Subject(s)
Alginates/chemistry , Aza Compounds/chemistry , Chitosan/chemistry , Spiro Compounds/chemistry , Bentonite , Delayed-Action Preparations , Glucuronic Acid , Hexuronic Acids , Starch
12.
Pestic Biochem Physiol ; 156: 29-35, 2019 May.
Article in English | MEDLINE | ID: mdl-31027578

ABSTRACT

Phenacoccus solenopsis is an economically important insect pest of different agronomic and horticultural field crops. In Pakistan, the cotton crop was severely attacked by P. solenopsis during 2007 and since then a varied group of insecticides are used by farmers to manage this pest. As a result, insecticide resistance has become a barrier in control of P. solenopsis. The current study was designed to explore the basics of genetics, realized heritability and possible genetic mechanisms of resistance against spirotetramat in P. solenopsis. Before selection, the wild population (Wild-Pop) showed 5.97-fold resistance when compared with lab-reared susceptible strain (Susceptible Lab-Pop). The P. solenopsis was selected with spirotetramat to 21 generations, called Spiro-SEL Pop, which showed 463.21-fold resistance as compared with the Susceptible Lab-Pop. The values of LC50 for F1 (Spiro-SEL Pop ♂ × Susceptible Lab-Pop ♀) and F1 (Spiro-SEL Pop ♀ × Susceptible Lab-Pop ♂) populations were statistically similar and values of dominance level were 0.42 and 0.54, respectively. Reciprocal crosses between Susceptible Lab-Pop and Spiro-SEL Pop showed that resistance was of autosomal in nature with incomplete dominant traits. According to the fit test, monogenic model estimation of the number of genes, which are responsible for the development of spirotetramat resistance in a population of P. solenopsis, showed that multiple genes are involved in controlling the resistance levels in tested strains of P. solenopsis. The value of heritability for resistance against spirotetramat was 0.13 in P. solenopsis. Our results suggested the presence of a metabolic-based resistance mechanism associated with the monooxygenases in P. solenopsis, while testing the synergism mechanism. These results will provide the baseline to design an effective control strategy to manage P. solenopsis in the field.


Subject(s)
Aza Compounds/pharmacology , Hemiptera/drug effects , Insecticides/pharmacology , Spiro Compounds/pharmacology , Animals , Biological Assay , Hemiptera/enzymology , Hemiptera/metabolism , Insecticide Resistance , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Pakistan
13.
Biomed Chromatogr ; 32(4)2018 Apr.
Article in English | MEDLINE | ID: mdl-29169203

ABSTRACT

A modified Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) method for the simultaneous determination of spirotetramat and its four metabolite residues in citrus, peel, pulp and soil was developed and validated by liquid chromatography with tandem mass spectrometry (LC-MS/MS). The samples were extracted with acetonitrile (1%, glacial acetic acid, v/v) and purified using primary secondary amine and octadecylsilane. The limit of detection was 0.01-0.13 mg/kg, whereas that of quantification was 0.02-0.40 mg/kg for spirotetramat and its metabolites. The average recoveries of spirotetramat, spirotetramat-enol, spirotetramat-mono-hydroxy, spirotetramat-enol-glucoside and spirotetramat-ketohydroxy in all matrices were 73.33-107.91%, 75.93-114.85%, 76.44-100.78%, 71.46-103.19% and 73.08-105.27%, respectively, with relative standard deviations < 12.32%. The dissipation dynamics of spirotetramat in citrus and soil followed first-order kinetics, with half-lives of 2.3-8.5 days in the three sampling locations. The terminal residues of spirotetramat in four matrices at the three locations were measured below the 1.0 mg/kg maximum residue limit set by China, and residues were found to be concentrated on the peel. The risk assessment of citrus was evaluated using risk quotients. The risk quotient values were found to be significantly <1, suggesting that the risk to human health was negligible when using the recommended doses of spirotetramat in citrus. These results could provide guidance for the safe and proper application of spirotetramat in citrus in China.


Subject(s)
Aza Compounds/analysis , Chromatography, Liquid/methods , Citrus/chemistry , Pesticide Residues/analysis , Soil Pollutants/analysis , Spiro Compounds/analysis , Tandem Mass Spectrometry/methods , Aza Compounds/metabolism , Limit of Detection , Linear Models , Pesticide Residues/metabolism , Reproducibility of Results , Risk Assessment , Soil Pollutants/metabolism , Spiro Compounds/metabolism
14.
Ecotoxicol Environ Saf ; 164: 149-154, 2018 Nov 30.
Article in English | MEDLINE | ID: mdl-30107324

ABSTRACT

As a new tetronic acid derivative insecticide, spirotetramat has been reported to be toxic to an array of aquatic organisms. However, the toxic effects of spirotetramat on zebrafish especially at ovary are still obscure. Hereby, the acute toxicity of spirotetramat towards zebrafish(Danio rerio),as well as the changes on biochemical and histological traits of ovary were investigated. The acute toxicity test results showed that the median lethal concentration (LC50) value of spirotetramat were 9.61 mg/L and 7.21 mg/L at 72 h and 96 h, respectively, suggesting spirotetramat has moderate toxicity to zebrafish. In the following sub-lethal toxicity test, the gene expression of superoxide dismutase (SOD), catalase (CAT), and gonadotropic hormone receptor (FSHR and LHR) together with the content of malondialdehyde (MDA) in ovary were measured at 14, 21, and 28 days after exposure to 36, 360 and 720 µg/L. Under high concentration treatment (360 and 720 µg/L), MDA content, the relative transcription CAT and SOD gene level increased significantly in ovary (p < 0.05). That indicated sub-lethal doses spirotetramat caused oxidative stress and lipid peroxidation in zebrafish ovary during the entire experimental period. Under the exposure to spirotetramat at 720 µg/L after 14 days, the relative transcript FSHR gene level was down regulated, and the relative transcript LHR gene level was up regulated. Moreover, spirotetramat affected the oocyte development especially on the diameter size and maturation during the ovary tissue biopsies at 28 days. Taken together, these findings revealed the adverse effects of spirotetramat on fish from the biochemical and histological aspects.


Subject(s)
Aza Compounds/toxicity , Furans/toxicity , Insecticides/toxicity , Ovary/drug effects , Spiro Compounds/toxicity , Water Pollutants, Chemical/toxicity , Zebrafish , Animals , Catalase/genetics , Catalase/metabolism , Female , Gene Expression Regulation , Lethal Dose 50 , Lipid Peroxidation/drug effects , Malondialdehyde/metabolism , Ovary/metabolism , Ovary/pathology , Oxidative Stress/drug effects , Receptors, LHRH/genetics , Receptors, LHRH/metabolism , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Toxicity Tests, Acute
15.
Insect Mol Biol ; 26(4): 383-391, 2017 08.
Article in English | MEDLINE | ID: mdl-28370744

ABSTRACT

Acetyl-coenzyme A carboxylase (ACC) catalyses the carboxylation of acetyl-coenzyme A (acetyl-CoA) to produce malonyl-CoA during the de novo synthesis of fatty acids. Spirotetramat, an inhibitor of ACC, is widely used to control a range of sucking insects, including the Aphis gossypii. In the present study, Reverse transcription quantitative real-time PCR (RT-qPCR) results demonstrated that ACC was significantly overexpressed in a laboratory-selected spirotetramat-resistant strain compared with the susceptible strain. ACC RNA interference significantly suppressed fecundity and led to cuticle formation deficiencies in resistant adults and nymphs compared with the control. The full-length ACC gene was sequenced from both resistant and susceptible cotton aphids, and a strong association was found between spirotetramat resistance and 14 amino acid substitutions in the biotin carboxylase domain and carboxyl transferase domain of the ACC gene. Furthermore, ACC activity was higher in resistant aphids than in the susceptible strain, and ACC in the resistant aphids exhibited significant insensitivity to spirotetramat and spirotetramat-enol. The results indicate that the overexpressed insensitive (mutated) ACC target played an important role in the high levels of spirotetramat resistance observed here. This association of amino acid substitution with resistance is the first report of a potential target site mechanism affecting spirotetramat in the cotton aphid.


Subject(s)
Acetyl Coenzyme A/metabolism , Aphids/enzymology , Aza Compounds , Insecticides , Spiro Compounds , Acetyl Coenzyme A/genetics , Amino Acid Sequence , Amino Acid Substitution , Animals , Aphids/genetics , Insecticide Resistance/genetics , Molecular Sequence Data , RNA Interference
16.
J Nematol ; 49(2): 133-139, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28706312

ABSTRACT

Root-knot nematodes are important pests of cut foliage crops in Florida. Currently, effective nematicides for control of these nematodes on cut foliage crops are lacking. Hence, research was conducted at the University of Florida to identify pesticides or biopesticides that could be used to manage these nematodes. The research comprised on-farm, field, and greenhouse trials. Nematicide treatments evaluated include commercial formulations of spirotetramat, furfural, and Purpureocillium lilacinum (=Paecilomyces lilacinus) strain 251. Treatment applications were made during the spring and fall seasons according to manufacturer's specifications. Efficacy was evaluated based on J2/100 cm3 of soil, J2/g of root, and crop yield (kg/plot). Unlike spirotetramat, which did not demonstrate any measurable effects on Meloidogyne incognita J2 in the soil, furfural and P. lilacinum were marginally effective in reducing the population density of M. incognita on Pittosporum tobira. However, nematode reduction did not affect yield significantly. Although furfural and P. lilacinum have some potential for management of M. incognita on cut foliage crops, their use as a lone management option would likely not provide the needed level of control. Early treatment application following infestation provided greater J2 suppression compared to late application, suggesting the need for growers to avoid infested fields.

18.
Pestic Biochem Physiol ; 126: 64-9, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26778436

ABSTRACT

A laboratory-selected spirotetramat-resistant strain (SR) of cotton aphid developed 579-fold and 15-fold resistance to spirotetramat in adult aphids and 3rd instar nymphs, respectively, compared with a susceptible strain (SS) [26]. The SR strain developed high-level cross-resistance to alpha-cypermethrin and bifenthrin and very low or no cross-resistance to the other tested insecticides. Synergist piperonyl butoxide (PBO) dramatically increased the toxicity of spirotetramat and alpha-cypermethrin in the resistant strain. RT-qPCR results demonstrated that the transcriptional levels of CYP6A2 increased significantly in the SR strain compared with the SS strain, which was consistent with the transcriptome results [30]. The depletion of CYP6A2 transcripts by RNAi also significantly increased the sensitivity of the resistant aphid to spirotetramat and alpha-cypermethrin. These results indicate the possible involvement of CYP6A2 in spirotetramat resistance and alpha-cypermethrin cross-resistance in the cotton aphid. These together with other cross-resistance results have implications for the successful implementation of resistance management strategies for Aphis gossypii.


Subject(s)
Aphids/drug effects , Aza Compounds/toxicity , Cytochrome P-450 Enzyme System/genetics , Insect Proteins/genetics , Insecticides/toxicity , Spiro Compounds/toxicity , Animals , Aphids/enzymology , Gene Expression Regulation/drug effects , Insecticide Resistance/genetics , Pesticide Synergists/toxicity , Piperonyl Butoxide/toxicity , Pyrethrins/toxicity , RNA Interference
19.
J Insect Sci ; 16(1)2016.
Article in English | MEDLINE | ID: mdl-27271970

ABSTRACT

Fatty acyl-CoA reductases (FARs) are key enzymes involved in fatty alcohol synthesis. Here, we cloned and characterized full-length cDNAs of two FAR genes from the cotton mealybug, Phenacoccus solenopsis. The results showed PsFAR I and PsFAR II cDNAs were 1,584 bp and 1,515 bp in length respectively. Both PsFAR I and PsFAR II were predicted to be located in the endoplasmic reticulum by Euk-mPLoc 2.0 approach. Both of them had a Rossmann folding region and a FAR_C region. Two conservative motifs were discovered in Rossmann folding region by sequence alignment including a NADPH combining motif, TGXXGG, and an active site motif, YXXXK. A phylogenetic tree made using MEGA 6.06 indicated that PsFAR I and PsFAR II were placed in two different branches. Gene expression analysis performed at different developmental stages showed that the expression of PsFar I is significantly higher than that of PsFar II in first and second instar nymphs and in male adults. Spirotetramat treatment at 125 mg/liter significantly increased the expression of PsFar I in third instar nymphs, but there was no effect in the expression of PsFar II Our results indicated these two FAR genes showed different expression patterns during insect development and after pesticide treatment, suggesting they play different roles in insect development and detoxification against pesticides.


Subject(s)
Aldehyde Oxidoreductases/genetics , Hemiptera/enzymology , Hemiptera/genetics , Insect Proteins/genetics , Aldehyde Oxidoreductases/chemistry , Aldehyde Oxidoreductases/metabolism , Amino Acid Sequence , Animals , Hemiptera/classification , Hemiptera/growth & development , Insect Proteins/chemistry , Insect Proteins/metabolism , Male , Nymph/genetics , Nymph/growth & development , Nymph/metabolism , Phylogeny , Sequence Alignment
20.
Pestic Biochem Physiol ; 119: 74-80, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25868820

ABSTRACT

Spirotetramat were now widely used for control insecticides resistant aphids since 2011 in China. In order to elucidate the possible resistance mechanism, a laboratory selected resistant strain (SR) of cotton aphid was established with a 578.93-fold and 14.91-fold resistance ratio to spirotetramat for adult aphids and nymph, respectively, as compared with the susceptible strain (SS). In this study, a comparative proteomic analysis between SR and SS strains were conducted aims to better understand the resistant cotton aphids' spirotetramat tolerance mechanism. Approximately 493 protein spots were detected in the two-dimension polyacrylamide gel electrophoresis (2-DE). The intensities of 35 protein spots significantly changed, showing differences more than 2-fold in the SR strain compared with that in the SS strain. Of these spots, 20 protein spots were more abundant in the SR strain and 15 protein spots were more abundant in the SS strain. Twenty six differently expressed proteins were identified and categorized into several functional groups including carbohydrate and energy metabolism, antioxidant system, protein folding, amino acid metabolism, secondary metabolism and cytoskeleton protein, etc. Among these proteins, the acetyl-coA carboxylase (ACC), heat shock protein 70, ubiquitin-conjugating enzyme, fatty acid synthase, UDP-glucose 6-dehydrogenase, etc. are speculated confer the spirotetramat resistance in cotton aphids.


Subject(s)
Aphids/drug effects , Aza Compounds/pharmacology , Insect Proteins/chemistry , Insecticide Resistance , Insecticides/pharmacology , Spiro Compounds/pharmacology , Animals , Aphids/chemistry , Aphids/genetics , Aphids/metabolism , Electrophoresis, Gel, Two-Dimensional , Female , Insect Proteins/genetics , Insect Proteins/metabolism , Male , Molecular Sequence Data , Proteomics
SELECTION OF CITATIONS
SEARCH DETAIL