Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.935
Filter
Add more filters

Publication year range
1.
Cell ; 184(10): 2537-2564, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33989548

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is the leading chronic liver disease worldwide. Its more advanced subtype, nonalcoholic steatohepatitis (NASH), connotes progressive liver injury that can lead to cirrhosis and hepatocellular carcinoma. Here we provide an in-depth discussion of the underlying pathogenetic mechanisms that lead to progressive liver injury, including the metabolic origins of NAFLD, the effect of NAFLD on hepatic glucose and lipid metabolism, bile acid toxicity, macrophage dysfunction, and hepatic stellate cell activation, and consider the role of genetic, epigenetic, and environmental factors that promote fibrosis progression and risk of hepatocellular carcinoma in NASH.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Carcinoma, Hepatocellular/pathology , Humans , Liver/pathology , Liver Cirrhosis/pathology , Liver Neoplasms/pathology , Non-alcoholic Fatty Liver Disease/pathology
2.
Immunity ; 57(2): 303-318.e6, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38309273

ABSTRACT

Production of amphiregulin (Areg) by regulatory T (Treg) cells promotes repair after acute tissue injury. Here, we examined the function of Treg cells in non-alcoholic steatohepatitis (NASH), a setting of chronic liver injury. Areg-producing Treg cells were enriched in the livers of mice and humans with NASH. Deletion of Areg in Treg cells, but not in myeloid cells, reduced NASH-induced liver fibrosis. Chronic liver damage induced transcriptional changes associated with Treg cell activation. Mechanistically, Treg cell-derived Areg activated pro-fibrotic transcriptional programs in hepatic stellate cells via epidermal growth factor receptor (EGFR) signaling. Deletion of Areg in Treg cells protected mice from NASH-dependent glucose intolerance, which also was dependent on EGFR signaling on hepatic stellate cells. Areg from Treg cells promoted hepatocyte gluconeogenesis through hepatocyte detection of hepatic stellate cell-derived interleukin-6. Our findings reveal a maladaptive role for Treg cell-mediated tissue repair functions in chronic liver disease and link liver damage to NASH-dependent glucose intolerance.


Subject(s)
Glucose Intolerance , Insulin Resistance , Non-alcoholic Fatty Liver Disease , Animals , Humans , Mice , Amphiregulin/genetics , Amphiregulin/metabolism , ErbB Receptors/metabolism , Glucose Intolerance/metabolism , Glucose Intolerance/pathology , Liver/metabolism , Liver Cirrhosis/metabolism , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/pathology , T-Lymphocytes, Regulatory/metabolism
3.
Cell ; 175(5): 1289-1306.e20, 2018 11 15.
Article in English | MEDLINE | ID: mdl-30454647

ABSTRACT

Obesity is a major driver of cancer, especially hepatocellular carcinoma (HCC). The prevailing view is that non-alcoholic steatohepatitis (NASH) and fibrosis or cirrhosis are required for HCC in obesity. Here, we report that NASH and fibrosis and HCC in obesity can be dissociated. We show that the oxidative hepatic environment in obesity inactivates the STAT-1 and STAT-3 phosphatase T cell protein tyrosine phosphatase (TCPTP) and increases STAT-1 and STAT-3 signaling. TCPTP deletion in hepatocytes promoted T cell recruitment and ensuing NASH and fibrosis as well as HCC in obese C57BL/6 mice that normally do not develop NASH and fibrosis or HCC. Attenuating the enhanced STAT-1 signaling prevented T cell recruitment and NASH and fibrosis but did not prevent HCC. By contrast, correcting STAT-3 signaling prevented HCC without affecting NASH and fibrosis. TCPTP-deletion in hepatocytes also markedly accelerated HCC in mice treated with a chemical carcinogen that promotes HCC without NASH and fibrosis. Our studies reveal how obesity-associated hepatic oxidative stress can independently contribute to the pathogenesis of NASH, fibrosis, and HCC.


Subject(s)
Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Non-alcoholic Fatty Liver Disease/pathology , Obesity/pathology , STAT1 Transcription Factor/metabolism , STAT3 Transcription Factor/metabolism , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Carcinoma, Hepatocellular/metabolism , Diet, High-Fat , Disease Models, Animal , Hepatocytes/metabolism , Humans , Liver/metabolism , Liver/pathology , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Liver Neoplasms/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Non-alcoholic Fatty Liver Disease/metabolism , Obesity/metabolism , Oxidative Stress , Protein Tyrosine Phosphatase, Non-Receptor Type 2/deficiency , Protein Tyrosine Phosphatase, Non-Receptor Type 2/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 2/metabolism , Signal Transduction
4.
Immunity ; 56(1): 58-77.e11, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36521495

ABSTRACT

Obesity-induced chronic liver inflammation is a hallmark of nonalcoholic steatohepatitis (NASH)-an aggressive form of nonalcoholic fatty liver disease. However, it remains unclear how such a low-grade, yet persistent, inflammation is sustained in the liver. Here, we show that the macrophage phagocytic receptor TREM2, induced by hepatocyte-derived sphingosine-1-phosphate, was required for efferocytosis of lipid-laden apoptotic hepatocytes and thereby maintained liver immune homeostasis. However, prolonged hypernutrition led to the production of proinflammatory cytokines TNF and IL-1ß in the liver to induce TREM2 shedding through ADAM17-dependent proteolytic cleavage. Loss of TREM2 resulted in aberrant accumulation of dying hepatocytes, thereby further augmenting proinflammatory cytokine production. This ultimately precipitated a vicious cycle that licensed chronic inflammation to drive simple steatosis transition to NASH. Therefore, impaired macrophage efferocytosis is a previously unrecognized key pathogenic event that enables chronic liver inflammation in obesity. Blocking TREM2 cleavage to restore efferocytosis may represent an effective strategy to treat NASH.


Subject(s)
Non-alcoholic Fatty Liver Disease , Overnutrition , Humans , Non-alcoholic Fatty Liver Disease/pathology , Overnutrition/pathology , Liver/pathology , Inflammation/pathology , Obesity/pathology , Membrane Glycoproteins , Receptors, Immunologic
5.
Immunity ; 53(3): 627-640.e5, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32562600

ABSTRACT

Kupffer cells (KCs) are liver-resident macrophages that self-renew by proliferation in the adult independently from monocytes. However, how they are maintained during non-alcoholic steatohepatitis (NASH) remains ill defined. We found that a fraction of KCs derived from Ly-6C+ monocytes during NASH, underlying impaired KC self-renewal. Monocyte-derived KCs (MoKCs) gradually seeded the KC pool as disease progressed in a response to embryo-derived KC (EmKC) death. Those MoKCs were partly immature and exhibited a pro-inflammatory status compared to EmKCs. Yet, they engrafted the KC pool for the long term as they remained following disease regression while acquiring mature EmKC markers. While KCs as a whole favored hepatic triglyceride storage during NASH, EmKCs promoted it more efficiently than MoKCs, and the latter exacerbated liver damage, highlighting functional differences among KCs with different origins. Overall, our data reveal that KC homeostasis is impaired during NASH, altering the liver response to lipids, as well as KC ontogeny.


Subject(s)
Cell Self Renewal/physiology , Kupffer Cells/physiology , Lipid Metabolism/physiology , Liver/pathology , Non-alcoholic Fatty Liver Disease/pathology , Animals , Cell Proliferation/physiology , Lipids/analysis , Liver/cytology , Mice , Mice, Inbred C57BL , Mice, Knockout , Monocytes/metabolism
6.
Immunity ; 52(6): 1057-1074.e7, 2020 06 16.
Article in English | MEDLINE | ID: mdl-32362324

ABSTRACT

Tissue-resident and recruited macrophages contribute to both host defense and pathology. Multiple macrophage phenotypes are represented in diseased tissues, but we lack deep understanding of mechanisms controlling diversification. Here, we investigate origins and epigenetic trajectories of hepatic macrophages during diet-induced non-alcoholic steatohepatitis (NASH). The NASH diet induced significant changes in Kupffer cell enhancers and gene expression, resulting in partial loss of Kupffer cell identity, induction of Trem2 and Cd9 expression, and cell death. Kupffer cell loss was compensated by gain of adjacent monocyte-derived macrophages that exhibited convergent epigenomes, transcriptomes, and functions. NASH-induced changes in Kupffer cell enhancers were driven by AP-1 and EGR that reprogrammed LXR functions required for Kupffer cell identity and survival to instead drive a scar-associated macrophage phenotype. These findings reveal mechanisms by which disease-associated environmental signals instruct resident and recruited macrophages to acquire distinct gene expression programs and corresponding functions.


Subject(s)
Cellular Microenvironment/genetics , Cellular Reprogramming/genetics , Epigenesis, Genetic , Gene Expression Regulation , Myeloid Cells/metabolism , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Animals , Biomarkers , Chromatin Immunoprecipitation Sequencing , Diet , Disease Models, Animal , Gene Expression Profiling , Gene Ontology , High-Throughput Nucleotide Sequencing , Kupffer Cells/immunology , Kupffer Cells/metabolism , Macrophages/immunology , Macrophages/metabolism , Mice , Non-alcoholic Fatty Liver Disease/pathology , Organ Specificity/genetics , Organ Specificity/immunology , Protein Binding , Signal Transduction , Single-Cell Analysis
7.
Mol Cell ; 81(19): 3888-3903, 2021 10 07.
Article in English | MEDLINE | ID: mdl-34464593

ABSTRACT

The development and functional potential of metazoan cells is dependent on combinatorial roles of transcriptional enhancers and promoters. Macrophages provide exceptionally powerful model systems for investigation of mechanisms underlying the activation of cell-specific enhancers that drive transitions in cell fate and cell state. Here, we review recent advances that have expanded appreciation of the diversity of macrophage phenotypes in health and disease, emphasizing studies of liver, adipose tissue, and brain macrophages as paradigms for other tissue macrophages and cell types. Studies of normal tissue-resident macrophages and macrophages associated with cirrhosis, obese adipose tissue, and neurodegenerative disease illustrate the major roles of tissue environment in remodeling enhancer landscapes to specify the development and functions of distinct macrophage phenotypes. We discuss the utility of quantitative analysis of environment-dependent changes in enhancer activity states as an approach to discovery of regulatory transcription factors and upstream signaling pathways.


Subject(s)
Enhancer Elements, Genetic , Macrophages/metabolism , Microglia/metabolism , Promoter Regions, Genetic , Transcription Factors/genetics , Transcriptional Activation , Animals , Cell Lineage , Cellular Microenvironment , Humans , Macrophages/pathology , Microglia/pathology , Phenotype , Signal Transduction , Transcription Factors/metabolism
8.
Proc Natl Acad Sci U S A ; 121(35): e2405746121, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39172787

ABSTRACT

While macrophage heterogeneity during metabolic dysfunction-associated steatohepatitis (MASH) has been described, the fate of these macrophages during MASH regression is poorly understood. Comparing macrophage heterogeneity during MASH progression vs regression, we identified specific macrophage subpopulations that are critical for MASH/fibrosis resolution. We elucidated the restorative pathways and gene signatures that define regression-associated macrophages and establish the importance of TREM2+ macrophages during MASH regression. Liver-resident Kupffer cells are lost during MASH and are replaced by four distinct monocyte-derived macrophage subpopulations. Trem2 is expressed in two macrophage subpopulations: i) monocyte-derived macrophages occupying the Kupffer cell niche (MoKC) and ii) lipid-associated macrophages (LAM). In regression livers, no new transcriptionally distinct macrophage subpopulation emerged. However, the relative macrophage composition changed during regression compared to MASH. While MoKC was the major macrophage subpopulation during MASH, they decreased during regression. LAM was the dominant macrophage subtype during MASH regression and maintained Trem2 expression. Both MoKC and LAM were enriched in disease-resolving pathways. Absence of TREM2 restricted the emergence of LAMs and formation of hepatic crown-like structures. TREM2+ macrophages are functionally important not only for restricting MASH-fibrosis progression but also for effective regression of inflammation and fibrosis. TREM2+ macrophages are superior collagen degraders. Lack of TREM2+ macrophages also prevented elimination of hepatic steatosis and inactivation of HSC during regression, indicating their significance in metabolic coordination with other cell types in the liver. TREM2 imparts this protective effect through multifactorial mechanisms, including improved phagocytosis, lipid handling, and collagen degradation.


Subject(s)
Kupffer Cells , Liver Cirrhosis , Macrophages , Membrane Glycoproteins , Receptors, Immunologic , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Animals , Mice , Macrophages/metabolism , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Liver Cirrhosis/genetics , Kupffer Cells/metabolism , Liver/metabolism , Liver/pathology , Lipid Metabolism , Mice, Inbred C57BL , Male , Lipids , Fatty Liver/metabolism , Fatty Liver/pathology , Fatty Liver/genetics , Mice, Knockout
9.
Proc Natl Acad Sci U S A ; 120(4): e2217543120, 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36669104

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, in which prognosis is determined by liver fibrosis. A common variant in hydroxysteroid 17-beta dehydrogenase 13 (HSD17B13, rs72613567-A) is associated with a reduced risk of fibrosis in NAFLD, but the underlying mechanism(s) remains unclear. We investigated the effects of this variant in the human liver and in Hsd17b13 knockdown in mice by using a state-of-the-art metabolomics approach. We demonstrate that protection against liver fibrosis conferred by the HSD17B13 rs72613567-A variant in humans and by the Hsd17b13 knockdown in mice is associated with decreased pyrimidine catabolism at the level of dihydropyrimidine dehydrogenase. Furthermore, we show that hepatic pyrimidines are depleted in two distinct mouse models of NAFLD and that inhibition of pyrimidine catabolism by gimeracil phenocopies the HSD17B13-induced protection against liver fibrosis. Our data suggest pyrimidine catabolism as a therapeutic target against the development of liver fibrosis in NAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Humans , Mice , Liver/metabolism , Liver Cirrhosis/pathology , Non-alcoholic Fatty Liver Disease/pathology , Pyrimidines/pharmacology , Pyrimidines/metabolism
10.
J Biol Chem ; 300(3): 105661, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38246352

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD), especially nonalcoholic steatohepatitis (NASH), has emerged as a prevalent cause of liver cirrhosis and hepatocellular carcinoma, posing severe public health challenges worldwide. The incidence of NASH is highly correlated with an increased prevalence of obesity, insulin resistance, diabetes, and other metabolic diseases. Currently, no approved drugs specifically targeted for the therapies of NASH partially due to the unclear pathophysiological mechanisms. G protein-coupled estrogen receptor 1 (GPER1) is a membrane estrogen receptor involved in the development of metabolic diseases such as obesity and diabetes. However, the function of GPER1 in NAFLD/NASH progression remains unknown. Here, we show that GPER1 exerts a beneficial role in insulin resistance, hepatic lipid accumulation, oxidative stress, or inflammation in vivo and in vitro. In particular, we observed that the lipid accumulation, inflammatory response, fibrosis, or insulin resistance in mouse NAFLD/NASH models were exacerbated by hepatocyte-specific GPER1 knockout but obviously mitigated by hepatic GPER1 activation in female and male mice. Mechanistically, hepatic GPER1 activates AMP-activated protein kinase signaling by inducing cyclic AMP release, thereby exerting its protective effect. These data suggest that GPER1 may be a promising therapeutic target for NASH.


Subject(s)
Diabetes Mellitus , Insulin Resistance , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Animals , Female , Male , Mice , AMP-Activated Protein Kinases/metabolism , Diabetes Mellitus/metabolism , Disease Models, Animal , Estrogen Receptor alpha/metabolism , GTP-Binding Proteins/metabolism , Lipids/pharmacology , Liver/metabolism , Liver Neoplasms/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Obesity/metabolism , Mice, Inbred C57BL , Estrogens/deficiency , Estrogens/metabolism , Diet, High-Fat
11.
Genes Cells ; 29(8): 635-649, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38864277

ABSTRACT

The potential involvement of the gut microbiota in metabolic dysfunction-associated steatohepatitis (MASH) pathogenesis has garnered increasing attention. In this study, we elucidated the link between high-fat/cholesterol/cholate-based (iHFC)#2 diet-induced MASH progression and gut microbiota in C57BL/6 mice using antibiotic treatments. Treatment with vancomycin (VCM), which targets gram-positive bacteria, exacerbated the progression of liver damage, steatosis, and fibrosis in iHFC#2-fed C57BL/6 mice. The expression levels of inflammation- and fibrosis-related genes in the liver significantly increased after VCM treatment for 8 weeks. F4/80+ macrophage abundance increased in the livers of VCM-treated mice. These changes were rarely observed in the iHFC#2-fed C57BL/6 mice treated with metronidazole, which targets anaerobic bacteria. A16S rRNA sequence analysis revealed a significant decrease in α-diversity in VCM-treated mice compared with that in placebo-treated mice, with Bacteroidetes and Firmicutes significantly decreased, while Proteobacteria and Verrucomicrobia increased markedly. Finally, VCM treatment dramatically altered the level and balance of bile acid (BA) composition in iHFC#2-fed C57BL/6 mice. Thus, the VCM-mediated exacerbation of MASH progression depends on the interaction between the gut microbiota, BA metabolism, and inflammatory responses in the livers of iHFC#2-fed C57BL/6 mice.


Subject(s)
Anti-Bacterial Agents , Diet, High-Fat , Gastrointestinal Microbiome , Mice, Inbred C57BL , Vancomycin , Animals , Gastrointestinal Microbiome/drug effects , Mice , Anti-Bacterial Agents/pharmacology , Male , Vancomycin/pharmacology , Diet, High-Fat/adverse effects , Liver/metabolism , Liver/drug effects , Liver/pathology , Fatty Liver/metabolism , Fatty Liver/etiology , Bile Acids and Salts/metabolism
12.
FASEB J ; 38(7): e23579, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38568838

ABSTRACT

Lifestyle interventions remain the treatment of choice for patients with obesity and metabolic complications, yet are difficult to maintain and often lead to cycles of weight loss and regain (weight cycling). Literature on weight cycling remains controversial and we therefore investigated the association between weight cycling and metabolic complications using preexistent obese mice. Ldlr-/-.Leiden mice received a high-fat diet (HFD) for 20 weeks to induce obesity. Subsequently, weight-cycled mice were switched between the healthy chow diet and HFD for four 2-week periods and compared to mice that received HFD for the total study period. Repeated weight cycling tended to decrease body weight and significantly reduced fat mass, whereas adipose tissue inflammation was similar relative to HFD controls. Weight cycling did not significantly affect blood glucose or plasma insulin levels yet significantly reduced plasma free fatty acid and alanine transaminase/aspartate transaminase levels. Hepatic macrovesicular steatosis was similar and microvesicular steatosis tended to be increased upon weight cycling. Weight cycling resulted in a robust decrease in hepatic inflammation compared to HFD controls while hepatic fibrosis and atherosclerosis development were not affected. These results argue against the postulate that repeated weight cycling leads to unfavorable metabolic effects, when compared to a continuous unhealthy lifestyle, and in fact revealed beneficial effects on hepatic inflammation, an important hallmark of non-alcoholic steatohepatitis.


Subject(s)
Liver , Non-alcoholic Fatty Liver Disease , Humans , Mice , Animals , Liver/metabolism , Mice, Obese , Weight Cycling , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Obesity/complications , Inflammation/metabolism , Diet, High-Fat/adverse effects , Mice, Inbred C57BL
13.
J Pathol ; 264(1): 101-111, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39022853

ABSTRACT

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a chronic liver condition that often progresses to more advanced stages, such as metabolic dysfunction-associated steatohepatitis (MASH). MASH is characterized by inflammation and hepatocellular ballooning, in addition to hepatic steatosis. Despite the relatively high incidence of MASH in the population and its potential detrimental effects on human health, this liver disease is still not fully understood from a pathophysiological perspective. Deregulation of polyamine levels has been detected in various pathological conditions, including neurodegenerative diseases, inflammation, and cancer. However, the role of the polyamine pathway in chronic liver disorders such as MASLD has not been explored. In this study, we measured the expression of liver ornithine decarboxylase (ODC1), the rate-limiting enzyme responsible for the production of putrescine, and the hepatic levels of putrescine, in a preclinical model of MASH as well as in liver biopsies of patients with obesity undergoing bariatric surgery. Our findings reveal that expression of ODC1 and the levels of putrescine, but not spermidine nor spermine, are elevated in hepatic tissue of both diet-induced MASH mice and patients with biopsy-proven MASH compared with control mice and patients without MASH, respectively. Furthermore, we found that the levels of putrescine were positively associated with higher aspartate aminotransferase concentrations in serum and an increased SAF score (steatosis, activity, fibrosis). Additionally, in in vitro assays using human HepG2 cells, we demonstrate that elevated levels of putrescine exacerbate the cellular response to palmitic acid, leading to decreased cell viability and increased release of CK-18. Our results support an association between the expression of ODC1 and the progression of MASLD, which could have translational relevance in understanding the onset of this disease. © 2024 The Pathological Society of Great Britain and Ireland.


Subject(s)
Disease Progression , Liver , Ornithine Decarboxylase , Putrescine , Animals , Humans , Putrescine/metabolism , Ornithine Decarboxylase/metabolism , Liver/metabolism , Liver/pathology , Male , Mice, Inbred C57BL , Fatty Liver/metabolism , Fatty Liver/pathology , Mice , Disease Models, Animal , Female , Middle Aged , Obesity/metabolism , Obesity/complications , Hep G2 Cells , Adult
14.
Proc Natl Acad Sci U S A ; 119(41): e2207344119, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36191214

ABSTRACT

Acyl-coenzyme A (CoA)-binding protein (ACBP), also known as diazepam-binding inhibitor (DBI), is an extracellular feedback regulator of autophagy. Here, we report that injection of a monoclonal antibody neutralizing ACBP/DBI (α-DBI) protects the murine liver against ischemia/reperfusion damage, intoxication by acetaminophen and concanavalin A, and nonalcoholic steatohepatitis caused by methionine/choline-deficient diet as well as against liver fibrosis induced by bile duct ligation or carbon tetrachloride. α-DBI downregulated proinflammatory and profibrotic genes and upregulated antioxidant defenses and fatty acid oxidation in the liver. The hepatoprotective effects of α-DBI were mimicked by the induction of ACBP/DBI-specific autoantibodies, an inducible Acbp/Dbi knockout or a constitutive Gabrg2F77I mutation that abolishes ACBP/DBI binding to the GABAA receptor. Liver-protective α-DBI effects were lost when autophagy was pharmacologically blocked or genetically inhibited by knockout of Atg4b. Of note, α-DBI also reduced myocardium infarction and lung fibrosis, supporting the contention that it mediates broad organ-protective effects against multiple insults.


Subject(s)
Diazepam Binding Inhibitor , Receptors, GABA-A , Animals , Mice , Acetaminophen , Antibodies, Monoclonal/metabolism , Antioxidants , Autoantibodies/metabolism , Autophagy , Carbon Tetrachloride , Carrier Proteins/genetics , Choline , Coenzyme A/metabolism , Concanavalin A/metabolism , Diazepam , Diazepam Binding Inhibitor/metabolism , Fatty Acids/metabolism , Fibrosis , Inflammation , Methionine
15.
Eur Heart J ; 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39152050

ABSTRACT

The prevalence and mortality related to end-stage liver disease (ESLD) continue to rise globally. Liver transplant (LT) recipients continue to be older and have inherently more comorbidities. Among these, cardiac disease is one of the three main causes of morbidity and mortality after LT. Several reasons exist including the high prevalence of associated risk factors, which can also be attributed to the rise in the proportion of patients undergoing LT for metabolic dysfunction-associated steatohepatitis (MASH). Additionally, as people age, the prevalence of now treatable cardiac conditions, including coronary artery disease (CAD), cardiomyopathies, significant valvular heart disease, pulmonary hypertension, and arrhythmias rises, making the need to treat these conditions critical to optimize outcomes. There is an emerging body of literature regarding CAD screening in patients with ESLD, however, there is a paucity of strong evidence to support the guidance regarding the management of cardiac conditions in the pre-LT and perioperative settings. This has resulted in significant variations in assessment strategies and clinical management of cardiac disease in LT candidates between transplant centres, which impacts LT candidacy based on a transplant centre's risk tolerance and comfort level for caring for patients with concomitant cardiac disease. Performing a comprehensive assessment and understanding the potential approaches to the management of ESLD patients with cardiac conditions may increase the acceptance of patients, who appear too complex, but rather require extra evaluation and may be reasonable candidates for LT. The unique physiology of ESLD can profoundly influence preoperative assessment, perioperative management, and outcomes associated with underlying cardiac pathology, and requires a thoughtful multidisciplinary approach. The strategies proposed in this manuscript attempt to review the latest expert experience and opinions and provide guidance to practicing clinicians who assess and treat patients being considered for LT. These topics also highlight the gaps that exist in the comprehensive care of LT patients and the need for future investigations in this field.

16.
Gut ; 73(8): 1343-1349, 2024 07 11.
Article in English | MEDLINE | ID: mdl-38418210

ABSTRACT

BACKGROUND: Dynamic changes in non-invasive tests, such as changes in alanine aminotransferase (ALT) and MRI proton-density-fat-fraction (MRI-PDFF), may help to detect metabolic dysfunction-associated steatohepatitis (MASH) resolution, but a combination of non-invasive tests may be more accurate than either alone. We developed a novel non-invasive score, the MASH Resolution Index, to detect the histological resolution of MASH. METHODS: This study included a derivation cohort of 95 well-characterised adult participants (67% female) with biopsy-confirmed MASH who underwent contemporaneous laboratory testing, MRI-PDFF and liver biopsy at two time points. The primary objective was to develop a non-invasive score to detect MASH resolution with no worsening of fibrosis. The most predictive logistic regression model was selected based on the highest area under the receiver operating curve (AUC), and the lowest Akaike information criterion and Bayesian information criterion. The model was then externally validated in a distinct cohort of 163 participants with MASH from a clinical trial. RESULTS: The median (IQR) age and body mass index were 55 (45-62) years and 32.0 (30-37) kg/m2, respectively, in the derivation cohort. The most accurate model (MASH Resolution Index) included MRI-PDFF, ALT and aspartate aminotransferase. The index had an AUC of 0.81 (95% CI 0.69 to 0.93) for detecting MASH resolution in the derivation cohort. The score calibrated well and performed robustly in a distinct external validation cohort (AUC 0.83, 95% CI 0.76 to 0.91), and outperformed changes in ALT and MRI-PDFF. CONCLUSION: The MASH Resolution Index may be a useful score to non-invasively identify MASH resolution.


Subject(s)
Liver , Magnetic Resonance Imaging , Humans , Female , Middle Aged , Male , Magnetic Resonance Imaging/methods , Liver/pathology , Liver/diagnostic imaging , Biopsy , Alanine Transaminase/blood , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/diagnostic imaging , Non-alcoholic Fatty Liver Disease/diagnosis , ROC Curve , Fatty Liver/diagnostic imaging , Fatty Liver/pathology , Fatty Liver/diagnosis
17.
Gut ; 73(5): 825-834, 2024 04 05.
Article in English | MEDLINE | ID: mdl-38199805

ABSTRACT

OBJECTIVE: Hyperferritinaemia is associated with liver fibrosis severity in patients with metabolic dysfunction-associated steatotic liver disease (MASLD), but the longitudinal implications have not been thoroughly investigated. We assessed the role of serum ferritin in predicting long-term outcomes or death. DESIGN: We evaluated the relationship between baseline serum ferritin and longitudinal events in a multicentre cohort of 1342 patients. Four survival models considering ferritin with confounders or non-invasive scoring systems were applied with repeated five-fold cross-validation schema. Prediction performance was evaluated in terms of Harrell's C-index and its improvement by including ferritin as a covariate. RESULTS: Median follow-up time was 96 months. Liver-related events occurred in 7.7%, hepatocellular carcinoma in 1.9%, cardiovascular events in 10.9%, extrahepatic cancers in 8.3% and all-cause mortality in 5.8%. Hyperferritinaemia was associated with a 50% increased risk of liver-related events and 27% of all-cause mortality. A stepwise increase in baseline ferritin thresholds was associated with a statistical increase in C-index, ranging between 0.02 (lasso-penalised Cox regression) and 0.03 (ridge-penalised Cox regression); the risk of developing liver-related events mainly increased from threshold 215.5 µg/L (median HR=1.71 and C-index=0.71) and the risk of overall mortality from threshold 272 µg/L (median HR=1.49 and C-index=0.70). The inclusion of serum ferritin thresholds (215.5 µg/L and 272 µg/L) in predictive models increased the performance of Fibrosis-4 and Non-Alcoholic Fatty Liver Disease Fibrosis Score in the longitudinal risk assessment of liver-related events (C-indices>0.71) and overall mortality (C-indices>0.65). CONCLUSIONS: This study supports the potential use of serum ferritin values for predicting the long-term prognosis of patients with MASLD.


Subject(s)
Liver Neoplasms , Metabolic Diseases , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/pathology , Liver Cirrhosis/pathology , Fibrosis , Liver Neoplasms/complications , Ferritins
18.
Gut ; 73(9): 1554-1561, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-38782564

ABSTRACT

OBJECTIVE: Epidemiological studies have reported an association between primary hypothyroidism and metabolic dysfunction-associated steatotic liver disease (MASLD). However, the magnitude of the risk and whether this risk changes with the severity of MASLD remains uncertain. We performed a meta-analysis of observational studies to quantify the magnitude of the association between primary hypothyroidism and the risk of MASLD. DESIGN: We systematically searched PubMed, Scopus and Web of Science from database inception to 31 January 2024, using predefined keywords to identify observational studies in which MASLD was diagnosed by liver biopsy, imaging or International Classification of Diseases codes. A meta-analysis was performed using random-effects modelling. RESULTS: We identified 24 cross-sectional and 4 longitudinal studies with aggregate data on ~76.5 million individuals. Primary hypothyroidism (defined as levothyroxine replacement treatment, subclinical hypothyroidism or overt hypothyroidism) was associated with an increased risk of prevalent MASLD (n=24 studies; random-effects OR 1.43, 95% CI 1.23 to 1.66; I2=89%). Hypothyroidism was also associated with a substantially higher risk of metabolic dysfunction-associated steatohepatitis or advanced fibrosis (n=5 studies; random-effects OR 2.84, 95% CI 2.07 to 3.90; I2=0%). Meta-analysis of data from four longitudinal studies showed that there was a marginally non-significant association between hypothyroidism and risk of developing MASLD over a median 4.5-year follow-up (random-effects HR 1.39, 95% CI 0.98 to 1.97; I2=85%). Sensitivity analyses did not modify these findings. The funnel plot did not reveal any significant publication bias. CONCLUSION: This large and updated meta-analysis provides evidence that primary hypothyroidism is significantly associated with both an increased presence of and histological severity of MASLD.


Subject(s)
Hypothyroidism , Humans , Hypothyroidism/complications , Risk Factors , Non-alcoholic Fatty Liver Disease/complications , Observational Studies as Topic
19.
Gut ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39117370

ABSTRACT

BACKGROUND: There are limited prospective data among overweight and obese individuals on the prevalence of advanced fibrosis, and cirrhosis using advanced MRI-based methods in the USA. The aim of this study was to fill that gap in knowledge by prospectively determining the MRI-based prevalence of steatotic liver disease (SLD) and its subcategories, advanced fibrosis and cirrhosis among overweight and obese individuals residing in the USA. METHODS: This is a cross-sectional analysis of prospectively enrolled overweight or obese adults aged 40-75 years from primary care and community-based settings in Southern California. Participants were classified as having SLD if MRI proton density fat fraction ≥5%, and subclassified as metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic dysfunction and alcohol-associated liver disease (MetALD) and alcohol-related liver disease (ALD) consistently with the new nomenclature guidance per AASLD-EASL-ALEH. Advanced fibrosis and cirrhosis were defined as magnetic resonance elastography (MRE) ≥3.63 kPa and MRE ≥4.67 kPa, respectively. RESULTS: The cohort included 539 participants with mean (±SD) age of 51.5 (±13.1) years and body mass index of 32.6 (±6.2) kg/m2, respectively. The prevalence of SLD, advanced fibrosis and cirrhosis was 75%, 10.8% and 4.5%, respectively. The prevalence of MASLD, MetALD and ALD was 67.3%, 4.8% and 2.6%, respectively. There was no difference in prevalence of advanced fibrosis and cirrhosis among subcategories. CONCLUSIONS: Using advanced MRI methods among community-dwelling overweight and obese adults, the prevalence of cirrhosis was 4.5%. Most common SLD subcategory was MASLD with 67% of individuals, whereas MetALD and ALD were less common. Systematic screening for advanced fibrosis among overweight/obese adults may be considered.

20.
Gut ; 73(4): 691-702, 2024 03 07.
Article in English | MEDLINE | ID: mdl-38228377

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) has rapidly become the most common chronic liver disease globally and is currently estimated to affect up to 38% of the global adult population. NAFLD is a multisystem disease where systemic insulin resistance and related metabolic dysfunction play a pathogenic role in the development of NAFLD and its most relevant liver-related morbidities (cirrhosis, liver failure and hepatocellular carcinoma) and extrahepatic complications, such as cardiovascular disease (CVD), type 2 diabetes mellitus, chronic kidney disease, and certain types of extrahepatic cancers. In 2023, three large multinational liver associations proposed that metabolic dysfunction-associated steatotic liver disease (MASLD) should replace the term NAFLD; the name chosen to replace non-alcoholic steatohepatitis was metabolic dysfunction-associated steatohepatitis (MASH). Emerging epidemiological evidence suggests an excellent concordance rate between NAFLD and MASLD definitions-that is, ~99% of individuals with NAFLD meet MASLD criteria. In this narrative review, we provide an overview of the literature on (a) the recent epidemiological data on MASLD and the risk of developing CVD and malignant complications, (b) the underlying mechanisms by which MASLD (and factors strongly linked with MASLD) may increase the risk of these extrahepatic complications and (c) the diagnosis and assessment of CVD risk and potential treatments to reduce CVD risk in people with MASLD or MASH.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Liver Neoplasms , Metabolic Diseases , Non-alcoholic Fatty Liver Disease , Adult , Humans , Non-alcoholic Fatty Liver Disease/complications , Diabetes Mellitus, Type 2/complications , Metabolic Diseases/complications , Cardiovascular Diseases/etiology , Liver Neoplasms/etiology
SELECTION OF CITATIONS
SEARCH DETAIL