Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 207
Filter
Add more filters

Publication year range
1.
Molecules ; 29(8)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38675551

ABSTRACT

This study aimed to determine the effect of the drying method (freeze-drying, air-drying), storage period (12 months), and storage conditions (2-4 °C, 18-22 °C) applied to two legume species: green beans and green peas. The raw and dried materials were determined for selected physical parameters typical of dried vegetables, contents of bioactive components (vitamin C and E, total chlorophyll, total carotenoids, ß-carotene, and total polyphenols), antioxidative activity against the DPPH radical, and sensory attributes (overall quality and profiles of color, texture, and palatability). Green beans had a significantly higher content of bioactive components compared to peas. Freeze-drying and cold storage conditions facilitated better retention of these compounds, i.e., by 9-39% and 3-11%, respectively. After 12 months of storage, higher retention of bioactive components, except for total chlorophyll, was determined in peas regardless of the drying method, i.e., by 38-75% in the freeze-dried product and 30-77% in the air-dried product, compared to the raw material.


Subject(s)
Antioxidants , Chlorophyll , Fabaceae , Freeze Drying , Vegetables , Antioxidants/analysis , Antioxidants/chemistry , Vegetables/chemistry , Chlorophyll/analysis , Chlorophyll/chemistry , Fabaceae/chemistry , Carotenoids/analysis , Carotenoids/chemistry , Food Storage/methods , Polyphenols/analysis , Polyphenols/chemistry , Ascorbic Acid/analysis , Ascorbic Acid/chemistry , Desiccation/methods , beta Carotene/analysis , beta Carotene/chemistry , Pisum sativum/chemistry , Phytochemicals/analysis , Phytochemicals/chemistry , Vitamin E/analysis , Vitamin E/chemistry
2.
J Sci Food Agric ; 104(2): 916-931, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37705305

ABSTRACT

BACKGROUND: The apple (Malus domestica Borkh.) plays an important role in the trendy market of dried snacks because of its exceptional flavor and texture. In addition to the health benefits, there is also a general disposition to consume organic and do-it-yourself products. RESULTS: Three different drying temperatures, 65, 75, and 85 °C, were tested using a commercial ventilated drying oven in 'Royal Gala' and 'Golden Delicious' cultivars. Physical changes, including texture, color, shrinkage ratio, and microstructure, were evaluated for the temperatures and cultivars considered. Based on the results, particularly in terms of shrinkage, hardness, and crispiness, a drying temperature of 75 °C was selected to perform texture profile analyses throughout the drying period. Storability conditions were evaluated to determine the best moment to maintain the physical properties of the dried snacks during storage. Considered the more important property related to consumer preferences, crispiness was followed with puncture tests. CONCLUSION: The storage of apple chips, dried at the various temperatures, that must be performed in 5-10 min after removing from the drying oven, was assessed over the course of a month. Both the drying process and the subsequent storage proved effective in preserving the desired texture of the apple snacks, regardless of the specific cultivar or drying temperature used. Through this study, with a refined understanding of the changes occurring during the drying process and the optimization of storage conditions, we can confidently offer consumers the best combination of crispy and healthy snacks that meet their expectations. © 2023 Society of Chemical Industry.


Subject(s)
Malus , Malus/chemistry , Temperature , Snacks , Desiccation/methods
3.
Luminescence ; 38(6): 717-721, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37021667

ABSTRACT

Bioluminescent bacteria in the form of a cell suspension for on-site hazard analysis are not suitable as in vivo luminescence in free cells fluctuates and may lead to erroneous results. Furthermore, the culture broth cannot be stored for long durations to continue sensing analytes as the luminescence ceases over time. Factors that affect luminescence response include growth dynamism, and ambient environmental conditions. The present study investigated the effect of storage conditions such as temperature (25 ± 2°C, room temperature; 4°C; and -20°C) and ambient aqueous environment (M1: sucrose, 1.02 M; M2, bioluminescent media [tryptone, 10 g L-1 ; NaCl, 28.5 g L-1 ; MgCl2 .7H2 O, 4.5 g L-1 ; CaCl2 , 0.5 g L-1 ; KCl 0.5 g L-1 ; yeast extract, 1 g L-1 ; H2 O, 1 L]; M3, bioluminescent media and 95% glycerol, 1:1 ratio) on the luminescence emission from the calcium alginate-immobilized Photobacterium phosphoreum (Sb ) against the cells in free suspension for an extended period. The results indicated that both the parameters that were undertaken markedly affected the luminescence. In the study, Sb showed an enhanced luminescence emission than the control up to 18.5-fold and for a prolonged period which can be efficiently utilized for rapid biosensing of hazardous materials.


Subject(s)
Luminescence , Photobacterium , Sodium Chloride , Temperature
4.
Molecules ; 28(4)2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36838611

ABSTRACT

Obtaining polyphenols from horticultural waste is an emerging trend that enables the valorization of resources and the recovery of value-added compounds. However, a pivotal point in the exploitation of these natural extracts is the assessment of their chemical stability. Hence, this study evaluates the effect of temperature storage (20 and -20 °C) and drying methods on the phenolic composition and antioxidant activity of clementine and lemon peel extracts, applying HPLC-DAD-MS, spectrophotometric methods, and chemometric tools. Vacuum-drying treatment at 60 °C proved to be rather suitable for retaining the highest antioxidant activity and the hesperidin, ferulic, and coumaric contents in clementine peel extracts. Lemon extracts showed an increase in phenolic acids after oven-drying at 40 °C, while hesperidin and rutin were sustained better at 60 °C. Hydroethanolic extracts stored for 90 days preserved antioxidant activity and showed an increase in the total phenolic and flavonoid contents in lemon peels, unlike in clementine peels. Additionally, more than 50% of the initial concentration was maintained up to 51 days, highlighting a half-life time of 71 days for hesperidin in lemon peels. Temperature was not significant in the preservation of the polyphenols evaluated, except for in rutin and gallic acid, thus, the extracts could be kept at 20 °C.


Subject(s)
Citrus , Hesperidin , Antioxidants/chemistry , Plant Extracts/chemistry , Phenols , Polyphenols , Citrus/chemistry , Rutin
5.
J Sci Food Agric ; 103(8): 3799-3811, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36251338

ABSTRACT

BACKGROUND: Changes in storage temperature and time alter the functional properties of egg white powder (EWP) and determine its quality and shelf-life, finally affecting the consumer acceptance of the products made from EWP. In the present study, the EWP samples were stored at four different temperatures (-20, 4, 25 and 37 °C) for 60 days, and then the protein structural, physical and functional properties of EWP were measured and assessed further for correlation with storage conditions using heatmap. RESULTS: The viscosity of the EWP solution increased after 30 days. Foaming ability and rheological properties increased first and then decreased compared to untreated samples with the prolonged storage time. Correlation analysis results indicated that the gel hardness, water holding capacity, foaming ability, emulsifying ability, particle size, dispersibility and viscosity of EWP were significantly related to storage time (P < 0.05). Only the gelation properties of EWP stored at 37 °C for 60 days changed significantly and were negatively related to its moisture content (P < 0.05). Additionally, the random coil content of EWP was positively correlated with particle size, moisture content, solubility and gel properties, whereas ß-sheet was negatively correlated with them. CONCLUSION: Compared to other temperatures, the functional properties of EWP were relatively stable under 4 °C. Therefore, the low temperature (4 °C) was selected as the most suitable storage temperature for EWP. The results of the present study could provide a theoretical basis for the shelf-life extension of EWP. © 2022 Society of Chemical Industry.


Subject(s)
Egg Proteins , Egg White , Egg Proteins/chemistry , Egg White/chemistry , Powders , Temperature , Cold Temperature
6.
J Food Sci Technol ; 60(2): 732-741, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36712210

ABSTRACT

This study aims to evaluate the effects of different storage conditions (temperature and relative humidity) on the physicochemical and functional properties of egg white peptide powders (EWPPs). The samples (EWPPs) were stored for 28 d under four conditions (4 °C, 50% RH; 4 °C, 75% RH; 25 °C, 50% RH; 25 °C, 75% RH). Results showed that storage temperature and relative humidity had a significant effect on the physicochemical and functional properties of EWPPs. The contents of antioxidant amino acids such as histidine, tyrosine, tryptophan, and lysine were reduced significantly under different storage conditions, which resulted in the decrease of the antioxidant activity of EWPPs. Circular dichroism spectroscopy analysis indicated that the secondary structure of EWPPs changed from the regular structure to the irregular coiled structure during the storage. Additionally, the hydrophobic groups of the EWPPs originally embedded inside the molecules were exposed to the surface of the molecules during the storage, which led to an aggregation of EWPPs molecule and a decrease in solubility of EWPPs. The aggregation of EWPPs molecules resulted in a decrease in emulsification, emulsification stability, foaming ability and foaming stability of the EWPPs. Therefore, different storage conditions do have an impact on the physicochemical and functional properties of EWPPs. Lower temperature and humidity storing conditions were beneficial to retain the functional property of the EWPPs.

7.
Mar Drugs ; 20(9)2022 Aug 25.
Article in English | MEDLINE | ID: mdl-36135736

ABSTRACT

In recent decades, harmful algal blooms (HABs) producing paralytic shellfish toxins (including saxitoxin, STX) have become increasingly frequent in the marine waters of Alaska, USA, subjecting Pacific Arctic and subarctic communities and wildlife to increased toxin exposure risks. Research on the risks of HAB toxin exposures to marine mammal health commonly relies on the sampling of marine mammal gastrointestinal (GI) contents to quantify HAB toxins, yet no studies have been published testing the stability of STX in marine mammal GI matrices. An understanding of STX stability in test matrices under storage and handling conditions is imperative to the integrity of toxin quantifications and conclusions drawn thereby. Here, STX stability is characterized in field-collected bowhead whale feces (stored raw in several treatments) and in fecal extracts (50% methanol, MeOH) over multiple time points. Toxin stability, as the percent of initial concentration (T0), was reported for each storage treatment and time point. STX was stable (mean 99% T0) in 50% MeOH extracts over the 8-week study period, and there was no significant difference in STX concentrations quantified in split fecal samples extracted in 80% ethanol (EtOH) and 50% MeOH. STX was also relatively stable in raw fecal material stored in the freezer (mean 94% T0) and the refrigerator (mean 93% T0) up to 8 weeks. STX degraded over time in the room-temperature dark, room-temperature light, and warm treatments to means of 48 ± 1.9, 38 ± 2.8, and 20 ± 0.7% T0, respectively, after 8 weeks (mean ± standard error; SE). Additional opportunistically analyzed samples frozen for ≤4.5 years also showed STX to be relatively stable (mean 97% T0). Mean percent of T0 was measured slightly above 100% in some extracts following some treatments, and (most notably) at some long-term frozen time points, likely due to evaporation from samples causing STX to concentrate, or variability between ELISA plates. Overall, these results suggest that long-term frozen storage of raw fecal samples and the analysis of extracts within 8 weeks of extraction in 50% MeOH is sufficient for obtaining accurate STX quantifications in marine mammal fecal material without concerns about significant degradation.


Subject(s)
Bowhead Whale , Saxitoxin , Animals , Ethanol , Feces/chemistry , Methanol , Saxitoxin/analysis
8.
Molecules ; 27(18)2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36144694

ABSTRACT

This study investigates how storage conditions (temperature and duration) may affect the physicochemical parameters, especially free acidity (FA), of Talh honey originating from Acacia gerrardii that have naturally high FA levels. Fresh Talh honey samples were kept at 0, 25, 35, and 45 °C, and analyzed monthly over a period of eight months. The Talh honey was monofloral with 69% A. gerrardii pollen content. The free acidity (FA) of freshly harvested Talh honey samples was higher (93 ± 0.3 meq/kg) than that of standard limits (≤50 meq/kg) and remained stable at 0 °C throughout the storage period. A significantly increase in FA started to occur after storage for 6 months at 25 °C (103 ± 0.2 meq/kg), 2 months at 35 °C (108 ± 0.3 meq/kg), and 1 month at 45 °C (112 ± 0.3 meq/kg). After 8 months of storage, the highest FA level was recorded at 45 °C (159 ± 0.5 meq/kg), followed by 127 ± 0.3 meq/kg at 35 °C, 105 ± 0.2 meq/kg at 25 °C, and 94 ± 0.3 meq/kg at 0 °C. It was found that 0 °C was an appropriate temperature for storing honey for long time. The electrical conductivity (EC) of fresh Talh samples (1.46 ± 0.0 mS/cm) was above the accepted limit (≤0.8 mS/cm), which was slightly increased (non-significant) throughout the storage period under all the storage temperatures. Hydroxymethylfurfural (HMF), diastase activity (DN), and reducing sugars (RSs) showed normal levels only at 0 °C and 25 °C throughout the storage period. However, HMF exceeded the standard limits after the first month at 45 °C (127 ± 9.6 mg/kg) and after the second month at 35 °C (90 ± 23.5 mg/kg), DA decreased below standard limits after the second month (5 ± 1 DN) under 45 °C and after the seventh month under 35 °C (7 ± 2 DN, and RSs decreased below 60% after 2 months under 45 °C and after 6 months at 35 °C. The physicochemical parameters (moisture content, pH, color, and sucrose) were the least affected and were within the standard range throughout the storage period under all the storage temperatures. The levels of FA and EC in fresh Talh samples were higher than the acceptable limits. The moisture content, pH, color, and sucrose content were not affected by storage conditions and remained within the acceptable limits. HMF, DA, and RSs were significantly affected by storage conditions only at 35 and 45 °C. The storage of honey at low temperatures (0 and 25 °C) for up to eight months presented the least amount of changes in the honey, and the honey was unchanged from its fresh status. Honey storage at 35 and 45 °C resulted in significant changes. It is recommended that Talh honey, which normally has high acidity levels, should be stored at temperatures not exceeding 25 °C.


Subject(s)
Acacia , Fabaceae , Honey , Acids/analysis , Amylases , Furaldehyde/analogs & derivatives , Honey/analysis , Pollen/chemistry , Sucrose/analysis
9.
Molecules ; 27(3)2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35164147

ABSTRACT

Vegetal proteins are of high interest for their many positive aspects, but their 'beany' off-flavor is still limiting the consumer's acceptance. The aim of this work was to investigate the conservation of pea protein isolate (PPI) during time and especially the evolution of their organoleptic quality under two storage conditions. The evolution of the volatile compounds, the odor and the color of a PPI has been investigated during one year of storage. PPI was exposed to two treatments mimicking a lack of control of storage conditions: treatment A with light exposition at ambient temperature (A-Light 20 °C) and treatment B in the dark but with a higher temperature (B-Dark 30 °C). For each sampling time (0, 3, 6, 9, 12 months), the volatile compounds were determined using HS-SPME-GC-MS, the odor using direct sniffing, and the color using the measurement of L*, a*, b* parameters. Treatment A was the most deteriorating and led to a strong increase in the total volatile compounds amount, an odor deterioration, and a color change. Furthermore, a tentative correlation between instrumental data on volatile compounds and the perceived odor was proposed. By the representation of volatile compounds sorted by their sensory descriptor, it could be possible to predict an odor change with analytical data.


Subject(s)
Hot Temperature , Odorants/analysis , Pea Proteins/chemistry , Volatile Organic Compounds/chemistry
10.
Molecules ; 27(21)2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36364292

ABSTRACT

L-Dopa (LD), a substance used medically in the treatment of Parkinson's disease, is found in several natural products, such as Vicia faba L., also known as broad beans. Due to its low chemical stability, LD analysis in plant matrices requires an appropriate optimization of the chosen analytical method to obtain reliable results. This work proposes an HPLC-UV method, validated according to EURACHEM guidelines as regards linearity, limits of detection and quantification, precision, accuracy, and matrix effect. The LD extraction was studied by evaluating its aqueous stability over 3 months. The best chromatographic conditions were found by systematically testing several C18 stationary phases and acidic mobile phases. In addition, the assessment of the best storage treatment of Vicia faba L. broad beans able to preserve a high LD content was performed. The best LD determination conditions include sun-drying storage, extraction in HCl 0.1 M, chromatographic separation with a Discovery C18 column, 250 × 4.6 mm, 5 µm particle size, and 99% formic acid 0.2% v/v and 1% methanol as the mobile phase. The optimized method proposed here overcomes the problems linked to LD stability and separation, thus contributing to the improvement of its analytical determination.


Subject(s)
Vicia faba , Chromatography, High Pressure Liquid/methods , Vicia faba/chemistry , Levodopa , Methanol
11.
Molecules ; 27(5)2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35268614

ABSTRACT

Storage conditions should be chosen so that they do not affect the action and stability of the active pharmaceutical substance (API), and excipients used in pharmacy. UV irradiation, increased temperature, and relative humidity can decompose storage substances by photolysis, thermolysis, and hydrolysis process, respectively. The effect of physical factors may be the decomposition of pharmaceutical substances or their inappropriate action, including pharmacological effects. Polymers of natural origin are increasingly used in the pharmaceutical industry. With this in mind, we evaluated the effect of storage conditions on the stability of gum arabic (GA) and tragacanth (GT). The influence of higher temperature, UV irradiation, and relative humidity on GA and GT was tested. Thermogravimetry (TG, c-DTA), colorimetric analysis, UV-Vis spectrophotometry, and optical microscopy were used as research methods. The TGA and c-DTA examination indicated that decomposition of GA starts at a higher temperature compared to GT. This indicate that gum arabic is more resistant to higher temperatures compared to tragacanth. However, the conducted analysis showed that gum arabic is more sensitive to the tested storage conditions. Among the tested physical conditions, both polymers were most sensitive to conditions of increased relative humidity in the environment.


Subject(s)
Tragacanth
12.
Klin Lab Diagn ; 67(5): 296-300, 2022 May 21.
Article in English | MEDLINE | ID: mdl-35613349

ABSTRACT

The results of evaluating the effectiveness of C. diphtheriae inoculation using different types of dry swabs in studies simulating various conditions of its storage at the preanalytical stage of a laboratory study for diphtheria are presented. A typical toxigenic strain of C. diphtheriae biovar gravis No. 665 was used. A commercial dry, sterile cotton swab probe (Ningbo Greetmed Medical Instruments Co., LTD, China), a commercial dry, sterile swab probe (plastic and viscose) (COPAN, Italy), tufters with a fluffy probe-tampon on a polystyrene applicator, standard (DELTALAB, SL, Spain). The tampons were pooled with a 24-hour bacterial culture of C. diphtheriae, then immediately seeded on Tellurite-containing blood agar and Corynebacagar. Storage conditions were simulated for 3 hours: at room conditions +(20-25)°C, in the refrigerator +(4-8)°C, in a thermostat +(37±1)°C. Optimal storage of C. diphtheriae on all three types of dry swabs at + (4-8) ° C; at +(20-25)° C - growth is observed when seeding from a cotton swab; in a swab with a fleecy probe-tampon, a decrease in the inoculation of C. diphtheriae was noted; when using a viscose swab - a significant loss of C. diphtheriae. At +(37±1)°C, a significant decrease in the inoculation of C. diphtheriae on all three types of tampons was noted, up to the absence of growth when using a viscose tampon. To exclude the loss of C. diphtheriae, it is necessary to observe the conditions for taking and storing biological material at the preanalytical stage of a laboratory study, which will improve the quality of laboratory microbiological studies for diphtheria infection.


Subject(s)
Corynebacterium diphtheriae , Diphtheria , Corynebacterium , Culture Media , Diphtheria/diagnosis , Humans
13.
Klin Lab Diagn ; 67(6): 350-354, 2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35749600

ABSTRACT

The results of evaluating the effectiveness of the use of liquid transport media at the preanalytical stage of bacteriological diagnosis of diphtheria infection are presented. A typical toxigenic strain of C. diphtheriae biovar gravis № 665 was used. The experiments were carried out using a laboratory-prepared medium based on GRM-broth (State research center for applied biotechnology and microbiology, Obolensk), a transport system with a fleecy probe swab (DELTALAB) and a transport system ∑-Transwab ® with a polyurethane Sigma-swab (Medical Wire & Equipment Co. (Bath) Ltd.). The tampons were pooled with a 24-hour bacterial culture of C. diphtheriae, then immediately seeded on Tellurite-containing blood agar. Storage conditions were simulated for 6-24 hours: at room conditions +(20-25)° C, in the refrigerator +(4-8)° C, in a thermostat +(37±1)° C. Storage of C. diphtheriae was most optimal on two liquid transport systems in a refrigerator +(4-8)° C for 6 and 24 hours; in room conditions +(20-25)° C - there was a decrease in seeding after 6 hours and loss of pathological material after 24 hours, more pronounced on a fleecy probe swab; under thermostat conditions +(37±1)° C on both transport systems, a decrease in seeding was noted after 6 hours and a complete loss of pathological material after 24 hours. The results obtained demonstrated the efficiency of using the Amies liquid transport medium and justify the need to develop a domestic analogue of the transport system based on the Amies liquid medium for the bacteriological diagnosis of diphtheria infection.


Subject(s)
Corynebacterium diphtheriae , Diphtheria , Corynebacterium , Culture Media , Diphtheria/diagnosis , Humans , Specimen Handling
14.
BMC Biotechnol ; 21(1): 37, 2021 06 04.
Article in English | MEDLINE | ID: mdl-34088291

ABSTRACT

BACKGROUND: Laccases (EC 1.10.3.2) are multi-copper oxidoreductases with great biotechnological importance due to their high oxidative potential and utility for removing synthetic dyes, oxidizing phenolic compounds, and degrading pesticides, among others. METHODS: A real-time stability study (RTS) was conducted for a year, by using enzyme concentrates from 3 batches (L1, L3, and L4). For which, five temperatures 243.15, 277.15, 298.15, 303.15, 308.15, and 313.15 K were assayed. Using RTS data and the Arrhenius equation, we calculated the rPOXA 1B accelerated stability (AS). Molecular dynamics (MD) computational study results were very close to those obtained experimentally at four different temperatures 241, 278, 298, and 314 K. RESULTS: In the RTS, 101.16, 115.81, 75.23, 46.09, 5.81, and 4.83% of the relative enzyme activity were recovered, at respective assayed temperatures. AS study, showed that rPOXA 1B is stable at 240.98 ± 5.38, 277.40 ± 1.32 or 297.53 ± 3.88 K; with t1/2 values of 230.8, 46.2, and 12.6 months, respectively. Kinetic and thermodynamic parameters supported the high stability of rPOXA 1B, with an Ed value of 41.40 KJ mol- 1, a low variation of KM and Vmax, at 240.98 ± 5.38, and 297.53 ± 3.88 K, and ∆G values showing deactivation reaction does not occur. The MD indicates that fluctuations in loop, coils or loops with hydrophilic or intermediate polarity amino acids as well as in some residues of POXA 1B 3D structure, increases with temperature; changing from three fluctuating residues at 278 K to six residues at 298 K, and nine residues at 314 K. CONCLUSIONS: Laccase rPOXA 1B demonstrated experimentally and computationally to be a stable enzyme, with t1/2 of 230.8, 46.2 or 12.6 months, if it is preserved impure without preservatives at temperatures of 240.98 ± 5.38, 277.40 ± 1.32 or 297.53 ± 3.88 K respectively; this study could be of great utility for large scale producers.


Subject(s)
Fungal Proteins/chemistry , Laccase/chemistry , Pichia/enzymology , Enzyme Stability , Fungal Proteins/genetics , Fungal Proteins/metabolism , Kinetics , Laccase/genetics , Laccase/metabolism , Molecular Dynamics Simulation , Pichia/chemistry , Pichia/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
15.
Protein Expr Purif ; 184: 105891, 2021 08.
Article in English | MEDLINE | ID: mdl-33895263

ABSTRACT

Immunoglobulin A (IgA) proteinase from Clostridium ramosum is the enzyme which cleaves IgA of both subclasses; in contrast, the other bacterial proteinases cleave only IgA1 proteins. Previous reports characterized the activity of proteinase naturally secreted by C. ramosum specific for the normal human serum IgA of IgA1 and IgA2m(1) subclasses and also for secretory IgA (SIgA). Its amino acid sequence was determined, and the recombinant proteinase which cleaved IgA of both subclasses was prepared. Here we report the optimized expression, purification, storage conditions and activity testing against purified human milk SIgA. The recombinant C. ramosum IgA proteinase isolated in the high degree of purity exhibited almost complete cleavage of SIgA of both subclasses. The proteinase remained active upon storage for more than 10 month at -20 °C without substantial loss of enzymatic activity. Purified SIgA fragments are suitable for studies of all antigen-binding and Fc-dependent functions of SIgA involved in the protection against infections with mucosal pathogens.


Subject(s)
Bacterial Proteins/chemistry , Firmicutes/enzymology , Immunoglobulin A, Secretory/chemistry , Immunoglobulin Fab Fragments , Immunoglobulin Fc Fragments , Peptide Hydrolases/chemistry , Bacterial Proteins/genetics , Firmicutes/genetics , Humans , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/isolation & purification , Immunoglobulin Fc Fragments/chemistry , Immunoglobulin Fc Fragments/isolation & purification , Peptide Hydrolases/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics
16.
J Appl Microbiol ; 131(3): 1030-1038, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33544965

ABSTRACT

AIMS: To understand the impact of storage temperature on recovery of Staphylococcus aureus on sampling swabs. Staphylococcus aureus is a common cause of skin and soft tissue infections, but also causes a variety of life-threatening diseases. With a large pool of asymptomatic carriers and transmission that can occur even through indirect contact, mitigation efforts have had limited success. Swab sampling, followed by culturing, is a cornerstone of epidemiological studies, however, S. aureus viability on swabs stored at different temperatures has not been characterized. METHODS AND RESULTS: We determined survival rates on swabs stored at five different temperatures. Samples stored at -70°C had no decay over time while samples stored at higher temperatures showed an exponential decay in viability. Mortality rates were greatest for swabs stored at 37°C. Survival at intermediate temperatures (-20 to 20·5°C) did not differ significantly, however, we observed more variation at higher temperatures. CONCLUSIONS: To maximize recovery of S. aureus cells, samples should be stored at -70°C or processed for culturing without delay. SIGNIFICANCE AND IMPACT OF THE STUDY: Epidemiological studies of bacterial diseases are typically limited to determination of pathogen presence/absence, yet quantitative assessments of pathogen load and genetic diversity can provide insights into disease progression and severity, likelihood of transmission and adaptive evolutionary potential. For studies of S. aureus where time or access to a microbiology laboratory may delay culturing, deep freezing or timely culturing will maximize the degree to which sampling results reflect source status.


Subject(s)
Staphylococcal Infections , Staphylococcus aureus , Hot Temperature , Humans , Specimen Handling , Staphylococcus aureus/genetics , Temperature
17.
Mar Drugs ; 19(8)2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34436262

ABSTRACT

Domoic acid (DA), the toxin causing amnesic shellfish poisoning (ASP), is produced globally by some diatoms in the genus Pseudo-nitzschia. DA has been detected in several marine mammal species in the Alaskan Arctic, raising health concerns for marine mammals and subsistence communities dependent upon them. Gastrointestinal matrices are routinely used to detect Harmful Algal Bloom (HAB) toxin presence in marine mammals, yet DA stability has only been studied extensively in shellfish-related matrices. To address this knowledge gap, we quantified DA in bowhead whale fecal samples at multiple time points for two groups: (1) 50% methanol extracts from feces, and (2) raw feces stored in several conditions. DA concentrations decreased to 70 ± 7.1% of time zero (T0) in the 50% methanol extracts after 2 weeks, but remained steady until the final time point at 5 weeks (66 ± 5.7% T0). In contrast, DA concentrations were stable or increased in raw fecal material after 8 weeks of freezer storage (-20 °C), at room temperature (RT) in the dark, or refrigerated at 1 °C. DA concentrations in raw feces stored in an incubator (37 °C) or at RT in the light decreased to 77 ± 2.8% and 90 ± 15.0% T0 at 8 weeks, respectively. Evaporation during storage of raw fecal material is a likely cause of the increased DA concentrations observed over time with the highest increase to 126 ± 7.6% T0 after 3.2 years of frozen storage. These results provide valuable information for developing appropriate sample storage procedures for marine mammal fecal samples.


Subject(s)
Bowhead Whale , Feces/chemistry , Kainic Acid/analogs & derivatives , Marine Toxins/chemistry , Animals , Kainic Acid/chemistry
18.
Int J Vitam Nutr Res ; 91(5-6): 461-468, 2021 Sep.
Article in English | MEDLINE | ID: mdl-32138619

ABSTRACT

Dairy beverages containing emulsified linseed oil is a suitable vehicle for delivering polyunsaturated fatty acids to consumers. However, these beverages are prone to oxidation. The purpose of this study was to evaluate the effect of adding various concentrations (0, 0.001, 0.01 and 0.1% (w/w)) of green tea extract (GTE) to dairy beverages (DB) containing linseed oil (2.0%, w/w), in order to inhibit lipid oxidation during storage at high temperature (50 °C) or under fluorescent light exposure. During storage, the concentration of catechin (C), epicatechin (EC) and epicatechin gallate (ECG) were significantly reduced (P ≤ 0.05) and degradation rate was greater when the DB were exposed to light (C 35%, EC 74% and ECG 68%) as compared to high temperature (C 34%, EC 45% and ECG 49%). In DB without GTE, the conjugated dienes (CD) hydroperoxides concentration increased significantly (P ≤ 0.05) from 23 mmol kg-1 fat to 243 mmol kg-1 fat under 6-day-light exposition, and to 83 mmol kg-1 fat under 6-day-heat temperature. The addition of GTE significantly increased the antioxidant capacity of DB and reduced the formation of CD, propanal and hexanal, induced by light exposure or high temperature. GTE at 0.10% completely inhibited CD formation during the storage period and reduced propanal and hexanal concentrations below the threshold.


Subject(s)
Catechin , Beverages , Linseed Oil , Plant Extracts , Tea
19.
Fuel (Lond) ; 284: 119024, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-32863405

ABSTRACT

Waste cooking oil (WCO) is a valuable feedstock for the synthesis of biodiesel but the product exhibits poor oxidative stability. Techniques available for assessing this parameter are generally expensive and time-consuming, hence the purpose of this study was to develop and validate a rapid and reliable predictive system based on signals from the sensors of a commercial hand-held e-nose instrument. Biodiesels were synthesized from soybean oil and six samples of WCO, and their physicochemical characteristics and oxidative stabilities determined before and after storage in different types of containers for 30 or 60 days at room temperature or 43 °C. Linear regression models were constructed based on principal component analysis of the signals generated by all 32 e-nose sensors and stochastic modeling of signal profiles from individual sensors. The regression model with principal components as predictors was unable to explain the oxidative stability of biodiesels, while the regression model with stochastic parameters (combining signals from 11 sensors) as predictors showed an excellent goodness of fit (R2 = 0.91) with a 45-sample training set and a good quality of prediction (R2 = 0.84) with a 18-sample validation set. The proposed e-nose system was shown to be accurate and efficient and could be used to advantage by producers/distributors of biodiesel in the assessment fuel quality.

20.
Sensors (Basel) ; 21(2)2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33467476

ABSTRACT

This study used visible/near-infrared hyperspectral imaging (HSI) technology combined with chemometric methods to assess the freshness of pearl gentian grouper. The partial least square discrimination analysis (PLS-DA) and competitive adaptive reweighted sampling-PLS-DA (CARS-PLS-DA) models were used to classify fresh, refrigerated, and frozen-thawed fish. The PLS-DA model achieved better classification of fresh, refrigerated, and frozen-thawed fish with the accuracy of 100%, 96.43%, and 96.43%, respectively. Further, the PLS regression (PLSR) and CARS-PLS regression (CARS-PLSR) models were used to predict the storage time of fish under different storage conditions, and the prediction accuracy was assessed using the prediction correlation coefficients (Rp2), root mean squared error of prediction (RMSEP), and residual predictive deviation (RPD). For the prediction of storage time, the CARS-PLS model presented the better result of room temperature (Rp2 = 0.948, RMSEP = 0.255, RPD = 4.380) and refrigeration (Rp2 = 0.9319, RMSEP = 1.188, RPD = 3.857), while the better prediction of freeze was by obtained by the PLSR model (Rp2 = 0.9250, RMSEP = 2.910, RPD = 3.469). Finally, the visualization of storage time based on the PLSR model under different storage conditions were realized. This study confirmed the potential of HSI as a rapid and non-invasive technique to identify fish freshness.


Subject(s)
Hyperspectral Imaging , Seafood , Animals , Least-Squares Analysis , Perciformes , Spectroscopy, Near-Infrared , Technology
SELECTION OF CITATIONS
SEARCH DETAIL