Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
BMC Pulm Med ; 17(1): 189, 2017 Dec 11.
Article in English | MEDLINE | ID: mdl-29228930

ABSTRACT

BACKGROUND: Gene expression changes in the structural cells of the airways are thought to play a role in the development of asthma and airway hyperresponsiveness. This includes changes to smooth muscle contractile machinery and epithelial barrier integrity genes. We used a targeted gene expression arrays to identify changes in the expression and co-expression of genes important in asthma pathology. METHODS: RNA was isolated from the airways of donor lungs from 12 patients with asthma (8 fatal) and 12 non-asthmatics controls and analyzed using a multiplexed, hypothesis-directed platform to detect differences in gene expression. Genes were grouped according to their role in airway dysfunction: airway smooth muscle contraction, cytoskeleton structure and regulation, epithelial barrier function, innate and adaptive immunity, fibrosis and remodeling, and epigenetics. RESULTS: Differential gene expression and gene co-expression analyses were used to identify disease associated changes in the airways of asthmatics. There was significantly decreased abundance of integrin beta 6 and Ras-Related C3 Botulinum Toxin Substrate 1 (RAC1) in the airways of asthmatics, genes which are known to play an important role in barrier function. Significantly elevated levels of Collagen Type 1 Alpha 1 (COL1A1) and COL3A1 which have been shown to modulate cell proliferation and inflammation, were found in asthmatic airways. Additionally, we identified patterns of differentially co-expressed genes related to pathways involved in virus recognition and regulation of interferon production. 7 of 8 pairs of differentially co-expressed genes were found to contain CCCTC-binding factor (CTCF) motifs in their upstream promoters. CONCLUSIONS: Changes in the abundance of genes involved in cell-cell and cell-matrix interactions could play an important role in regulating inflammation and remodeling in asthma. Additionally, our results suggest that alterations to the binding site of the transcriptional regulator CTCF could drive changes in gene expression in asthmatic airways. Several asthma susceptibility loci are known to contain CTCF motifs and so understanding the role of this transcription factor may expand our understanding of asthma pathophysiology and therapeutic options.


Subject(s)
Asthma , Respiratory Hypersensitivity , Airway Remodeling/genetics , Asthma/epidemiology , Asthma/genetics , Asthma/pathology , Asthma/physiopathology , Canada , Extracellular Matrix/genetics , Gene Expression Profiling/methods , Gene Expression Regulation , Genome-Wide Association Study , Humans , Respiratory Hypersensitivity/epidemiology , Respiratory Hypersensitivity/genetics
2.
Prep Biochem Biotechnol ; 47(3): 229-235, 2017 Mar 16.
Article in English | MEDLINE | ID: mdl-27347763

ABSTRACT

Although the human antimicrobial peptide LL37 has a broad spectrum of antimicrobial activities, it easily damages host cells following heterologous expressions. This study attempted two strategies to alleviate its damage to host cells when expressed in Pichia pastoris using the AOX1 promoter. Tandem repeat multimers of LL37 were first designed, and secretion expression strains GS115-9K-(DPLL37DP)n (n = 2, 4, 6 and 8) containing different copies of the LL37 gene were constructed. However, LL37 tandems still killed the cells after 96 hr of induction. Subsequently, peroxisome-targeted expression was performed by adding a peroxisomal targeting signal 1 (SKL) at the C-terminus of LL37. The LL37 expression strain GS115-3.5K-LL37-SKL showed no significant inhibition in the cells after induction. Antibacterial activity assays showed that the recombinant LL37 expressed in peroxisomes had good antimicrobial activities. Then, a strain GS115-3.5K-LL37-GFP-SKL producing LL37, green fluorescent protein, and SKL fusion proteins was constructed, and the fusion protein was confirmed to be targeting the peroxisomes. However, protein extraction analysis indicated that most of the fusion proteins were still located in the cell debris after cell disruption, and further studies are required to extract more proteins from the peroxisome membrane.


Subject(s)
Cathelicidins/genetics , Peroxisomes/genetics , Pichia/genetics , Transformation, Genetic , Alcohol Oxidoreductases/genetics , Anti-Bacterial Agents/metabolism , Antimicrobial Cationic Peptides , Bioreactors , Fungal Proteins/genetics , Gene Expression , Humans , Plasmids/genetics , Promoter Regions, Genetic , Recombinant Proteins/genetics
3.
J Neuromuscul Dis ; 10(4): 575-592, 2023.
Article in English | MEDLINE | ID: mdl-37270809

ABSTRACT

BACKGROUND: Depending on the therapy approach and disease background, the heterogeneity of muscular tissues complicates the development of targeted gene therapy, where either expression in all muscle types or restriction to only one muscle type is warranted. Muscle specificity can be achieved using promotors mediating tissue specific and sustained physiological expression in the desired muscle types but limited activity in non-targeted tissue. Several muscle specific promotors have been described, but direct comparisons between them are lacking. OBJECTIVE: Here we present a direct comparison of muscle specific Desmin-, MHCK7, microRNA206- and Calpain3 promotor. METHODS: To directly compare these muscle specific promotors we utilized transfection of reporter plasmids using an in vitro model based on electrical pulse stimulation (EPS) to provoke sarcomere formation in 2D cell culture for quantification of promotor activities in far differentiated mouse and human myotubes. RESULTS: We found that Desmin- and MHCK7 promotors showed stronger reporter gene expression levels in proliferating and differentiated myogenic cell lines than miR206 and CAPN3 promotor. However, Desmin and MHCK7 promotor promoted gene expression also cardiac cells whereas miR206 and CAPN3 promotor expression was restricted to skeletal muscle. CONCLUSIONS: Our results provides direct comparison of muscle specific promotors with regard to expression strengths and specificity as this is important feature to avoid undesired transgene expression in non-target muscle cells for a desired therapy approach.


Subject(s)
MicroRNAs , Muscle, Skeletal , Mice , Humans , Animals , Desmin/genetics , Desmin/metabolism , Muscle, Skeletal/metabolism , Cell Differentiation , Promoter Regions, Genetic , Genetic Therapy , MicroRNAs/genetics , MicroRNAs/metabolism
4.
Expert Opin Drug Discov ; 16(3): 255-274, 2021 03.
Article in English | MEDLINE | ID: mdl-32990095

ABSTRACT

INTRODUCTION: Aptamers provide exciting opportunities for the development of specific and targeted therapeutic approaches. AREAS COVERED: In this review, the authors discuss different therapeutic options available with nucleic acids, including aptamers, focussing on similarities and differences between them. The authors concentrate on case studies with specific aptamers, which exemplify their distinct advantages. The reasons for failure, wherever available, are deliberated upon. Attempts to accelerate the in vitro selection process have been discussed. Challenges with aptamers in terms of their specificity and targeted delivery and strategies to overcome these are described. Examples of precise regulation of systemic half-life of aptamers using antidotes are discussed. EXPERT OPINION: Despite their nontoxic nature, a variety of reasons limit the therapeutic potential of aptamers in the clinic. The analysis of adverse effects observed with the pegnivacogin/anivamersen pair has highlighted the need to screen for preexisting PEG antibodies in any clinical trial involving pegylated molecules. Surprisingly, and promisingly, the ability of nucleic acid therapeutics to breach the blood brain barrier seems achievable. The recognition of specific motifs, e.g. G-quadruplex in thrombin-binding aptamers, or a 'nucleation' zone while designing aptamer-antidote pairs, is likely to accelerate the discovery of therapeutically efficacious molecules.


Subject(s)
Aptamers, Nucleotide/administration & dosage , Drug Delivery Systems , Drug Development/methods , Animals , Antidotes/pharmacology , Aptamers, Nucleotide/pharmacokinetics , Aptamers, Nucleotide/pharmacology , Blood-Brain Barrier/metabolism , Half-Life , Humans
5.
3 Biotech ; 10(10): 426, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32968611

ABSTRACT

The present study was conducted to determine efficiency of green tissue-specific (pRCA) and stress-inducible promoters (pRD29A) to express E. coli beta-glucuronidase (gusA) gene in transgenic potatoes compared with constitutive promoter (35S CaMV). The promoter fragments were isolated from their original source and cloned upstream to gusA in pCAMBIA-1301 binary vector to develop plant expression constructs, i.e., pRCA-pCAMBIA and pRD29A-pCAMBIA. Agrobacterium strain GV2260 harboring recombinant plasmids were used to infect leaf discs and internodal explant of Lady Olympia cultivar. GUS histochemical analysis was performed at different stages to determine GUS activity in transgenic plants. To determine activity of stress-inducible promoter (pRD29A), transgenic plants were exposed to heat, drought and combination of both heat and drought stress. The real time (RT-qPCR) and GUS florimetric assays revealed that pRD29A promoter gets more activated under drought, heat and combination of both stresses. GUS expression levels were more than 10 folds high with pRD29A promoter compared to control. Likewise, the reduced transcripts levels of gusA gene under control of pRCA promoter were found in tuber/roots of transgenic plants compared to 35S promoter. GUS florimetric assays also showed decreased or no GUS expression in tubers. In conclusion, the results encourage the appropriate use of promoters to drive the expression of foreign gene(s) for the development of potato lines tolerant to biotic and abiotic stress while minimizing the risks of transgenic technology in potatoes.

6.
Mol Biotechnol ; 62(3): 151-167, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32036549

ABSTRACT

Single chain variable fragments (scFvs) are generated by joining together the variable heavy and light chain of a monoclonal antibody (mAb) via a peptide linker. They offer some advantages over the parental mAb such as low molecular weight, heterologous production, multimeric form, and multivalency. The scFvs were produced against more than 50 antigens till date using 10 different plant species as the expression system. There were considerable improvements in the expression and purification strategies of scFv in the last 24 years. With the growing demand of scFv in therapeutic and diagnostic fields, its biosynthesis needs to be increased. The easiness in development, maintenance, and multiplication of transgenic plants make them an attractive expression platform for scFv production. The review intends to provide comprehensive information about the use of plant expression system to produce scFv. The developments, advantages, pitfalls, and possible prospects of improvement for the exploitation of plants in the industrial level are discussed.


Subject(s)
Antibodies, Monoclonal , Gene Expression , Single-Chain Antibodies , Animals , Antibodies, Monoclonal/biosynthesis , Antibodies, Monoclonal/genetics , Humans , Single-Chain Antibodies/biosynthesis , Single-Chain Antibodies/genetics
7.
Mol Ther Nucleic Acids ; 11: 508-514, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29858085

ABSTRACT

The technique of targeted expression of interesting genes, including distinct delivery systems and specific gene promoter-operating expression, is an important strategy for gene therapy against cancers. Up to now, extensive literature documented the efficacy of distinct delivery systems, such as the liposome system, nano-particle system, polyetherimide (PEI) system, and so on, in cancer gene therapy. However, a related document on the potential value of using a specific gene promoter, such as a tumor suppressor, in cancer gene therapy was still scary. The main obstacle might be that the selection of an ideal gene promoter to operate interesting gene expression in cancer gene therapy is still not fully understood. Therefore, many efforts need to be done in order to make it a real power tool for the human clinical treatment of cancer patients. The purpose of this review is to clarify the current state and some problematics in development of promoter-operating targeted expression of interesting genes and highlight its potential in cancer gene therapy.

8.
Mol Ther Methods Clin Dev ; 11: 52-64, 2018 Dec 14.
Article in English | MEDLINE | ID: mdl-30397627

ABSTRACT

Novel strategies are needed to solve the conundrum of achieving clinical efficacy with high vector copy numbers (VCNs) in hematopoietic stem cells (HSCs) while attempting to minimize the potential risk of oncogenesis in lentiviral vector (LV)-mediated gene therapy clinical trials. We previously reported the benefits of reprogramming erythroid-megakaryocytic (EMK) cells for high-level lysosomal enzyme production with less risk of activating oncogenes in HSCs. Herein, using a murine model of mucopolysaccharidosis type I (MPS I) with a deficiency of α-L-iduronidase (IDUA), we sought to determine the transgene minimum effective doses (MEDs) in major organs, and if a transient increase of IDUA-containing red blood cells and platelets by repeated phlebotomy would provide further therapeutic benefits in diseased mice after EMK-restricted LV-mediated gene therapy. The MEDs for complete metabolic correction ranged from 0.1 to 2 VCNs in major visceral organs, which were dramatically reduced to 0.005-0.1 VCN by one cycle of stress induction and were associated with a further reduction of pathological deficits in mice with 0.005 VCN. This work provides a proof of concept that transiently stimulating erythropoiesis and thrombopoiesis can further improve therapeutic benefits in HSC-mediated gene therapy for MPS I, a repeatable and reversible approach to enhance clinical efficacy in the treatment of lysosomal storage diseases.

9.
Trends Plant Sci ; 21(2): 102-109, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26739421

ABSTRACT

Growth processes, governed by complex genetic networks in a coordinated manner, are determining factors for numerous crop traits. Many components of these networks, described in Arabidopsis and to a lesser extent in crops, enhance organ growth when perturbed. However, translating our understanding of plant growth into crop improvement has been very limited. We argue here that this lack of success is due to the fact that modifying the expression of single genes in a complex growth regulatory network might be buffered by other components of the network. We discuss the observation that simultaneous perturbations of multiple genes have more pronounced effects, and present novel perspectives to use knowledge of growth regulatory networks to enhance crop yield in a targeted manner.


Subject(s)
Plant Development , Biotechnology , Breeding , Crops, Agricultural/genetics , Crops, Agricultural/growth & development , Genes, Plant , Genetic Pleiotropy , Plant Development/genetics
SELECTION OF CITATIONS
SEARCH DETAIL