Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 170
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Am J Hum Genet ; 110(3): 516-530, 2023 03 02.
Article in English | MEDLINE | ID: mdl-36796361

ABSTRACT

Primate-specific genes (PSGs) tend to be expressed in the brain and testis. This phenomenon is consistent with brain evolution in primates but is seemingly contradictory to the similarity of spermatogenesis among mammals. Here, using whole-exome sequencing, we identified deleterious variants of X-linked SSX1 in six unrelated men with asthenoteratozoospermia. SSX1 is a PSG expressed predominantly in the testis, and the SSX family evolutionarily expanded independently in rodents and primates. As the mouse model could not be used for studying SSX1, we used a non-human primate model and tree shrews, which are phylogenetically similar to primates, to knock down (KD) Ssx1 expression in the testes. Consistent with the phenotype observed in humans, both Ssx1-KD models exhibited a reduced sperm motility and abnormal sperm morphology. Further, RNA sequencing indicated that Ssx1 deficiency influenced multiple biological processes during spermatogenesis. Collectively, our experimental observations in humans and cynomolgus monkey and tree shrew models highlight the crucial role of SSX1 in spermatogenesis. Notably, three of the five couples who underwent intra-cytoplasmic sperm injection treatment achieved a successful pregnancy. This study provides important guidance for genetic counseling and clinical diagnosis and, significantly, describes the approaches for elucidating the functions of testis-enriched PSGs in spermatogenesis.


Subject(s)
Asthenozoospermia , Tupaia , Animals , Male , Macaca fascicularis , Primates , Semen , Sperm Motility , Tupaiidae
2.
Exp Eye Res ; 240: 109824, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38336167

ABSTRACT

Myopia is an independent risk factor for glaucoma, but the link between both conditions remains unknown. Both conditions induce connective tissue remodeling at the optic nerve head (ONH), including the peripapillary tissues. The purpose of this study was to investigate the thickness changes of the peripapillary tissues during experimental high myopia development in juvenile tree shrews. Six juvenile tree shrews experienced binocular normal vision, while nine received monocular -10D lens treatment starting at 24 days of visual experience (DVE) to induce high myopia in one eye and the other eye served as control. Daily refractive and biometric measurements and weekly optical coherence tomography scans of the ONH were obtained for five weeks. Peripapillary sclera (Scl), choroid-retinal pigment epithelium complex (Ch-RPE), retinal nerve fiber layer (RNFL), and remaining retinal layers (RRL) were auto-segmented using a deep learning algorithm after nonlinear distortion correction. Peripapillary thickness values were quantified from 3D reconstructed segmentations. All lens-treated eyes developed high myopia (-9.8 ± 1.5 D), significantly different (P < 0.001) from normal (0.69 ± 0.45 D) and control eyes (0.76 ± 1.44 D). Myopic eyes showed significant thinning of all peripapillary tissues compared to both, normal and control eyes (P < 0.001). At the experimental end point, the relative thinning from baseline was heterogeneous across tissues and significantly more pronounced in the Scl (-8.95 ± 3.1%) and Ch-RPE (-16.8 ± 5.8%) when compared to the RNFL (-5.5 ± 1.6%) and RRL (-6.7 ± 1.8%). Furthermore, while axial length increased significantly throughout the five weeks of lens wear, significant peripapillary tissue thinning occurred only during the first week of the experiment (until a refraction of -2.5 ± 1.9 D was reached) and ceased thereafter. A sectorial analysis revealed no clear pattern. In conclusion, our data show that in juvenile tree shrews, experimental high myopia induces significant and heterogeneous thinning of the peripapillary tissues, where the retina seems to be protected from profound thickness changes as seen in Ch-RPE and Scl. Peripapillary tissue thinning occurs early during high myopia development despite continued progression of axial elongation. The observed heterogeneous thinning may contribute to the increased risk for pathological optic nerve head remodeling and glaucoma later in life.


Subject(s)
Glaucoma , Myopia , Animals , Humans , Tupaiidae , Tupaia , Shrews , Myopia/etiology , Retina , Tomography, Optical Coherence/methods , Glaucoma/complications
3.
Virol J ; 21(1): 4, 2024 01 04.
Article in English | MEDLINE | ID: mdl-38178220

ABSTRACT

BACKGROUND: Cross-species transmission of zoonotic IAVs to humans is potentially widespread and lethal, posing a great threat to human health, and their cross-species transmission mechanism has attracted much attention. miRNAs have been shown to be involved in the regulation of IAVs infection and immunity, however, few studies have focused on the molecular mechanisms underlying miRNAs and mRNAs expression after IAVs cross-species infection. METHODS: We used tree shrews, a close relative of primates, as a model and used RNA-Seq and bioinformatics tools to analyze the expression profiles of DEMs and DEGs in the nasal turbinate tissue at different time points after the newly emerged swine influenza A virus SW2783 cross-species infection with tree shrews, and miRNA-mRNA interaction maps were constructed and verified by RT-qPCR, miRNA transfection and luciferase reporter assay. RESULTS: 14 DEMs were screened based on functional analysis and interaction map, miR-760-3p, miR-449b-2, miR-30e-3p, and miR-429 were involved in the signal transduction process of replication and proliferation after infection, miR-324-3p, miR-1301-1, miR-103-1, miR-134-5p, miR-29a, miR-31, miR-16b, miR-34a, and miR-125b participate in negative feedback regulation of genes related to the immune function of the body to activate the antiviral immune response, and miR-106b-3p may be related to the cross-species infection potential of SW2783, and the expression level of these miRNAs varies in different days after infection. CONCLUSIONS: The miRNA regulatory networks were constructed and 14 DEMs were identified, some of them can affect the replication and proliferation of viruses by regulating signal transduction, while others can play an antiviral role by regulating the immune response. It indicates that abnormal expression of miRNAs plays a crucial role in the regulation of cross-species IAVs infection, which lays a solid foundation for further exploration of the molecular regulatory mechanism of miRNAs in IAVs cross-species infection and anti-influenza virus targets.


Subject(s)
MicroRNAs , Animals , Humans , Swine , MicroRNAs/genetics , MicroRNAs/metabolism , Influenza A Virus, H3N2 Subtype/genetics , Tupaia , Gene Expression Profiling , Tupaiidae/genetics , Shrews , RNA, Messenger
4.
Biochem Biophys Res Commun ; 668: 125-132, 2023 08 06.
Article in English | MEDLINE | ID: mdl-37247592

ABSTRACT

Radiotherapy-induced muscle injury (RIMI) is a major complication of radiotherapy for nasopharyngeal carcinoma. Transcription factor (TF) expression and alternative splicing are crucial events in transcriptional and posttranscriptional regulation, respectively, and are known to be involved in key signaling pathways contributing to a variety of human disorders, including radiation injury. To investigate the TFs and alternative splicing events involved in RIMI, we constructed a tree shrew model as described previously in which the RIMI group received 20 Gy of irradiation on the tensor veli palatini (TVP) muscles. The irradiated muscles were evaluated by RNA sequencing (RNA-seq) 6 months later, and the results compared with those for normal TVP muscles. The alt5p and alt3p events were the two main types of differentially regulated alternative splicing events (RASEs) identified via the Splice sites Usage Variation Analysis (SUVA) software, and these RASEs were highly conserved in RIMI. According to functional enrichment analysis, the differentially RASEs were primarily enriched in pathways related to transcriptional regulation. Furthermore, we identified 16 alternative splicing TFs (ASTFs) in ASTF-differentially expressed gene (DEG) networks based on co-expression analysis, and the regulatory networks were chiefly enriched in pathways linked to cell proliferation and differentiation. This study revealed that RASEs and ASTF-DEG networks may both play important regulatory roles in gene expression network alteration in RIMI. Future studies on the targeting mechanisms and early interventions directed at RASEs and ASTF-DEG networks may aid in the treatment of RIMI.


Subject(s)
Transcription Factors , Tupaiidae , Animals , Humans , Transcription Factors/genetics , Transcription Factors/metabolism , Tupaiidae/metabolism , RNA Splicing , Alternative Splicing , Muscles/metabolism , Gene Expression Profiling
5.
Synapse ; 77(5): e22274, 2023 09.
Article in English | MEDLINE | ID: mdl-37211869

ABSTRACT

d-Galactose (d-gal) and l-glutamate (l-glu) impair learning and memory. The mechanism of interaction between the gut microbiome and brain remains unclear. In this study, a model of cognitive impairment was induced in tree shrews by intraperitoneal (ip) injection of d-gal (600 mg/kg/day), intragastric (ig) administration with l-glu (2000 mg/kg/day), and the combination of d-gal (ip, 600 mg/kg/day) and l-glu (ig, 2000 mg/kg/day). The cognitive function of tree shrews was tested by the Morris water maze method. The expression of Aß1-42 proteins, the intestinal barrier function proteins occludin and P-glycoprotein (P-gp), and the inflammatory factors NF-κB, TLR2, and IL-18 was determined by immunohistochemistry. The gut microbiome was analyzed by 16SrRNA high-throughput sequencing. After administering d-gal and l-glu, the escape latency increased (p < .01), and the times of crossing the platform decreased (p < .01). These changes were greater in the combined administration of d-gal and l-glu (p < .01). The expression of Aß1-42 was higher in the perinuclear region of the cerebral cortex (p < .01) and intestinal cell (p < .05). There was a positive correlation between the cerebral cortex and intestinal tissue. Moreover, the expression of NF-κB, TLR2, IL-18, and P-gp was higher in the intestine (p < .05), while the expression of occludin and the diversity of gut microbes were lower, which altered the biological barrier of intestinal mucosal cells. This study indicated that d-gal and l-glu could induce cognitive impairment, increase the expression of Aß1-42 in the cerebral cortex and intestinal tissue, decrease the gut microbial diversity, and alter the expression of inflammatory factors in the mucosal intestines. The dysbacteriosis may produce inflammatory cytokines to modulate neurotransmission, causing the pathogenesis of cognitive impairment. This study provides a theoretical basis to explore the mechanism of learning and memory impairment through the interaction of microbes in the gut and the brain.


Subject(s)
Cognitive Dysfunction , Galactose , Animals , Galactose/toxicity , Galactose/metabolism , Glutamic Acid/metabolism , Interleukin-18/adverse effects , Interleukin-18/metabolism , NF-kappa B/metabolism , Tupaiidae/metabolism , Occludin/metabolism , Toll-Like Receptor 2/metabolism , Brain/metabolism , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/pathology , Maze Learning
6.
Virol J ; 20(1): 177, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37553712

ABSTRACT

BACKGROUND: Epstein-Barr virus (EBV) infection is a major global threat; its manifestations range from the absence of symptoms to multiorgan malignancies and various gastrointestinal diseases. Analyzing the composition and metabolomic profile of gut microbiota during acute EBV infection might be instrumental in understanding and controlling EBV. METHODS: Six tree shrews were inoculated with EBV by intravenous injection. Blood was collected at regular intervals thereafter from the femoral vein to detect EBV and inflammatory biomarker. At the same time, tree shrew faeces were collected for 16 S rRNA gene sequencing and Non-targeted metabolomics analysis. RESULTS: 16 S rRNA gene characterization along with ß diversity analysis exhibited remarkable alterations in gut microflora structure with a peak at 7 days post-infection(dpi). Some alterations in the relative richness of bacterial taxon were linked to infectious indicators. Of note, Butyricicoccus relative richness was positively linked to EBV presence in the blood and plasma, the opposite correlation was seen with Variovorax and Paramuribaculum. Non-targeted metabolomics indicated the fecal metabolome profile altered during EBV infection, particularly 7 dpi. The relative abundance of geranic acid and undecylenic acid in stool samples was positively linked to systemic inflammatory biomarkers, and an inverse relationship was reported with the estrone glucuronide, linoleic acid, protoporphyrin IX and tyramine. CONCLUSION: Collectively, EBV infection in this model correlated with changes in the composition and metabolome profile of the gut microbiota.


Subject(s)
Epstein-Barr Virus Infections , Gastrointestinal Microbiome , Animals , Humans , Herpesvirus 4, Human , Tupaiidae , Metabolome , Tupaia , Biomarkers
7.
J Clin Periodontol ; 50(8): 1075-1088, 2023 08.
Article in English | MEDLINE | ID: mdl-37353986

ABSTRACT

AIM: Periodontitis is an inflammatory, infectious disease of polymicrobial origin that can damage tooth-supporting bone and tissue. Tree shrews, evolutionarily closer to humans than commonly used rodent models, have been increasingly used as biomedical models. However, a tree shrew periodontitis model has not yet been established. MATERIALS AND METHODS: Periodontitis was induced in male tree shrews/Sprague-Dawley rats by nylon thread ligature placement around the lower first molars. Thereafter, morphometric and histological analyses were performed. The distance from the cemento-enamel junction to the alveolar bone crest was measured using micro-computed tomography. Periodontal pathological tissue damage, inflammation and osteoclastogenesis were assessed using haematoxylin and eosin staining and quantitative immunohistochemistry, respectively. RESULTS: Post-operatively, gingival swelling, redness and spontaneous bleeding were observed in tree shrews but not in rats. After peaking, bone resorption decreased gradually until plateauing in tree shrews. Contrastingly, rapid and near-complete bone loss was observed in rats. Inflammatory infiltrates were observed 1 week post operation in both models. However, only the tree shrew model transitioned from acute to chronic inflammation. CONCLUSIONS: Our study revealed that a ligature-induced tree shrew model of periodontitis partly reproduced the pathological features of human periodontitis and provided theoretical support for using tree shrews as a potential model for human periodontitis.


Subject(s)
Alveolar Bone Loss , Periodontitis , Rats , Humans , Animals , Tupaia , Tupaiidae , Rats, Sprague-Dawley , X-Ray Microtomography , Alveolar Bone Loss/diagnostic imaging , Alveolar Bone Loss/pathology , Disease Models, Animal , Periodontitis/diagnostic imaging , Periodontitis/pathology , Inflammation
8.
J Integr Neurosci ; 22(1): 22, 2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36722229

ABSTRACT

BACKGROUND: Nogo-66 receptor (NgR1) is a glycosylphosphatidylinositol-linked cell surface receptor with high affinity for Nogo-66. The binding of Nogo-66 to NgR1 plays a key role in inhibiting neurite growth, limiting synaptic plasticity and mediating Mammalian Reovirus (MRV) infection. The Chinese tree shrew (Tupaia belangeri chinensis) is, a new and valuable experimental animal that is widely used in biomedical research. Although susceptible to MRV, little is known about tree shrew NgR1 and its role in MRV infection. METHODS: In this study, we cloned NgR1 form the Chinese tree shrew by RACE technology and analyzed its characteristics, spatial structure and its tissue expression. We also examined the expression pattern of NgR1 in the response of tree shrew primary nerve cells (tNC) to MRV1/TS/2011 infection. RESULTS: Tree shrew NgR1 was found to have a closer relationship to human NgR1 (90.34%) than to mouse NgR1. Similar to the protein structure of human NgR1, the tree shrew NgR1 has the same leucine-rich repeat (LRR) domain structure that is capped by C-terminal and N-terminal cysteine-rich modules. The tree shrew NgR1 mRNAs were predominantly detected in the central nervous system (CNS), and tree shrew NgR1 can mediate infection by MRV1/TS/2011. CONCLUSIONS: Taken together, these results help to elucidate the function of NgR1 and provide a basis for using the tree shrew as an animal model for studies of the nervous system and infectious diseases.


Subject(s)
Nogo Receptor 1 , Tupaia , Animals , Biomedical Research , Central Nervous System
9.
Curr Issues Mol Biol ; 44(9): 4303-4313, 2022 Sep 17.
Article in English | MEDLINE | ID: mdl-36135208

ABSTRACT

In this study, we aimed to investigate whether chronic retinal inflammation is involved in the pathogenesis of form-deprivation myopia (FDM) using tree shrews as an animal model. Twenty-one tree shrews were randomly divided into 7-day/14-day FDM (FDM7/FDM14) groups and their corresponding 7-day/14-day control groups. Refraction and axial length were measured. To determine the effects of form deprivation on inflammation, we used real-time polymerase chain reaction (PCR) and immunohistochemistry to assess the expression levels of several proinflammatory cytokines. At day 0, the eyes in the FDM and control groups were hyperopic. However, after 7 and 14 days of form deprivation, the refractive error of the eyes in the FDM7 and FDM14 groups shifted from +6.6 ± 0.3 diopters (D) to +4.0 ± 0.5 D and from +6.4 ± 0.3 D to +5.0 ± 0.3 D, respectively. The levels of tumor necrosis factor-α, interleukin (IL)-6, IL-8, monocyte chemoattractant protein-1, and nuclear factor κB were increased in the FDM eyes, compared with those in the control eyes. The increase in matrix metalloproteinase-2 expression was greater in the FDM eyes than in the contralateral and control eyes, whereas collagen type I expression was downregulated. In conclusion, chronic inflammation may play a crucial pathogenic role in form-deprivation myopia in tree shrews.

10.
Mol Biol Rep ; 49(8): 7307-7314, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35767108

ABSTRACT

BACKGROUND: The product of the SEC14L2 (SEC14 Like Lipid Binding 2) gene belongs to a family of lipid-binding proteins including Sec14p, alpha-tocopherol transfer protein, and cellular retinol-binding protein. SEC14L2 expression enables replication of clinical hepatitis C virus (HCV) isolates in several hepatoma cell lines, and mutations in SEC14L2 may enhance HCV replication in vitro. The Chinese tree shrew (Tupaia belangeri chinensis) is a potential animal model for studying HCV replication, however, the cDNA sequence, protein structure, and expression of the Chinese tree shrew SEC14L2 gene have yet to be characterized. METHODS AND RESULTS: In the present study, we cloned the full-length cDNA sequence of the SEC14L2 in the Chinese tree shrew by using rapid amplification of cDNA ends technology. This led us to determine that, this is 2539 base pairs (bp) in length, the open reading frame sequence is 1212 bp, and encodes 403 amino acids. Following this, we constructed a phylogenetic tree based on SEC14L2 molecules from various species and compared SEC14L2 amino acid sequence with other species. This analysis indicated that the Chinese tree shrew SEC14L2 protein (tsSEC14L2) has 96.28% amino acid similarity to the human protein, and is more closely related to the human protein than either mouse or rat protein. The Chinese tree shrew SEC14L2 mRNA was detected in all tissues, and showed highest expression levels in the pancreas, small intestine and trachea, however the tsSEC14L2 protein abundance was highest in the liver and small intestine. CONCLUSION: The Chinese tree shrew SEC14L2 gene was closer in evolutionary relation to humans and non-human primates and expression of the tsSEC14L2 protein was highest in the liver and small intestine. These results may provide useful information for tsSEC14L2 function in HCV infection.


Subject(s)
Hepatitis C , Lipoproteins/metabolism , Tupaia , Animals , Carrier Proteins/genetics , China , DNA, Complementary , Disease Models, Animal , Hepacivirus/genetics , Humans , Lipids , Lipoproteins/genetics , Mice , Phylogeny , Rats , Trans-Activators/genetics , Tupaia/genetics
11.
Vet Pathol ; 59(2): 340-347, 2022 03.
Article in English | MEDLINE | ID: mdl-34931557

ABSTRACT

A high prevalence of AA-amyloidosis was identified in a breeding colony of northern tree shrews (Tupaia belangeri) in a retrospective analysis, with amyloid deposits in different organs being found in 26/36 individuals (72%). Amyloid deposits, confirmed by Congo red staining, were detected in kidneys, intestines, skin, and lymph nodes, characteristic of systemic amyloidosis. Immunohistochemically, the deposited amyloid was intensely positive with anti-AA-antibody (clone mc4), suggesting AA-amyloidosis. The kidneys were predominantly affected (80%), where amyloid deposits ranged from mild to severe and was predominantly located in the renal medulla. In addition, many kidneys contained numerous cysts with atrophy of the renal parenchyma. There was no significant association between concurrent neoplastic or inflammatory processes and amyloidosis. The lack of distinctive predisposing factors suggests a general susceptibility of captive T. belangeri to develop amyloidosis. Clinical and laboratory findings of a female individual with pronounced kidney alterations were indicative of renal failure. The observed tissue tropism with pronounced kidney alterations, corresponding renal dysfunction, and an overall high prevalence suggests amyloidosis as an important disease in captive tree shrews.


Subject(s)
Amyloidosis , Tupaia , Amyloidosis/pathology , Amyloidosis/veterinary , Animals , Female , Plaque, Amyloid/veterinary , Retrospective Studies , Tupaiidae
12.
Cytokine ; 138: 155388, 2021 02.
Article in English | MEDLINE | ID: mdl-33271385

ABSTRACT

Chinese tree shrews (Tupaia belangeri chinensis) are increasingly used as an alternative experimental animal to non-human primates in studying viral infections. Guanylate-binding proteins (GBP) belong to interferon (IFN)-inducible GTPases and defend the mammalian cell interior against diverse invasive pathogens. Previously, we identified five tree shrew GBP genes (tGBP1, tGBP2, tGBP4, tGBP5, and tGBP7) and found that tGBP1 showed antiviral activity against vesicular stomatitis virus (VSV) and type 1 herpes simplex virus (HSV-1) infections. Here, we showed that the anti-VSV activity of tGBP1 was independent of its GTPase activity and isoprenylation. In response to VSV infection, instead of regulating IFN expression and autophagy, tGBP1 competed with the VSV nucleocapsid (N) protein in binding to the VSV phosphoprotein (VSV-P), leading to the repression of the primary transcription of the VSV genome. These observations constitute the first report of the potential mechanism underlying the inhibition of VSV by GBP1.


Subject(s)
GTP-Binding Proteins/metabolism , Gene Expression Regulation , Genome, Viral , Phosphoproteins/genetics , Tupaia/genetics , Vesiculovirus/metabolism , Animals , Autophagy , HEK293 Cells , Humans , Interferons/metabolism , Nucleocapsid Proteins/chemistry , Protein Binding , Transcription Factors/genetics , Transcription, Genetic , Up-Regulation , Viral Proteins/chemistry , Virus Replication/drug effects
13.
Cells Tissues Organs ; 210(2): 118-134, 2021.
Article in English | MEDLINE | ID: mdl-34182545

ABSTRACT

Based on the characteristics of modern weapon injury, a repetitive model of traumatic systemic inflammatory response syndrome (SIRS) and an evaluation system were established. The models were treated with GFP-labeled tree shrew umbilical cord mesenchymal stem cells (UCMSCs). Forty out of 50 tree shrews were used to make a unilateral femoral comminuted fracture. Lipopolysaccharide was injected intravenously to create a traumatic SIRS model. The other 10 shrews were used as normal controls. After the model was established for 10 days, 20 tree shrews were injected intravenously with GFP-labeled UCMSCs, and 18 tree shrews were not injected as the model control group. The distribution of GFP-labeled cells in vivo was measured at 2 and 10 days after injection. Twenty days after treatment, the model group, the normal control group, and the treatment group were taken to observe the pathological changes in each tissue, and blood samples were taken for the changes in liver, renal, and heart function. Distribution of GFP-positive cells was observed in all tissues at 2 and 10 days after injection. After treatment, the HE staining results of the treatment group were close to those of the normal group, and the model group had a certain degree of lesions. The results of liver, renal, and heart function tests in the treatment group were returned to normal, and the results in the model group were abnormally increased. UCMSCs have a certain effect on the treatment of traumatic SIRS and provide a new technical solution for modern weapon trauma treatment.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Humans , Kidney , Systemic Inflammatory Response Syndrome/therapy , Umbilical Cord
14.
Mol Biol Rep ; 48(12): 7975-7984, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34716864

ABSTRACT

BACKGROUND: The Niemann-Pick C1-Like 1 protein, a multi-transmembrane domain molecule, is critical for intestinal cholesterol absorption, and is the entry factor for hepatitis C virus (HCV). The Chinese tree shrew (Tupaia belangeri chinensis) is closer to primates in terms of genetic evolution than rodents. Previous studies indicated that the tree shrew was suitable for HCV research; however, little is known about tree shrew NPC1L1. METHODS AND RESULTS: TsNPC1L1 cDNA was amplified by rapid amplification of cDNA ends (RACE) technology. The cDNA sequence, its encoded protein structure, and expression profile were analyzed. Results indicated that the tsNPC1L1 mRNA is 4948 bp in length and encodes a 1326 amino acid protein. TsNPC1L1 possesses 84.97% identity in homology to human NPC1L1 which is higher than both mouse (80.37%) and rat (81.80%). The protein structure was also similar to human with 13 conserved transmembrane helices, and a sterol-sensing domain (SSD). Like human NPC1L1, the tsNPC1L1 mRNA transcript is highly expressed in small intestine, but it was also well-expressed in the lung and pancreas of the tree shrew. CONCLUSION: The homology of tree shrew NPC1L1 was closer to human than that of rodent NPC1L1. The expression of tsNPC1L1 was the highest in small intestine, and was detectable in lung and pancreas. These results may be useful in the study of tsNPC1L1 function in cholesterol absorption and HCV infection.


Subject(s)
Membrane Transport Proteins/genetics , Tupaia/genetics , Amino Acid Sequence , Animals , China , Cloning, Molecular , Membrane Transport Proteins/metabolism , Phylogeny , RNA, Messenger/genetics , Tupaia/metabolism
15.
Cereb Cortex ; 30(5): 3370-3380, 2020 05 14.
Article in English | MEDLINE | ID: mdl-32080709

ABSTRACT

During evolution, neural progenitor cells in the subventricular zone (SVZ) have fundamental functions, ranging from brain volume expansion to the generation of a six-layered neocortex. In lissencephalic animal models, such as rodents, the majority of neural progenitors in the SVZ are intermediate progenitor cells (IPCs). Most IPCs in rodents undergo neurogenic division, and only a small portion of them divide a very limited number of times to generate a few neurons. Meanwhile, in gyrencephalic animals, such as primates, IPCs are able to self-renew for up to five successive divisions. However, abundant IPCs with successive proliferative capacity have not been directly observed in nonprimate species. In this study, we examined the development of neural progenitors in the Chinese tree shrew (Tupaia belangeri chinensis), a lissencephalic animal with closer affinity than rodents to primates. We identified an expansion of the SVZ and the presence of outer radial glial (oRG) cells in the neocortex. We also found that IPCs have the capacity to self-amplify multiple times and therefore serve as major proliferative progenitors. To our knowledge, our study provides the first direct evidence of abundant IPCs with proliferative potential in a nonprimate species, further supporting the key role of IPCs in brain expansion.


Subject(s)
Biological Evolution , Ependymoglial Cells/cytology , Lateral Ventricles/cytology , Neocortex/cytology , Neural Stem Cells/cytology , Animals , Cell Proliferation , Tupaiidae
16.
Metab Brain Dis ; 36(7): 1889-1901, 2021 10.
Article in English | MEDLINE | ID: mdl-34417941

ABSTRACT

Nowadays, similar strategies have been used for the treatment and prevention of acute stroke in both diabetes mellitus (DM) and non-DM populations. These strategies were analyzed to provide an experimental basis for the clinical prevention and treatment of stroke in patients both with and without DM. Tree shrews were randomly divided into control, DM, ischemic stroke (IS), and DMIS groups with 18 animals in each group. Serum biochemical indicators were used to assess metabolic status. Neural tissue damage was determined using triphenyl tetrazolium chloride staining, H-E staining, and electron microscopy. Differential gene expression of neural tissue between the DM and control groups and the IS and DMIS groups was measured using RNA-seq analysis. The serum glucose levels of the DM and DMIS groups were significantly higher than other groups. In the DMIS group, the infarct size was significantly larger than in the IS group (19.56 ± 1.25%), with a more obvious abnormal ultrastructure of neural cells. RNA-seq analysis showed that the expression of IL-8, C-C motif chemokine 2 (CCL2), and alpha-1-antichymotrypsin was significantly higher in the DM group than in the control group. The CCL7, ATP-binding cassette sub-family A member 12, and adhesion G protein-coupled receptor E2 levels were significantly higher in the DMIS group than in the IS group. For the prevention and treatment of stroke in patients with DM, reducing the inflammatory state of the nervous system may reduce the incidence of stroke and improve the prognosis of neurological function after IS.


Subject(s)
Brain Ischemia , Diabetes Mellitus, Type 2 , Diabetes Mellitus , Ischemic Stroke , Stroke , Animals , Brain/metabolism , Brain Ischemia/genetics , Brain Ischemia/metabolism , Diabetes Mellitus, Type 2/genetics , Ischemia , Ischemic Stroke/genetics , Sequence Analysis, RNA , Stroke/genetics , Stroke/therapy , Tupaia/genetics , Tupaiidae/genetics
17.
J Proteome Res ; 19(4): 1470-1480, 2020 04 03.
Article in English | MEDLINE | ID: mdl-32129075

ABSTRACT

Due to its relatively small size, homology to humans, and susceptibility to human viruses, the tree shrew becomes an ideal alternative animal model for the study of human viral infectious diseases. However, there is still no report for the comprehensive glycan profile of the respiratory tract tissues in tree shrews. In this study, we characterized the structural diversity of N-glycans in the respiratory tract of tree shrews using our well-established TiO2-PGC chip-Q-TOF-MS method. As a result, a total of 219 N-glycans were identified. Moreover, each identified N-glycan was quantitated by a high sensitivity and accurate MRM method, in which 13C-labeled internal standards were used to correct the inherent run-to-run variation in MS detection. Our results showed that the N-glycan composition in the turbinate and lung was significantly different from the soft palate, trachea, and bronchus. Meanwhile, 28 high-level N-glycans in turbinate were speculated to be correlated with the infection of H1N1 virus A/California/04/2009. This study is the first to reveal the comprehensive glycomic profile of the respiratory tract of tree shrews. Our results also help to better understand the role of glycan receptors in human influenza infection and pathogenesis.


Subject(s)
Influenza A Virus, H1N1 Subtype , Tupaiidae , Animals , Glycomics , Humans , Mass Spectrometry , Polysaccharides , Titanium
18.
BMC Microbiol ; 20(1): 260, 2020 08 20.
Article in English | MEDLINE | ID: mdl-32819295

ABSTRACT

BACKGROUND: Clostridioides difficile is a major cause of antibiotic associated diarrhea. Several animal models are used to study C. difficile infection (CDI). The tree shrew has recently been developed as a model of primate processes. C. difficile infection has not been examined in tree shrews. We infected tree shrews with hyper-virulent C. difficile strains and examined the alterations in gut microbiota using 16S rRNA gene sequencing. RESULTS: C. difficile colonized the gastrointestinal tract of tree shrew and caused diarrhea and weight loss. Histopathologic examination indicated structures and mucosal cell destruction in ileal and colonic tissues. The gut microbial community was highly diversity before infection and was dominated by Firmicutes, Fusobacteria, Bacteroidetes, and Proteobacteria. Antibiotic administration decreased the diversity of the gut microbiota and led to an outgrowth of Lactobacillus. The relative abundance of Proteobacteria, Gammaproteobacteria, Enterobacteriales, Lachnospiraceae, Enterobacteriaceae, Escherichia, Blautia, and Tyzzerella increased following C. difficile infection. These taxa could be biomarkers for C. difficile colonization. CONCLUSIONS: In general, the disease symptoms, histopathology, and gut microbiota changes following C. difficile infection in tree shrews were similar to those observed in humans.


Subject(s)
Bacteria/classification , Clostridioides difficile/pathogenicity , Clostridium Infections/veterinary , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA/methods , Tupaiidae/microbiology , Animals , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacology , Bacteria/genetics , Bacteria/isolation & purification , Clostridium Infections/drug therapy , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , Diarrhea/microbiology , Disease Models, Animal , Female , Gastrointestinal Microbiome/drug effects , Humans , Male , Phylogeny , Weight Loss
19.
J Med Virol ; 92(12): 3465-3474, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32056224

ABSTRACT

Hepatitis C virus (HCV) infection is a major cause of chronic liver disease and associated cirrhosis, and hepatocellular carcinoma worldwide. At present, there is no prophylactic vaccine against HCV due to the lack of in vivo and in vitro model systems. Although most recombinants of all major HCV genotypes replicate in Huh-7 cell line and derivatives, these cells are human hepatoma-derived cell line. Therefore, the development of un-tumor-derived cell systems facilitating the entire HCV life cycle is urgently needed. In this study, we aimed to establish a novel tree shrew-derived bone marrow-derived mesenchymal stem cell (BM-MSC) system to reconstruct the HCV life cycle. We transduction cluster of differentiation 81 (CD81), occludin (OCLN), and microRNA-122 (miR-122) into BM-MSCs, then used a well-established HCV, produced from the J6/JFH1-Huh7.5.1 culture system, to infect the cells. We observed that BM-MSCs transduction with CD81/OCLN or CD81/OCLN/miR-122 support HCV RNA replication and infectious virus production. We also found that the addition of exogenous vascular endothelial growth factor (VEGF) can enhance HCV infectivity in BM-MSCs, with HCV virus load up to 105 copies/mL. In conclusion, we identified the minimum essential factors required for HCV replication in tree shrew-derived nonhuman nonhepatic BM-MSCs. Further, we identified that exogenous addition of VEGF, and exogenous expression of CD81, OCLN, and miR-122, facilitates efficient viral replication and production of infectious particles. Our results describe a novel cell system capable of supporting the entire HCV life cycle, which may provide an essential tool for anti-HCV drug discovery, vaccine development, and study of pathogenesis.

20.
J Neurovirol ; 26(3): 391-403, 2020 06.
Article in English | MEDLINE | ID: mdl-32301037

ABSTRACT

Herpes simplex virus type I (HSV-1) infection causes inflammation in the cornea known as herpes simplex virus keratitis (HSK), a common but serious corneal disease. It is not entirely clear whether the virus during recurring infection comes from the trigeminal ganglia or the eye tissue, including the retina and ciliary ganglion. Because the tree shrew is closely related to primates and tree shrew eye anatomic structures are similar to humans, we studied HSV-1 corneal infection in the tree shrew. We found that HSK symptoms closely mimic those found in human HSK showing typical punctiform and dendritic viral keratitis during the acute infection period. Following the HSV-specific lesions, complications such as stromal scarring, corneal thickening (primary infection), opacity, and neovascularization were observed. In the tree shrew model, following ocular inoculation, the cornea becomes infected, and viral protein can be detected using anti-HSV-1 antibodies in the epithelial layer and retina neuronal ganglion cells. The HSV-1 transcripts, ICP0, ICP4, and LAT can be detected at 3 days post-infection (dpi), peaking at 5 dpi. After 2 weeks, ICP4 and ICP0 transcripts are reduced to a basal level, but the Latency Associated Transcripts (LATs) continue to accumulate. Interestingly, after the acute infection, we still detected abundant active HSV-1 in tree shrew eyes. Further, we found HSV-1 persistent in the ciliary ganglion and cornea. These findings are discussed in support of the tree shrew as a non-human primate HSK model, which could be useful for mechanistic studies of HSK.


Subject(s)
Cornea/virology , Gene Expression Regulation, Viral , Herpes Simplex/virology , Herpesvirus 1, Human/genetics , Keratitis, Herpetic/virology , Neovascularization, Pathologic/virology , Animals , Cornea/pathology , Disease Models, Animal , Female , Ganglia, Parasympathetic/pathology , Ganglia, Parasympathetic/virology , Herpes Simplex/pathology , Herpesvirus 1, Human/growth & development , Herpesvirus 1, Human/metabolism , Herpesvirus 1, Human/pathogenicity , Humans , Immediate-Early Proteins/genetics , Immediate-Early Proteins/metabolism , Keratitis, Herpetic/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Neovascularization, Pathologic/pathology , Neurons/pathology , Neurons/virology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Trigeminal Ganglion/pathology , Trigeminal Ganglion/virology , Tupaia , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Virus Latency
SELECTION OF CITATIONS
SEARCH DETAIL