Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49.084
Filter
Add more filters

Coleção CLAP
Publication year range
1.
Annu Rev Immunol ; 42(1): 259-288, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38277692

ABSTRACT

Gastrointestinal nematode (GIN) infection has applied significant evolutionary pressure to the mammalian immune system and remains a global economic and human health burden. Upon infection, type 2 immune sentinels activate a common antihelminth response that mobilizes and remodels the intestinal tissue for effector function; however, there is growing appreciation of the impact GIN infection also has on the distal tissue immune state. Indeed, this effect is observed even in tissues through which GINs never transit. This review highlights how GIN infection modulates systemic immunity through (a) induction of host resistance and tolerance responses, (b) secretion of immunomodulatory products, and (c) interaction with the intestinal microbiome. It also discusses the direct consequences that changes to distal tissue immunity can have for concurrent and subsequent infection, chronic noncommunicable diseases, and vaccination efficacy.


Subject(s)
Gastrointestinal Microbiome , Nematoda , Nematode Infections , Animals , Humans , Nematode Infections/immunology , Nematoda/immunology , Nematoda/physiology , Gastrointestinal Microbiome/immunology , Immunomodulation , Host-Parasite Interactions/immunology , Intestinal Diseases, Parasitic/immunology , Immune Tolerance , Gastrointestinal Tract/immunology , Gastrointestinal Tract/parasitology
2.
Annu Rev Immunol ; 41: 229-254, 2023 04 26.
Article in English | MEDLINE | ID: mdl-36737597

ABSTRACT

Type 2 immunity mediates protective responses to helminths and pathological responses to allergens, but it also has broad roles in the maintenance of tissue integrity, including wound repair. Type 2 cytokines are known to promote fibrosis, an overzealous repair response, but their contribution to healthy wound repair is less well understood. This review discusses the evidence that the canonical type 2 cytokines, IL-4 and IL-13, are integral to the tissue repair process through two main pathways. First, essential for the progression of effective tissue repair, IL-4 and IL-13 suppress the initial inflammatory response to injury. Second, these cytokines regulate how the extracellular matrix is modified, broken down, and rebuilt for effective repair. IL-4 and/or IL-13 amplifies multiple aspects of the tissue repair response, but many of these pathways are highly redundant and can be induced by other signals. Therefore, the exact contribution of IL-4Rα signaling remains difficult to unravel.


Subject(s)
Interleukin-13 , Interleukin-4 , Animals , Humans , Cytokines/metabolism , Fibrosis , Helminths
3.
Annu Rev Immunol ; 40: 443-467, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35471837

ABSTRACT

A principal purpose of type 2 immunity was thought to be defense against large parasites, but it also functions in the restoration of homeostasis, such as toxin clearance following snake bites. In other cases, like allergy, the type 2 T helper (Th2) cytokines and cells present in the environment are detrimental and cause diseases. In recent years, the recognition of cell heterogeneity within Th2-associated cell populations has revealed specific functions of cells with a particular phenotype or gene signature. In addition, here we discuss the recent data regarding heterogeneity of type 2 immunity-related cells, as well as their newly identified role in a variety of processes ranging from involvement in respiratory viral infections [especially in the context of the recent COVID-19 (coronavirus disease 2019) pandemic] to control of cancer development or of metabolic homeostasis.


Subject(s)
COVID-19 , Hypersensitivity , Animals , Cytokines/metabolism , Homeostasis , Humans , T-Lymphocytes, Helper-Inducer/metabolism , Th2 Cells
4.
Annu Rev Immunol ; 40: 15-43, 2022 04 26.
Article in English | MEDLINE | ID: mdl-34985928

ABSTRACT

Our understanding of the functions of the IL-1 superfamily cytokine and damage-associated molecular pattern IL-33 continues to evolve with our understanding of homeostasis and immunity. The early findings that IL-33 is a potent driver of type 2 immune responses promoting parasite expulsion, but also inflammatory diseases like allergy and asthma, have been further supported. Yet, as the importance of a type 2 response in tissue repair and homeostasis has emerged, so has the fundamental importance of IL-33 to these processes. In this review, we outline an evolving understanding of IL-33 immunobiology, paying particular attention to how IL-33 directs a network of ST2+ regulatory T cells, reparative and regulatory macrophages, and type 2 innate lymphoid cells that are fundamental to tissue development, homeostasis, and repair.


Subject(s)
Hypersensitivity , Interleukin-33 , Animals , Cytokines , Homeostasis , Humans , Immunity, Innate , Lymphocytes
5.
Annu Rev Immunol ; 39: 167-198, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33534604

ABSTRACT

Type 2 immunity helps protect the host from infection, but it also plays key roles in tissue homeostasis, metabolism, and repair. Unfortunately, inappropriate type 2 immune reactions may lead to allergy and asthma. Group 2 innate lymphoid cells (ILC2s) in the lungs respond rapidly to local environmental cues, such as the release of epithelium-derived type 2 initiator cytokines/alarmins, producing type 2 effector cytokines such as IL-4, IL-5, and IL-13 in response to tissue damage and infection. ILC2s are associated with the severity of allergic asthma, and experimental models of lung inflammation have shown how they act as playmakers, receiving signals variously from stromal and immune cells as well as the nervous system and then distributing cytokine cues to elicit type 2 immune effector functions and potentiate CD4+ T helper cell activation, both of which characterize the pathology of allergic asthma. Recent breakthroughs identifying stromal- and neuronal-derived microenvironmental cues that regulate ILC2s, along with studies recognizing the potential plasticity of ILC2s, have improved our understanding of the immunoregulation of asthma and opened new avenues for drug discovery.


Subject(s)
Asthma , Hypersensitivity , Animals , Asthma/etiology , Humans , Immunity, Innate , Interleukin-13 , Lymphocytes
6.
Annu Rev Immunol ; 37: 47-72, 2019 04 26.
Article in English | MEDLINE | ID: mdl-30379593

ABSTRACT

Tuft cells-rare solitary chemosensory cells in mucosal epithelia-are undergoing intense scientific scrutiny fueled by recent discovery of unsuspected connections to type 2 immunity. These cells constitute a conduit by which ligands from the external space are sensed via taste-like signaling pathways to generate outputs unique among epithelial cells: the cytokine IL-25, eicosanoids associated with allergic immunity, and the neurotransmitter acetylcholine. The classic type II taste cell transcription factor POU2F3 is lineage defining, suggesting a conceptualization of these cells as widely distributed environmental sensors with effector functions interfacing type 2 immunity and neural circuits. Increasingly refined single-cell analytics have revealed diversity among tuft cells that extends from nasal epithelia and type II taste cells to ex-Aire-expressing medullary thymic cells and small-intestine cells that mediate tissue remodeling in response to colonizing helminths and protists.


Subject(s)
Epithelium/physiology , Helminthiasis/immunology , Helminths/physiology , Octamer Transcription Factors/metabolism , Sensory Receptor Cells/physiology , Th2 Cells/immunology , Animals , Humans , Immune System , Interleukin-17/metabolism , Nervous System , Neuroimmunomodulation , Octamer Transcription Factors/genetics , Signal Transduction , TRPM Cation Channels/metabolism
7.
Cell ; 185(17): 3263-3277.e15, 2022 08 18.
Article in English | MEDLINE | ID: mdl-35931082

ABSTRACT

Live bacterial therapeutics (LBTs) could reverse diseases by engrafting in the gut and providing persistent beneficial functions in the host. However, attempts to functionally manipulate the gut microbiome of conventionally raised (CR) hosts have been unsuccessful because engineered microbial organisms (i.e., chassis) have difficulty in colonizing the hostile luminal environment. In this proof-of-concept study, we use native bacteria as chassis for transgene delivery to impact CR host physiology. Native Escherichia coli bacteria isolated from the stool cultures of CR mice were modified to express functional genes. The reintroduction of these strains induces perpetual engraftment in the intestine. In addition, engineered native E. coli can induce functional changes that affect physiology of and reverse pathology in CR hosts months after administration. Thus, using native bacteria as chassis to "knock in" specific functions allows mechanistic studies of specific microbial activities in the microbiome of CR hosts and enables LBT with curative intent.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Animals , Bacteria/genetics , Escherichia coli/genetics , Gastrointestinal Microbiome/physiology , Mice , Transgenes
8.
Cell ; 184(5): 1214-1231.e16, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33636133

ABSTRACT

Although enteric helminth infections modulate immunity to mucosal pathogens, their effects on systemic microbes remain less established. Here, we observe increased mortality in mice coinfected with the enteric helminth Heligmosomoides polygyrus bakeri (Hpb) and West Nile virus (WNV). This enhanced susceptibility is associated with altered gut morphology and transit, translocation of commensal bacteria, impaired WNV-specific T cell responses, and increased virus infection in the gastrointestinal tract and central nervous system. These outcomes were due to type 2 immune skewing, because coinfection in Stat6-/- mice rescues mortality, treatment of helminth-free WNV-infected mice with interleukin (IL)-4 mirrors coinfection, and IL-4 receptor signaling in intestinal epithelial cells mediates the susceptibility phenotypes. Moreover, tuft cell-deficient mice show improved outcomes with coinfection, whereas treatment of helminth-free mice with tuft cell-derived cytokine IL-25 or ligand succinate worsens WNV disease. Thus, helminth activation of tuft cell-IL-4-receptor circuits in the gut exacerbates infection and disease of a neurotropic flavivirus.


Subject(s)
Coinfection , Nematospiroides dubius/physiology , Signal Transduction , Strongylida Infections/pathology , West Nile virus/physiology , Animals , CD8-Positive T-Lymphocytes/immunology , Disease Models, Animal , Disease Susceptibility , Intestinal Mucosa/parasitology , Intestinal Mucosa/virology , Mice , Mice, Inbred C57BL , Neurons/parasitology , Neurons/virology , Receptors, Interleukin-4/metabolism , STAT6 Transcription Factor/genetics , Severity of Illness Index , Strongylida Infections/parasitology
9.
Cell ; 178(6): 1299-1312.e29, 2019 09 05.
Article in English | MEDLINE | ID: mdl-31474368

ABSTRACT

Metformin is the first-line therapy for treating type 2 diabetes and a promising anti-aging drug. We set out to address the fundamental question of how gut microbes and nutrition, key regulators of host physiology, affect the effects of metformin. Combining two tractable genetic models, the bacterium E. coli and the nematode C. elegans, we developed a high-throughput four-way screen to define the underlying host-microbe-drug-nutrient interactions. We show that microbes integrate cues from metformin and the diet through the phosphotransferase signaling pathway that converges on the transcriptional regulator Crp. A detailed experimental characterization of metformin effects downstream of Crp in combination with metabolic modeling of the microbiota in metformin-treated type 2 diabetic patients predicts the production of microbial agmatine, a regulator of metformin effects on host lipid metabolism and lifespan. Our high-throughput screening platform paves the way for identifying exploitable drug-nutrient-microbiome interactions to improve host health and longevity through targeted microbiome therapies. VIDEO ABSTRACT.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Gastrointestinal Microbiome/drug effects , Host Microbial Interactions/drug effects , Hypoglycemic Agents/therapeutic use , Metformin/therapeutic use , Agmatine/metabolism , Animals , Caenorhabditis elegans/microbiology , Cyclic AMP Receptor Protein , Escherichia coli/drug effects , Escherichia coli/genetics , Humans , Hypoglycemic Agents/pharmacology , Lipid Metabolism/drug effects , Longevity/drug effects , Metformin/pharmacology , Nutrients/metabolism
10.
Cell ; 179(2): 417-431.e19, 2019 Oct 03.
Article in English | MEDLINE | ID: mdl-31585081

ABSTRACT

Severe asthma patients with low type 2 inflammation derive less clinical benefit from therapies targeting type 2 cytokines and represent an unmet need. We show that mast cell tryptase is elevated in severe asthma patients independent of type 2 biomarker status. Active ß-tryptase allele count correlates with blood tryptase levels, and asthma patients carrying more active alleles benefit less from anti-IgE treatment. We generated a noncompetitive inhibitory antibody against human ß-tryptase, which dissociates active tetramers into inactive monomers. A 2.15 Å crystal structure of a ß-tryptase/antibody complex coupled with biochemical studies reveal the molecular basis for allosteric destabilization of small and large interfaces required for tetramerization. This anti-tryptase antibody potently blocks tryptase enzymatic activity in a humanized mouse model, reducing IgE-mediated systemic anaphylaxis, and inhibits airway tryptase in Ascaris-sensitized cynomolgus monkeys with favorable pharmacokinetics. These data provide a foundation for developing anti-tryptase as a clinical therapy for severe asthma.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Asthma/therapy , Mast Cells/enzymology , Mast Cells/immunology , Tryptases/antagonists & inhibitors , Tryptases/immunology , Adolescent , Allosteric Regulation/immunology , Animals , Cell Line , Female , Humans , Macaca fascicularis , Male , Mice , Mice, Inbred BALB C , Mice, Inbred NOD , Mice, SCID , Rabbits
11.
Cell ; 176(1-2): 56-72.e15, 2019 01 10.
Article in English | MEDLINE | ID: mdl-30612743

ABSTRACT

Local translation regulates the axonal proteome, playing an important role in neuronal wiring and axon maintenance. How axonal mRNAs are localized to specific subcellular sites for translation, however, is not understood. Here we report that RNA granules associate with endosomes along the axons of retinal ganglion cells. RNA-bearing Rab7a late endosomes also associate with ribosomes, and real-time translation imaging reveals that they are sites of local protein synthesis. We show that RNA-bearing late endosomes often pause on mitochondria and that mRNAs encoding proteins for mitochondrial function are translated on Rab7a endosomes. Disruption of Rab7a function with Rab7a mutants, including those associated with Charcot-Marie-Tooth type 2B neuropathy, markedly decreases axonal protein synthesis, impairs mitochondrial function, and compromises axonal viability. Our findings thus reveal that late endosomes interact with RNA granules, translation machinery, and mitochondria and suggest that they serve as sites for regulating the supply of nascent pro-survival proteins in axons.


Subject(s)
Endosomes/physiology , Protein Biosynthesis/physiology , rab GTP-Binding Proteins/metabolism , Animals , Axons/metabolism , Endosomes/metabolism , Mitochondria/genetics , Mitochondria/metabolism , RNA/metabolism , RNA, Messenger/metabolism , RNA, Messenger/physiology , Retinal Ganglion Cells/metabolism , Retinal Ganglion Cells/physiology , Ribosomes/metabolism , Xenopus Proteins/metabolism , Xenopus laevis/metabolism , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/physiology , rab7 GTP-Binding Proteins
12.
Immunity ; 57(6): 1243-1259.e8, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38744291

ABSTRACT

Epithelial cells secrete chloride to regulate water release at mucosal barriers, supporting both homeostatic hydration and the "weep" response that is critical for type 2 immune defense against parasitic worms (helminths). Epithelial tuft cells in the small intestine sense helminths and release cytokines and lipids to activate type 2 immune cells, but whether they regulate epithelial secretion is unknown. Here, we found that tuft cell activation rapidly induced epithelial chloride secretion in the small intestine. This response required tuft cell sensory functions and tuft cell-derived acetylcholine (ACh), which acted directly on neighboring epithelial cells to stimulate chloride secretion, independent of neurons. Maximal tuft cell-induced chloride secretion coincided with immune restriction of helminths, and clearance was delayed in mice lacking tuft cell-derived ACh, despite normal type 2 inflammation. Thus, we have uncovered an epithelium-intrinsic response unit that uses ACh to couple tuft cell sensing to the secretory defenses of neighboring epithelial cells.


Subject(s)
Acetylcholine , Chlorides , Epithelial Cells , Intestinal Mucosa , Animals , Acetylcholine/metabolism , Mice , Chlorides/metabolism , Epithelial Cells/metabolism , Epithelial Cells/parasitology , Epithelial Cells/immunology , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Intestinal Mucosa/parasitology , Intestine, Small/immunology , Intestine, Small/parasitology , Intestine, Small/metabolism , Mice, Inbred C57BL , Mice, Knockout , Tuft Cells
13.
Immunity ; 57(5): 1056-1070.e5, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38614091

ABSTRACT

A specialized population of mast cells residing within epithelial layers, currently known as intraepithelial mast cells (IEMCs), was originally observed over a century ago, yet their physiological functions have remained enigmatic. In this study, we unveil an unexpected and crucial role of IEMCs in driving gasdermin C-mediated type 2 immunity. During helminth infection, αEß7 integrin-positive IEMCs engaged in extensive intercellular crosstalk with neighboring intestinal epithelial cells (IECs). Through the action of IEMC-derived proteases, gasdermin C proteins intrinsic to the epithelial cells underwent cleavage, leading to the release of a critical type 2 cytokine, interleukin-33 (IL-33). Notably, mast cell deficiency abolished the gasdermin C-mediated immune cascade initiated by epithelium. These findings shed light on the functions of IEMCs, uncover a previously unrecognized phase of type 2 immunity involving mast cell-epithelial cell crosstalk, and advance our understanding of the cellular mechanisms underlying gasdermin C activation.


Subject(s)
Interleukin-33 , Mast Cells , Phosphate-Binding Proteins , Pore Forming Cytotoxic Proteins , Animals , Mice , Cell Communication/immunology , Epithelial Cells/immunology , Epithelial Cells/metabolism , Interleukin-33/metabolism , Interleukin-33/immunology , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/immunology , Mast Cells/immunology , Mast Cells/metabolism , Mice, Inbred C57BL , Mice, Knockout , Phosphate-Binding Proteins/metabolism , Pore Forming Cytotoxic Proteins/immunology , Pore Forming Cytotoxic Proteins/metabolism
14.
Immunity ; 57(6): 1260-1273.e7, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38744292

ABSTRACT

Upon parasitic helminth infection, activated intestinal tuft cells secrete interleukin-25 (IL-25), which initiates a type 2 immune response during which lamina propria type 2 innate lymphoid cells (ILC2s) produce IL-13. This causes epithelial remodeling, including tuft cell hyperplasia, the function of which is unknown. We identified a cholinergic effector function of tuft cells, which are the only epithelial cells that expressed choline acetyltransferase (ChAT). During parasite infection, mice with epithelial-specific deletion of ChAT had increased worm burden, fitness, and fecal egg counts, even though type 2 immune responses were comparable. Mechanistically, IL-13-amplified tuft cells release acetylcholine (ACh) into the gut lumen. Finally, we demonstrated a direct effect of ACh on worms, which reduced their fecundity via helminth-expressed muscarinic ACh receptors. Thus, tuft cells are sentinels in naive mice, and their amplification upon helminth infection provides an additional type 2 immune response effector function.


Subject(s)
Acetylcholine , Intestinal Mucosa , Animals , Acetylcholine/metabolism , Mice , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Intestinal Mucosa/parasitology , Choline O-Acetyltransferase/metabolism , Interleukin-13/metabolism , Interleukin-13/immunology , Mice, Knockout , Mice, Inbred C57BL , Helminthiasis/immunology , Helminthiasis/parasitology , Epithelial Cells/immunology , Epithelial Cells/metabolism , Immunity, Innate , Nematospiroides dubius/immunology , Tuft Cells
15.
Immunity ; 57(2): 319-332.e6, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38295798

ABSTRACT

Tuft cells in mucosal tissues are key regulators of type 2 immunity. Here, we examined the impact of the microbiota on tuft cell biology in the intestine. Succinate induction of tuft cells and type 2 innate lymphoid cells was elevated with loss of gut microbiota. Colonization with butyrate-producing bacteria or treatment with butyrate suppressed this effect and reduced intestinal histone deacetylase activity. Epithelial-intrinsic deletion of the epigenetic-modifying enzyme histone deacetylase 3 (HDAC3) inhibited tuft cell expansion in vivo and impaired type 2 immune responses during helminth infection. Butyrate restricted stem cell differentiation into tuft cells, and inhibition of HDAC3 in adult mice and human intestinal organoids blocked tuft cell expansion. Collectively, these data define a HDAC3 mechanism in stem cells for tuft cell differentiation that is dampened by a commensal metabolite, revealing a pathway whereby the microbiota calibrate intestinal type 2 immunity.


Subject(s)
Intestinal Mucosa , Microbiota , Adult , Mice , Humans , Animals , Tuft Cells , Butyrates/pharmacology , Butyrates/metabolism , Immunity, Innate , Lymphocytes/metabolism , Intestines , Histone Deacetylases/metabolism , Cell Differentiation
16.
Immunity ; 57(3): 513-527.e6, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38262419

ABSTRACT

Accumulation of senescent cells in organs and tissues is a hallmark of aging and known to contribute to age-related diseases. Although aging-associated immune dysfunction, or immunosenescence, is known to contribute to this process, the underlying mechanism remains elusive. Here, we report that type 2 cytokine signaling deficiency accelerated aging and, conversely, that the interleukin-4 (IL-4)-STAT6 pathway protected macrophages from senescence. Mechanistically, activated STAT6 promoted the expression of genes involved in DNA repair both via homologous recombination and Fanconi anemia pathways. Conversely, STAT6 deficiency induced release of nuclear DNA into the cytoplasm to promote tissue inflammation and organismal aging. Importantly, we demonstrate that IL-4 treatment prevented macrophage senescence and improved the health span of aged mice to an extent comparable to senolytic treatment, with further additive effects when combined. Together, our findings support that type 2 cytokine signaling protects macrophages from immunosenescence and thus hold therapeutic potential for improving healthy aging.


Subject(s)
Cellular Senescence , Interleukin-4 , Animals , Mice , Interleukin-4/metabolism , Aging/genetics , Macrophages , Inflammation
17.
Immunity ; 57(6): 1274-1288.e6, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38821053

ABSTRACT

Severe asthma and sinus disease are consequences of type 2 inflammation (T2I), mediated by interleukin (IL)-33 signaling through its membrane-bound receptor, ST2. Soluble (s)ST2 reduces available IL-33 and limits T2I, but little is known about its regulation. We demonstrate that prostaglandin E2 (PGE2) drives production of sST2 to limit features of lung T2I. PGE2-deficient mice display diminished sST2. In humans with severe respiratory T2I, urinary PGE2 metabolites correlate with serum sST2. In mice, PGE2 enhanced sST2 secretion by mast cells (MCs). Mice lacking MCs, ST2 expression by MCs, or E prostanoid (EP)2 receptors by MCs showed reduced sST2 lung concentrations and strong T2I. Recombinant sST2 reduced T2I in mice lacking PGE2 or ST2 expression by MCs back to control levels. PGE2 deficiency also reversed the hyperinflammatory phenotype in mice lacking ST2 expression by MCs. PGE2 thus suppresses T2I through MC-derived sST2, explaining the severe T2I observed in low PGE2 states.


Subject(s)
Dinoprostone , Interleukin-1 Receptor-Like 1 Protein , Interleukin-33 , Lung , Mast Cells , Mice, Knockout , Animals , Interleukin-1 Receptor-Like 1 Protein/metabolism , Interleukin-1 Receptor-Like 1 Protein/genetics , Mast Cells/immunology , Mast Cells/metabolism , Dinoprostone/metabolism , Mice , Interleukin-33/metabolism , Humans , Lung/immunology , Lung/metabolism , Lung/pathology , Asthma/immunology , Asthma/metabolism , Receptors, Prostaglandin E, EP2 Subtype/metabolism , Mice, Inbred C57BL , Inflammation/immunology , Female , Male , Signal Transduction , Pneumonia/immunology , Pneumonia/metabolism
18.
Immunity ; 56(11): 2542-2554.e7, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37714152

ABSTRACT

Group 2 innate lymphoid cells (ILC2s) are crucial in promoting type 2 inflammation that contributes to both anti-parasite immunity and allergic diseases. However, the molecular checkpoints in ILC2s that determine whether to immediately launch a proinflammatory response are unknown. Here, we found that retinoid X receptor gamma (Rxrg) was highly expressed in small intestinal ILC2s and rapidly suppressed by alarmin cytokines. Genetic deletion of Rxrg did not impact ILC2 development but facilitated ILC2 responses and the tissue inflammation induced by alarmins. Mechanistically, RXRγ maintained the expression of its target genes that support intracellular cholesterol efflux, which in turn reduce ILC2 proliferation. Furthermore, RXRγ expression prevented ILC2 response to mild stimulations, including low doses of alarmin cytokine and mechanical skin injury. Together, we propose that RXRγ expression and its mediated lipid metabolic states function as a cell-intrinsic checkpoint that confers the threshold of ILC2 activation in the small intestine.


Subject(s)
Immunity, Innate , Retinoid X Receptor gamma , Humans , Alarmins , Lymphocytes , Inflammation , Cytokines/metabolism , Intestine, Small/metabolism
19.
Immunity ; 56(7): 1468-1484.e7, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37285842

ABSTRACT

Type 2 immune responses are critical in tissue homeostasis, anti-helminth immunity, and allergy. T helper 2 (Th2) cells produce interleukin-4 (IL-4), IL-5, and IL-13 from the type 2 gene cluster under regulation by transcription factors (TFs) including GATA3. To better understand transcriptional regulation of Th2 cell differentiation, we performed CRISPR-Cas9 screens targeting 1,131 TFs. We discovered that activity-dependent neuroprotector homeobox protein (ADNP) was indispensable for immune reactions to allergen. Mechanistically, ADNP performed a previously unappreciated role in gene activation, forming a critical bridge in the transition from pioneer TFs to chromatin remodeling by recruiting the helicase CHD4 and ATPase BRG1. Although GATA3 and AP-1 bound the type 2 cytokine locus in the absence of ADNP, they were unable to initiate histone acetylation or DNA accessibility, resulting in highly impaired type 2 cytokine expression. Our results demonstrate an important role for ADNP in promoting immune cell specialization.


Subject(s)
Histones , Transcription Factors , Histones/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation , Th2 Cells , Cytokines/metabolism , Cell Differentiation , GATA3 Transcription Factor/genetics , GATA3 Transcription Factor/metabolism
20.
Cell ; 171(1): 217-228.e13, 2017 Sep 21.
Article in English | MEDLINE | ID: mdl-28890086

ABSTRACT

Mammals have evolved neurophysiologic reflexes, such as coughing and scratching, to expel invading pathogens and noxious environmental stimuli. It is well established that these responses are also associated with chronic inflammatory diseases, including asthma and atopic dermatitis. However, the mechanisms by which inflammatory pathways promote sensations such as itch remain poorly understood. Here, we show that type 2 cytokines directly activate sensory neurons in both mice and humans. Further, we demonstrate that chronic itch is dependent on neuronal IL-4Rα and JAK1 signaling. We also observe that patients with recalcitrant chronic itch that failed other immunosuppressive therapies markedly improve when treated with JAK inhibitors. Thus, signaling mechanisms previously ascribed to the immune system may represent novel therapeutic targets within the nervous system. Collectively, this study reveals an evolutionarily conserved paradigm in which the sensory nervous system employs classical immune signaling pathways to influence mammalian behavior.


Subject(s)
Pruritus/immunology , Sensory Receptor Cells/immunology , Sensory Receptor Cells/metabolism , Signal Transduction , Skin Diseases/immunology , Animals , Ganglia, Spinal , Humans , Interleukin-13/immunology , Interleukin-4/immunology , Janus Kinase 1/metabolism , Mice , Mice, Inbred C57BL , Pruritus/metabolism , Skin Diseases/pathology
SELECTION OF CITATIONS
SEARCH DETAIL